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The basic structure of self-supervised human semantic parsing approach (SS-HSP).

Public summary
m A self-supervised human semantic parsing approach is proposed for video-based person re-identification.

m We employ self-supervised learning to adaptively segment the human body by estimating the motion information of
each body part between consecutive frames.

m We explore complementary temporal relations for pursuing reinforced appearance and motion representations.
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Abstract: Video-based person re-identification is an important research topic in computer vision that entails associating a
pedestrian’s identity with non-overlapping cameras. It suffers from severe temporal appearance misalignment and visual
ambiguity problems. We propose a novel self-supervised human semantic parsing approach (SS-HSP) for video-based per-
son re-identification in this work. It employs self-supervised learning to adaptively segment the human body at pixel-level
by estimating motion information of each body part between consecutive frames and explores complementary temporal re-
lations for pursuing reinforced appearance and motion representations. Specifically, a semