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To solve the problem of multi-agent path finding (MAPF), a new deep reinforcement learning model with local attention cooperation is
proposed in this work.

Public summary

m We build the local observation encoder by using residual attention CNN to extract local observations and use the trans-
former architecture to build an interaction layer to combine local observations of agents.

m To overcome the deficiency of the success rate, we also designed a new evaluation index, namely the extra time rate
(ETR).

m The experimental results show that our model is superior to most of the previous models in terms of success rate and
extra time rate.
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Abstract: Multi-agent path finding (MAPF) is a challenging multi-agent systems problem where all agents are required to
effectively reach their goals concurrently with not colliding with each other and avoiding obstacles. In MAPF, it is a chal-
lenge to effectively express the observation of agents, utilize historical information, and effectively communicate with
neighbor agents. To tackle these issues, in this work, we proposed a well-designed model that utilizes the local states of
nearby agents and outputs an optimal action for each agent to execute. We build the local observation encoder by using re-
sidual attention CNN to extract local observations and use the Transformer architecture to build an interaction layer to
combine local observations of agents. With the purpose of overcoming the deficiency of success rate, we also designed a
new evaluation index, namely extra time rate (ETR). The experimental results show that our model is superior to most pre-
vious models in terms of success rate and ETR. In addition, we also completed the ablation study on the model, and the ef-

fectiveness of each component of the model was proved.

Keywords: multi-agent path finding (MAPF); reinforcement learning; decentralized planning; attention mechanism
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1 Introduction

Multi-agent path finding (MAPF) is a significant problem in
multi-agent planning problems, whose goal is to effectively
plan paths for multiple agents with the constraint that agents
need to avoid colliding with obstacles and other agents''.
MAPF is a common problem in many practical scenarios. For
example, MAPF is deployed in automated warehouses™?, air-
plane taxiing*), automated guided vehicles (AGVs)"" and so
on. Indeed, MAPF is full of challenges because solving for
the optimal method is NP-hard", and when the size of the en-
vironment, the number of agents, and the density of obstacles
increase sharply, a large number of potential path conflicts
may occur.

Generally, there are two major categories in the multi-agent
system: centralized methods and decentralized methods.
Centralized methods apply a single learner to discover joint
solutions (team learning), while decentralized methods use
multiple simultaneous learners, usually one for each agent
(concurrent learning)®’. The same classification also exists on
MAPF issues!’. In the centralized MAPF, all agents’ partial
observations are known and collected to generate collision-
free paths for them, while in decentralized MAPF, it is not ne-
cessary to know all the states of all agents to determine each
agent, and each agent makes decisions independently accord-
ing to its own local observation. With the growth of the num-
ber of agents, world scale, and obstacle density, computation-
al complexity will be an important concern, especially for
centralized methods. Therefore, in this paper, we focus on de-
centralized methods, where effective and efficient communic-
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ations between agents are crucial. Moreover, the information
for communication also needs to be carefully coded, and it
needs to consider not only the effective coding of local obser-
vations but also the effective combination of historical state
information. Therefore, we use convolutional neural net-
works (CNN) with residual structures to encode local obser-
vations and gated recurrent unit (GRU) cells to integrate his-
torical information.

In the past few decades, decentralized solutions to this
problem have attracted extensive interest. In traditional meth-
ods, the reaction method is an intuitive and widely adopted
benchmark. Take local repair A* (LRA*)", for example, in
which each agent searches for its own path to its own goal
using the A* algorithm, ignoring all other agents except for
its current neighbors. Obviously, there will be many conflicts,
so dealing with conflicts effectively is the key work of reac-
tion. Whenever a collision is about to occur, the agent needs
to avoid this situation by recalculating the remainder of its
route and considering the occupied grids. In addition to reac-
tion-based methods, there are also conflict-based methods
(CBS'", MA-CBS'™, ECBS!"™, and ICBS'Y). In general,
CBS!"" is a two-level search algorithm. While CBS calculates
the path of each agent independently at the low level, and at
the high level it detects conflicts between agent pairs and
solves the conflict by splitting the current solution into two
related subproblems, each of which involves replanning a
single agent. By dividing the subproblem into two subprob-
lems to solve the conflict recursively, the search tree is impli-
citly defined. Advanced search searches this tree with best-
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first search and terminates when the conflict-free leaf is
extended.

In recent years, there has been some seminal work using
deep architectures to automatically find optimal or suboptim-
al solutions for planning problems. These approaches vary
from supervised learning to deep reinforcement learning, and
their structures contain CNNU 'l LSTM"”, and GNN!"*"1, In
the previous approaches, some works (for example,
PRIMAL™, PRIMAL,") did not think communication
among agents is necessary and did not make any effort to
design communication structures, while some works (for ex-
ample, LSTM"7, GNN"., and GAT"") thought the commu-
nication was very important and they took all the effort to
build communication structures for agents to share their state
information.

More importantly, these previous works did not distin-
guish the importance of local information, so we need to dis-
tinguish the importance of local information to extract more
impressive features. Inspired by MAAC (multi-actor-attention-
aritic), which uses an attention mechanism in multi-agent re-
inforcement learning to select relevant information for each
agent at every time step, we use an attention mechanism to
share neighbors’ information for each agent. Reinforcement
learning methods also face the problem of solving long-hori-
zon tasks with sparse rewards™”, especially when the environ-
ment is very large, and the training process will be inefficient.
To speed up the training process in reinforcement learning,
some of the previous works also used imitation learning for
the cold start dilemma in reinforcement learning!* '), while
curriculum learning for the environment setting also made
sense where the easy tasks took some inspiration for hard
tasks and humans explored complex tasks from easy step by
step!'l.

The major contributions of this paper are as follow:

(1) To solve the problem of multi-agent path finding
(MAPF), a new deep reinforcement learning model with
local attention cooperation , called local attention coopera-
tion reinforcement learning (LACRL), is proposed in this
work.

(ii) We build the local observation encoder by using resid-
ual attention CNN to extract local observations and use the
transformer architecture to build an interaction layer to com-
bine local observations of agents.

(iil) To overcome the deficiency of the success rate, we
also designed a new evaluation index, namely the extra time
rate (ETR). The experimental results show that our model is
superior to most of the previous models in terms of success
rate and extra time rate.

2 Related works

Classical path planning methods. Generally, there are two
major categories in MAPF approaches: coupled (centralized)
and decoupled (decentralized). There will be a catastrophe for
centralized approaches when the size of the world and the
number of agents grow sharply, and the performance of cent-
ralized approaches will struggle because of the tremendous
search space. Almost all traditional methods tend to use cent-
ralized or coupled methods, which use the complete informa-
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tion of all agents and the world environment to plan the path
globally. Among the traditional methods, the most famous
and well-used decoupled methods are search-based (for ex-
ample, LRA* and CBS) methods. A*-based (for example,
LRA* and WHCA¥*) algorithms rely on complete observa-
tions and use A* to calculate full paths for each agent, which
could work in both centralized (CBS, WHCA, ORCA) and
decentralized manner”. In A*-based methods, the reaction
trick is intuitive and widely adopted, so there are also some
works that take the reaction-based methods as a branch of ap-
proaches. Take LRA*, for example, in which each agent
searches for its own path to its own goal using the A* al-
gorithm, ignoring all other agents except for its current neigh-
bors. Obviously, there will be many conflicts, so dealing with
conflicts effectively is the key work of reaction. Whenever a
collision is about to occur, the agent needs to avoid this situ-
ation by recalculating the remainder of its route and consider-
ing the occupied grid. Besides search-based methods, there
are also conflict-based search and its variants (CBS, MA-
CBS, ECBS, and ICBS), which make a plan for each single
agent and construct a set of constraints to find the optimal or
near-optimal solution without exploring the high-dimension-
al spaces. In conflict-based approaches, CBS is the most ori-
ginal and influential method, which is a two-level search al-
gorithm. While CBS calculates the path of each agent inde-
pendently at the low level, at the high level, it detects con-
flicts between agent pairs and solves the conflict by splitting
the current solution into two related subproblems, each of that
involves replanning a single agent. By dividing the subprob-
lem into two subproblems to solve the conflict recursively,
the search tree is implicitly defined. Advanced search
searches this tree with the best-first search and terminates
when the conflict-free leaf is extended.

In addition to search-based methods and conflict-based
methods, there are also thousands of trick to solve the prob-
lem, such as direction map™", subgraph structure””, flow an-
notation replanning™, increasing cost tress search (ICTS)*
satisfiability”’", integer linear programming®'**, and answer
set programming®. In the direction map method™", there is a
direction map (DM) that stores information about the direc-
tion that agents have traveled in each portion of a map. In the
planning process, agents then use this information, in which
movement that runs counter to the pattern incurs additional
penalties, thus encouraging delegates to move more evenly
throughout the environment. In the subgraph structure meth-
od™, they propose a new abstract form to plan more effect-
ively, in which the key of this approach is to divide the map-
ping into subgraphs with known structures. These known sub-
graphs have entry and exit constraints, and can be compactly
represented. Then, planning becomes a search in a smaller
subgraph configuration space. Once an abstract plan is found,
it can be quickly decomposed into correct (but possibly sub-
optimal) concrete plans without further search. ICTSP in-
terweaves two search processes. The first is called advanced
search, which aims to find the size of the agent’s single agent
plan in the optimal solution of a given MAPF problem. The
second is called low-level search, which accepts a plan size
vector and verifies whether there is an effective solution for a
given MAPF problem. Finally, there are some methods that
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transform the MAPF problem into a different problem for
which good solvers exist, such as satisfiability™ ", integer
linear programming”' ", and answer set programming"’..

In fact, solving the optimality is NP-hard. Although signi-
ficant progress has been made in reducing the amount of
computation, the scalability of these methods in an environ-
ment with a large number of potential path conflicts is still
very poor. To reduce the number of hand-tuning parameters
and address sensing uncertainty, some researchers have pro-
posed learning-based methods to solve the planning
problem™”.

Learning-based methods. Thanks to the rapid develop-
ment of deep learning technology in recent years, learning-
based methods are considered to be a promising direction for
solving the task of path planning. Reinforcement learning has
always been a powerful tool for solving planning problems,
and it successfully solves the path planning problem, in which
the agent completes the task through repeated trial and error.
ORCAP* adjusts the speed, size, and direction of agents on-
line to avoid collision. On the separately planned single agent
path, recent works have focused on the obstacle avoidance
method of reinforcement learning. Refs. [15, 16] proposed a
hybrid learning-based method called PRIMAL for multi-
agent path finding that integrated imitation learning and multi-
agent reinforcement learning. In addition, there is a method of
reinforcement learning combined with evolutionary thought.
The approaches'>'” did not consider interrobot communica-
tion and thus, did not exploit the full potential of the decent-
ralized system™. In other words, communication is import-
ant, especially for decentralized approaches, and it is difficult
to fully estimate the intention of adjacent decision agents
without communication. Ref. [18] used CNN to extract ad-
equate features from local observations and use graph neural
network (GNN) to transfer these features between all agents.
Then, the model is trained offline by imitating the expert al-
gorithm, and the model is used online for decentralized plan-
ning involving only local communication and local observa-
tion. Ref. [19] believed that vanilla GNN relies on a simple
message aggregation mechanism, which hinders the agent
from prioritizing important information. Therefore, they ex-
tend the previous work that uses vanilla GNNs to graph atten-
tion network (GAT). Their message-aware graph attention
network (MAGAT) is based on a key-query-like mechanism
that determines the relative importance of features in the mes-
sages received from various neighboring robots. Ref. [17]
proposed a decentralized multi-agent collision avoidance al-
gorithm based on deep reinforcement learning, in which intro-
duces a strategy using LSTM that enables the algorithm to
use observations of an arbitrary number of other agents in-
stead of previous methods that have a fixed observation size.

These previous works did not distinguish the importance of
local information, so we need to distinguish the importance of
local information to extract more impressive features used in
the last decision process. Moreover, the approaches>'“ did
not have the communication between agents and did not ex-
ploit the full environment to complete the task. This is differ-
ent from Refs. [18, 19], which used a graph structure to trans-
fer features between all agents. In contrast, only when some
agents are very close do they communicate information with
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each other. Based on another fact, when the world is large,
and the number of agents is large, it takes considerable time
to build graphs and aggregate information on all agents.
Therefore, in a large-scale environment, local communica-
tion will save a lot of time and respond quickly.

In terms of training methods, we do not use imitation learn-
ing!">'*'% I and guidance path!”*!. We use RL framework and
design all rewards to control the process of path exploration.
We believe that although these training skills can speed up the
efficiency of agent exploration of the environment, they also
greatly affect the quality of the agent strategy. Although we
don’t use the above training skills, we also make an attempt to
improve the efficiency of agent exploration. Inspired by the
curriculum learning used in imitation learning, we divide the
training process of the model into many steps, starting from
relatively simple tasks to more complex tasks.

3 Local attention cooperation reinforce-
ment learning

3.1 Preliminary

We model MAPF under the Markov decision processes
(MDPs) framework, which converts MAPF to a sequential
decision-making problem in which each agent needs to take
the instant action option at time #, with two goals: quickly
reach the goal contently and make great efforts to avoid colli-
sion among agents.

Environment. Consider a 2-dimensional discrete environ-
ment E c R? with size W x H and the cell C € E. For each cell
C, it has three states: free, busy (occupied by someone agent),
and disable (occupied by obstacle). There are a set of N,
obstacles, C, = {0,,...,0y,}, Where o, € E represents that there
is the ith obstacle in the environment, and a set of N, agents
A={A",..,AM}, where A‘ec E represents that the ith agent
can travel between the free cells, and the free cells of the
world can be represented by C, = E\ O, O is the set of all
obstacles in the world. For the ith agent, there is a unique
start position c,, and a unique goal position c,, with the con-
straint that ¢, € C and c,, € C. Our goal is to find a decentral-
ized planner, which plans the ith agent’s motion path by tak-
ing the local observation and considering the neighbor agents’
states in addition to quickly finding the scheduling path, it is
also important to ensure the security of the solution, that is,
try to avoid conflicts between agents.

State’s structure. We consider that every agent partially
observes the environment (W x H), where agents only ob-
serve the grid world in a limited field of view (FOV), the ra-
dius of which is defined as Ry, and 9 is actually used in our
experiment. As mentioned in Ref. [15], partially observing
the world is an important step towards the deployment of ro-
bots in the real world. Only in closed and small scenarios, a
complete map of the environment is available (e.g., auto-
mated warehouses), and agents can be trained by using a suf-
ficiently large FOV to complete full observation of the sys-
tem. For each agent in the environment, it will have a percep-
tion of its local environment. The perceived information plays
an important role in planning the motion path of the agent. In
detail, at each time step 7, the agent A’ will take its local ob-
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servation around it, which contains obstacle location informa-
tion L/, the location of adjacent agents L, the target location
of current agent (if the goal in its neighboring) L, and the tar-
gets of other agents L|,. Local observations of agent A' can be
formally expressed as L, = [L]; L;; L;; L. ].

Additionally, assuming a fixed FOV, the strategy can be
extended to any world size, which also helps to reduce the
input dimension of the neural network and reduce model
complexity!. The local state’s structure of each agent can be
found in Fig. 1.

Communications. Since agents do not have global posi-
tion of others, the communication (or information sharing)
between the agents are significant to complete the cooperat-
ive task. Addressing the problems of what information should
be sent to whom and when is crucial to solving the task ef-
fectively!”. We try to design a communication block, which
takes the local observation of the agent and its neighbor
agents as input and outputs a tensor condensing the informa-
tion that will redound to do a decision-making. At time ¢,
agent A’ will be adjacent to some agents that can be recorded
as N!. And the local observation of the agent A, and its neigh-
bor agents jeN can be formally expressed as
I'={L!, | je N}, while the output tensor can be recorded
as S'.

Action space. We describe the MAPF problem as a se-
quence classification problem, which selects an optimal ac-
tion from action space in each time step. And in our experi-
ment, we consider a 4-connected grid environment, which
means the agent can take 5 discrete actions in the grid world:
moving a cell in one of the four basic directions or staying

World map

Unit vector

Goal

Local observation

stationary. However, if the target mesh is already occupied by
other agents or obstacles, the agent will not be able to move
and will stay in their current position.

Reward design. The goal of MAPF is to reach the target
position with the smallest stride while avoiding collision with
obstacles and other agents. Therefore, there need step penalty
I that after an agent move a step will get a small penalty
with the purpose to push the agent to quickly reach its goal.
Besides, collision penalty 7.0, Which should be given to the
agent when it collides with obstacles or other agents, is also
important and will be little bigger than step penalty. To en-
courage exploration, we penalize slightly more for waiting
than moving if the agent has not reached the goal. A similar
training trick is also used in Ref. [20]. Since the waiting pen-
alty is slightly more than the moving penalty, the swing of the
agent will occur frequently in our experiment. To avoid this
situation, here we need to introduce swing penalty r,.;,, when
agents return to the position they come from last time. Fi-
nally, when the agent reach its goal, the goal-reaching rear-
ward r,, will be given to the agent. The detailed values of
these reward components in our experiment can be found in
Table 1.

3.2 Our methods

In this section, we will explain how agents output actions
based on inputs, and show our entire model architecture, and
then explain the specific network architecture on each mod-
ule. The whole model architecture is shown in Fig. 2. First,
the agents locally observe their environment to get the sur-
rounding information, and through a local attention encoder
to get the expression of its local observation. Then, the agent

Local obervation of its N neighbors

Obstacles
Neighbors’ positions/

Neighbors® goals

Agent’ s goal

Neighbor 1’ s observation

Neighbor N’ s observation

9x9x4

9x9x4 9x9x4

Fig. 1. State’s structure of each agent (here, for the red agent). Agents represented as a red square are positioned in the squares, while their goals are rep-
resented as a solid circle of the same color. For the current agent (red agent), its local observation contains four channel information: positions of
obstacles, positions of nearby agents, goal positions of these nearby agents, and position of its own goal (if exist in the FOV). In addition to the current
(red) agent status, other nearby agents’ states are also required (here, take the yellow agent and blue agent, for example).
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Table 1. Reward design. There need step penalty ry, to promote the
agent to achieve its goal quickly. And inspired by Refs. [15, 16, 20], we
subdivide the step penalty into move penalty and wait penalty. The wait-
ing penalty (e.g., —0.5) is slightly larger than the moving penalty (e.g.,
—0.3), which will promote the agent to explore the environment. Since the
waiting penalty is slightly more than the moving penalty, we introduce
the swing penalty ryine to avoid the swing of the agent. In addition, colli-
sion penalty renision Should be given to the agent when it collides with
obstacles or other agents. Finally, when the agent reach its goal, the goal-
reaching reward r,., Will be given to the agent.

will communicate with its neighbor agents to cooperate, in
which an transformer architecture is used to exchange the loc-
al observation, so the communication block can also be called
the interaction layer. Finally, the tensor output from the com-
munication block will be input to a decision block, which is
considered as a learning strategy and estimates the optimal
action at this time.

Local attention encoder (LA-Encoder). Because the mo-
tivation of this module is to extract and encode the local ob-
servations, it also can be called feature layers. In detail, at
each time step ¢, the agent A’ will take its local observation L!
around it, which be formally expressed as

L =[L;L;L,;L,], (1)
where L! is the obstacle location information, L! is the loca-
tion of adjacent agents, L; is the target location of current
agent (if the goal in its neighboring), and L, is the targets of
other agents.

Deep reinforcement learning framework

Action Reward
Step penalty (move) -0.3
Step penalty (wait) -0.5
Collision penalty -2.0
Swing penalty -1.0
Goal-reach reward +40.0
Observations structure
Target .
agent [z o
NS
r———7- | \\:\
: | \ .
| | N - - 1
| L L1+ | Local Attention
| ] I Block I
Nearby | | e _—— = 2
agents | |
| 9x9x4 :
' |
! |
| 2x1
|
' |
L

Transformer-based
Communication block

Decision block

i ey w T 2
= “D

State value

action

|
1
| | e —
| I E _]_,) Ebh Gy
; : 255x1]|:‘|‘;"|:| i : ~ s :%D
L | ’\
| 256x1 “\‘.\\n
| LR !
| | '\\\l Qf |
| | A\ network I
I \"\\
\ | WM £ |
i 256><1] | Q2 g |
e oL l network Z| |
i

Fig. 2. Model overview. For the input observations, there are local observations of the target agent (red agent) that need to be planned and other agents
nearby the target agent (blue agent, yellow agent, etc). For our deep reinforcement learning framework, there are three components: observation encoder,
communication block, and decision block. Finally, the estimated optimal action from the policy network is taken as the output of the model.

In addition to local observation information L, it is signi-
ficant to introduce the local guide direction formally ex-
pressed as v\. The purpose is to point out the target location,
especially when the grid world is too large and the target ex-
ceeds FOV. At time 7, the cell of agent A is C! and the cell of
its target location is C,,, then the direction vector for local
guidance can be formally expressed as v!. The calculation pro-
cess of local guide vector v is as follows:

Y= Clgoal - C;
e, -G

goal -

2

where (| is the location of agent A at time ¢, C,, is the cell of
its target location, and |-| means the modulus of a vector.

By using local observation information L! and local guide
vector v, the LA-Encoder will output an intermediate expres-
sion '

hi = LA-Encoder(L],v)). 3)

The whole model structure of the LA-Encoder can be
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found in Fig. 3. The LA-Encoder is different from previous
works!® 10182030 they only designed a deep convolutional
neural network to extract features, but did not pay attention to
the importance of local information, which made the expres-
sion ability of the extracted features insufficient, which af-
fected the subsequent training difficulty of the model.

As we can see in Fig. 3, the local observation information
L; of agent A’ will be input into a well-designed layer that
uses attention mechanisms to process important information.
To use the attention mechanism, the local observation L
needs to be convoluted three times with convolution kernels
of 1x 1 to obtain K tensor, Q tensor, and V tensor. The atten-
tion calculation process, it should be noted, is carried out on
each channel, because the values of each channel are in dif-
ferent ranges and have different meanings. Therefore, the cal-
culated attention map is a group of attention maps on each
channel, and it is used as a weight to fully extract local in-
formation on each channel. Finally, the local feature extrac-
ted by the attention mechanism will be combined with the
local guidance vector v to obtain the intermediate expression
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Local attention encoder

Input
16x1 56x1
Local guide D J—
S
vector M B Be Y&l
2x1 h g
Linedt ReL\) Lineas \ze\AU Sl Output
2
Slali» —~
3
Lined \1‘,_\,\) 256x1
ALY CO“‘ﬂ'D au C(‘“‘llog{e\‘“
Local - /a00x1
observation B 2 > > > > > %‘
9x9x4 =
X Txoxe4 3x3x128
Identity
1x1 conv hw,e \ Attention map
Softmax ﬁ
ﬁ Transpos ﬁ h.h, C
———»  -[aDSpOsq)
—>H—+»
hwe \:x} conv wh.c ®

1x1 conv hWC

Fig. 3. The structure of LA-Encoder. Firstly, the local observation Li
needs to be convoluted three times with convolution kernels of 1x1 to ob-
tain K tensor, @ tensor, and V tensor. Then, the attention map is carried
out on each channel, and it is used as a weight to fully extract local in-
formation on each channel. Finally, the local feature extracted by the at-
tention mechanism will be combined with the local guidance vector v to
obtain the intermediate expression.

hi containing the local state and target information, which can
be applied to the subsequent planning.

Transformer-based communication block (TC-Block).
To enable agents to perceive the state of adjacent agents, we

!

@ . N Output

-

MLP \

also designed a local cooperation module based on trans-
former architecture, namely Transformer-based communica-
tion block (TC-Block). For a certain agent A, it will commu-
nicate with its neighbors N' and share their intermediate ex-
pressions 7/ (j € N'). Then TC-Block will output the compre-
hensive expression s/, which will be input into decision block
to estimate optimal action at time #:

st = TC-Block(h, i), j€ N/, 4

where /! is the intermediate expression from LA-Encoder of
agent A’ at time 7, N! is the group of agents which is adjacent
to current agent A’ at time ¢.

The structure of TC-Block can be found in Fig. 4. With the
purpose of combining the local states of the current agent and
its neighbors, the TC-Block takes the features obtained from
the LA-Encoder as input. And these encoded features of
agents can be regarded as a sequence and can be used as a
part of input. In addition, we also need to embed the position
of each feature tensor. We use relative coordinates as posi-
tion information. For example, the current agent A is in cell
C', and a neighbor A/ is in cell C/. Therefore, the relative pos-
ition C/ — C' will be location information and serve as an in-
put for position embedding. And inspired by Ref. [37] using
transformer in image classification task, we embed the posi-
tion information from X coordinate and Y coordinate, each
with the size of half of the position embedding D/2. Then,
based on the relative coordinate, we concatenate the X and Y
embedding to get the final positional embedding.

Decision block. Based the comprehensive expression s' of
communication block, decision block will need output the ac-
tion policy for agent A’ at ¢ time:

a, = DecisionBlock(s)).

)

ey
i
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attention
114
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—
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\ 3x : .
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Fig. 4. The structure of Transformer-based communication block (TC-Block). The TC-Block takes the features obtained from the LA-Encoder as input,
and regards them as a sequence. In addition, there also need to embed the position of each feature tensor. We use relative coordinates as position informa-

tion. And inspired by Ref. [37] using Transformer in image classification task, we embed the position information from X coordinate and Y coordinate.
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We choose SACF* to train our model because of its stabil-
ity and exploratory, and moreover, we compare with other al-
gorithms (e.g., VPG, TRPO, PPO, DDPG, TD3) but they do
not achieve the same effect as SAC. It is very hard to prove
and explain which one of the popular DRL algorithms, such
as VPG, TRPO, PPO, DDPG, TD3, and SAC, is best. And
our focus of work does not tend to fully compare the al-
gorithms, so we did not insist that SAC was the best one,
while the SAC algorithm may be more suitable for our envir-
onment setting. SAC has a parameterized state value function
V,(s,), soft Q function Q,(s,,a,), and the strategy function m,,
where {,0, ¢} are their parameters. And SAC is still based
on actor-critic architecture, while the value function and the Q
function are related, which can be regarded as critic network.
The soft value function is trained to minimize the squared re-
sidual error:

1
S =E, 5 (Vu(s)=Eqr, [Qu(s:,a) —logm,(als)])’ |,
(6)

where q, is obtained by current strategy based on the current
state s,, D is experience replay buffer, logm,(a,ls,) is the en-
tropy of strategy. The soft Q function parameters can be
trained to minimize the MSE loss between Q value and target
0 value:

1 N
JQ(Q) = E(x,,ar)~D E(QH(SH ar) - Q(sta ar))z ) (7)

where (s,,a,) is sampled from experience replay buffer D, tar-
get O value, and state value V is related:

QA(snar) = R(an Sz) + ’)/EAM [VJ/(S:)]’ (8)

V; is the target network which can reduce sample correlation,
and the parameter i of the target value network is updated in
a smooth way:

U+ (1-0), 9

where 7 is the smoothing coefficient.
Finally, the policy parameters 6 can be learned by directly
minimizing the expected KL-divergence

exp(Qu(s:,-))

J (@) = E p| Dy, (s[5l 7.(s,)

). 0

In SACP, the updating of actor network =, is realized by
minimizing KL divergence. SAC uses the reparameterization
trick, @ is not taken from the experience replay, but the pre-
diction made by reusing the strategy network. The final loss
function can be obtained as follows:

Jo(@) = E; p.-a logmy(ajls) — Qu(si,a)], (11)

where ¢, is noise sampled from Gaussian distribution®. The
overall procedure is shown in Algorithm 1.

4 Results and discussion

4.1 Experiment setting

We evaluate our approach in a grid world simulation environ-
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ment, which is similar to Refs. [15, 16]. The size of the
square environment is randomly selected at the beginning of
each episode to be either 20, 50, or 100. The obstacle density
is randomly selected from 0%, 10%, or 30%. The placement
of obstacles, agents, and goals is uniform and random
throughout the environment, with the caveat that each agent
had to be able to reach its goal. Here, we draw lessons
from Ref. [15], and each agent is initially placed in the same
connected region as its goal. The actions of the agents are ex-
ecuted sequentially in random order at each time step to en-
sure that they have equal priority.

Inspired by curriculum learning which is always used in
imitation learning, our training procedure is divided into a
few stages and starts from easier tasks to more difficult tasks.
In the easy scene, we begin by initializing a small population
of agents and dynamic obstacles and sample goals within a
certain distance to let agents learn a short-range navigation
policy. Then, we increase the number of agents and dynamic
obstacles and sample goals in the whole map.

Algorithm 1: Off-policy training of proposed framework.

1 Initialize the capacity of replay memory D;
2 Initialize the weights of observation encoder and decision block;

3 for each iteration do

4 for each environment step 7 do

5 for each agent i do

6 get local observation L, guiding vector v/, and its nearby
agents N;;

7 hi = LA-Encoder(Li,vi),

8 si = TC-Block(i, 1)), j € Ni;

9 ai = DecisionBlock(st);

10 Se+1 ~ p(se+1lse,ar);

11 D = DU (st,a,r(St,ar), St+1);

12 end for

13 end for

14 for each gradient step do

15 Sample a minibatch data from D;

16 Update framework by loss Eq. (6), Eq. (8), and Eq. (11);
17 Update target value network by the smooth Eq. (9);

18 end for

19 end for

4.2 Training details

We use a discount factor (y) of 0.95. We use different length
episodes in different size world, e.g. , in 20-size world epis-
ode length is 128, in 50-size world episode is 256, in 100-size
world episode length is 512. And the batch size is 128 so that
integer multiple times of gradient updating can be performed
each episode per agent. And we use Pytorch to realize the
model and use RAdam'! with a learning rate beginning at
3x10™.

4.3 Metrics

Success Rate = n .. /71, Where ng,.. 18 the number of agents
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that completed its travel and reached the goal and n is the
total number of the agents that need to be planned, is the ratio
of the number of agents reaching their goals within a certain
time limit over the total number of agents.

Extra Time Rate = (T —T*)/T" is the difference between
the averaged travel time on all agents and the lower bound of
the travel time, where T is the averaged travel time on all
agents and 7 is the lower bound of the travel time. The lower
bound is the needed time for the agent’s tour ignoring other
agents.

4.4 Baselines

We introduce two traditional algorithms and three learning-
based models:

LRA*!': Local repair A* (LRA¥*) is a simple replan meth-
od, in which each agent will search for its own path to its goal
ignoring other agents, but when an agent will encounter colli-
sion the algorithm will recalculate the remainder of its route.
LRA* may be an adequate solution for simple environments
with few obstacles and few agents. But with more complex
environments, LRA* will fall into the dilemma of too many
recalculations.

CBS!"": Conflict-based search (CBS) is a two-level al-
gorithm. At the high level, a search is performed on the con-
flict tree (CT), which is a tree-based on conflicts between in-
dividual agents, whose each node represents a set of con-
straints for the agents’ motion. And at the low level, fast
single agent searches are performed to meet the constraints
imposed by the high level CT node.

PRIMAL! ' PRIMAL is a hybrid learning-based method
for MAPF that uses both imitation learning (based on an ex-
pert algorithm) and multi-agent reinforcement learning. But in
PRIMAL it does not take inter-agent communication into
consideration. As mentioned in Ref. [18], the key to solving
the MAPF problem is learning what, how, and when to com-
municate.

IL_GNN'"*": They use a convolutional neural network to
extract features from local observations, and a graph neural

network to communicate these features among agents. But in
their work, they use imitation learning to train models, so
there will be a lack of exploration of the environment and it’s
hard to converge.

G2RLP: This algorithm combines the global guidance path
and trains the model through the framework of reinforcement
learning. In G2RL, it does not consider inter-agent commu-
nication and add the trick of guide path into every agent’s
state.

4.5 Results

In this section, we will discuss the experimental results of our
model and other models in terms of success rate and ETR. At
the same time, to better compare the results, we also visual-
ized the results.

Success rate. The widely used evaluation index in MAPF
is the Success rate, that is, the proportion of the number of
agents that have reached the target in all agents within the
given time steps of the experiment. The results of the success
rate can be found in Table 2. For better observation and com-
parison, we also visualize results in Fig. 5.

In our experiment, we take a search-based method (LRA¥*)
and a conflict-based method (CBS) as traditional models to be
part of baseline. Compared to traditional models, the success
rate of our model is very similar to that of the two baselines
when the grid world is small. With the growth of the number
of agents, world scale, and obstacle density, we can find that
the success rate of baseline has decreased obviously, but the
success rate of our model decreases more slowly than the two
baselines. However, we find that the traditional methods can
get the best success rate in small scale world, which is caused
by the fact that if the world is small and the number of agent
is small, it may be no need to do any communication in this
situation. And what’s more, if the world is small and the tar-
gets are very close to the agents, the information of FOV
already contains most of the information of the environment,
so the decentralized partial observation problem can be re-
garded as centralized full observation problem. Then our

Table 2. Results for success rate. We compare our LACRL with LRA*!" CBS!", PRIAML" "I, IL. GNN", and G2RL"" on different environment set-

tings. Values are listed as “mean” across 100 instances. And the highest (best) values are highlighted.

Environment setting

Success rate

Map size Agents’ number Obstacle density LRA* CBS PRIMAL IL_GNN G2RL LACRL
0% 1.00 1.00 0.965 0.960 0.990 0.990
20%20 4 10% 0.985 0.985 0.875 0.915 0.960 0.985
30% 0.975 0.985 0.920 0.910 0.955 0.985
0% 0.986 0.992 0.746 0.848 0.852 0.988
50%50 25 10% 0.972 0.990 0.774 0.926 0.826 0.990
30% 0.986 0.984 0.816 0.924 0.830 0.988
0% 0.961 0.974 0.678 0.896 0.783 0.981
100x100 100 10% 0.962 0.973 0.681 0.894 0.783 0.975
30% 0.950 0.966 0.662 0.868 0.764 0.970
0% 0.815 0.879 0.451 0.736 0.728 0.921
200x200 400 10% 0.794 0.795 0.427 0.763 0.743 0.911
30% 0.772 0.754 0.464 0.776 0.719 0.890
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Fig. 5. Visual results of success rate. On each subgraph, we list the success rate results of our LACRL and other methods on different obstacle densities.
And the higher the column in the histogram, the better the performance of the corresponding model.

model may lose its advantages and will not achieve the high
success rate of the traditional methods. Fortunately, the ap-
plication scenarios in reality will not be particularly small.
Besides search-based and conflict-based methods, we also
take some learning-based model into consideration (PRIM-
AL, IL_GNN, G2RL). Compared with the previous learning
based models, our model has the best success rate in any case.
There is also an interesting discovery that as the problem be-
comes more complex, the models without the global guide
path (PRIMAL) will fast decline, while the models with the
global guide path (IL_GNN, G2RL) will slowly decline.

Extra time rate (ETR). From the calculation formula of
the success rate, it is not difficult to see that the success rate
only focuses on whether the task is completed within the spe-
cified time, and ignores the quality of the path found. There-
fore, we measure the quality of the model strategy according
to the proportion of extra time required, that is, the ratio of
extra time. Therefore, we use the extra time rate to indicate
how much extra time the method needs, in which the low
bound of a path length is referred to a global path computed
in a static environment ignoring other agents. If the path
length found through the model is closer to the global path,
we think the solution will be better and the extra time rate
metric will be smaller.

The results of extra time rate can be found in Table 3, and
the visualization of results are shown in Fig. 6 for better ob-
servation and comparison. Obviously, we found that our mod-
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el LACRL can reach the lowest extra time rate than other
learning-based methods in Table 3. And in Fig. 6, we can see
that the red line (our LACRL) is always lower than other
lines. When the environment scale is small and the number of
agents is small, the gap between the red line and other broken
lines is small. The first reason for this phenomenon is the en-
vironment. Due to the limitation of the environment, even if
the solution obtained by the model is very poor, there will be
no very high additional time ratio; Secondly, due to the small
environment and the small number of agents, it is not diffi-
cult for each model to explore the environment, so the differ-
ence of additional time ratio will not be too high. This shows
that when the scale of the environment becomes larger and
the number of agents increases, the advantages and disadvant-
ages of the ability of the model to explore the environment
are gradually reflected. It can be roughly seen that the thick-
ness of the shadow with LACRL is always the thinnest, that
is, the standard deviation of the model is the smallest, which
also shows that our LACRL has a certain stability. In other
words, in the same environment, the strategy obtained by the
model will not fluctuate greatly in the additional time ratio,
which makes the model strategy more stable.

4.6 Ablation study

In addition to comparing with the benchmark models, we also
conduct ablation experiments that remove or replace part of
components of our method. In ablation study, we evaluate the
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Table 3. Results for extra time rate. Values are listed as “mean / standard deviation” across 100 instances. The lowest (best) values are highlighted. The
lower the mean value, the better the model effect. And the smaller the standard deviation, the more stable the model effect.

Environment setting Extra time rate
Map size Agents number Obstacle density PRIMAL IL_GNN G2RL LACRL
0% 0.275/0.041 0.317/0.048 0.262/0.062 0.198/0.014
10% 0.417/0.058 0.308/0.039 0.367/0.038 0.250/ 0.021
20%20 4 20% 0.428 /0.062 0.447/0.037 0.356 /0.042 0.329/0.019
30% 0.525/0.072 0.438/0.072 0.385/0.083 0.316/0.028
40% 0.563/0.070 0.485/0.050 0.518/0.049 0.378/0.033
0% 0.487/0.071 0.421/0.079 0.508 /0.091 0.309/0.051
10% 0.621/0.089 0.482/0.075 0.497/0.089 0.375/0.064
5050 25 20% 0.596 / 0.086 0.462 /0.084 0.542/0.086 0.424/0.071
30% 0.647/0.095 0.488/0.091 0.602 /0.102 0.455/0.070
40% 0.724/0.120 0.631/0.095 0.613/0.115 0.501/0.065
0% 0.915/0.161 0.968 /0.219 0.806/0.231 0.613/0.106
10% 0.981/0.219 0.959/0.223 0.865/0.219 0.681/0.119
100100 100 20% 1.124/0.171 0.984/0.171 0.943/0.171 0.707/0.121
30% 1.187/0.167 1.074/0.192 1.175/0.192 0.698 / 0.144
40% 1.386/0.243 1.278 /0.220 1.224/0.220 0.874/ 0.156
0% 1.425/0.412 1.337/0.469 1.512/0.431 0.858/0.202
10% 1.797/0.419 1.538/0.415 1.427/0.540 0.957/0.241
200%200 400 20% 1.548 /0.421 1.767/0.494 1.575/0.402 0.910/0.255
30% 2.175/0.450 1.792/0.531 1.769 / 0.542 1.103/0.281
40% 2.493/0.443 2.195/0.575 2.358/0.473 1.388/0.316
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Fig. 6. Visual results of extra time rate. On each subgraph, we list the extra time rate results of our LACRL and other methods on different environment
settings. And in each line graph, the lower the line, the better the performance of the corresponding model.
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performance of our LACRL, LACRL with CNN instead of
local attention layer in LA-Encoder (LACRL w/o att.), and
LACRL without the communication block (LACRL w/o
comm.).

As we can see in Table 4, we find that the results of
LACRL with CNN instead of local attention layer (LACRL
w/o att.) and LACRL without the communication block
(LACRL w/o comm.) have a certain attenuation relative to
LACRL. Especially, the attenuation amplitude of LACRL
without the communication block is the most obvious. And
we find that when the environment size is small, the influ-
ence of communication block is small, and the influence of
communication block increases with the increase of environ-
ment size. Because when the world is small scale and simple,
there is no need to do long-horizon decision and the agent
will quickly achieve its goal after a little exploration. There-
fore, the need of communication is small in that case.
However, with the increase of the scale of the environment
and the number of agents, the impact of communication block
on the experimental performance is becoming greater and
greater.Inaword, itisconvincingthatthecommunicationblockand
local attention works in MAPF task from ablation study.

5 Conclusions

This paper proposes a new model for multi-agent path find-
ing in the partially observable environment, which is formal-
ized into DEC-POMDP process and trained in the form of
deep reinforcement learning through repeated trial and error.
We build the local observation encoder by using residual at-
tention CNN to extract local observations, and use the trans-
former architecture to build an interaction layer to combine
local observations of agents. With the purpose of overcoming
the deficiency of success rate, we also designed a new evalu-
ation index, namely extra time rate (ETR). The experiment
results show that our model outperforms traditional methods

Table 4. Results of ablation study. We evaluate the performance of our
LACRL, LACRL without local attention layer in LA-Encoder (LACRL
w/o att.), and LACRL without the communication block (LACRL w/o

comm.) on different environment settings.

Environment setting Success rate

e ack P A
0% 0.990 0.970 0.945
20%20 4 10% 0.985 0.960 0.920
30% 0.985 0.965 0.915
0% 0.988 0.930 0.892
50%50 25 10% 0.990 0.914 0.838
30% 0.988 0.902 0.852
0% 0.981 0.880 0.771
100x100 100 10% 0.975 0.869 0.714
30% 0.970 0.853 0.726
0% 0.921 0.820 0.627
200%200 400 10% 0.911 0.863 0.661
30% 0.890 0.844 0.632
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in most cases, and outperforms the previous learning-based
models in all cases in terms of the success rate and the extra
time rate among various experiment settings. What’s more,
the ablation experiment shows that the components exactly
work and the performance of our model will deteriorate
without them.

Although the performance of our model in the simulated
environment is acceptable, there is still a lot of work to be
done to expand the experiment to the real environment. The
discretization and modeling of the real environment, reward
and punishment design and other environmental setting prob-
lems need to be adjusted appropriately according to the real
environment and practical problems. Therefore, it is still very
promising to apply the model in this paper to the actual scene.
Later, the experiment can be extended to the actual scene to
solve the actual needs.
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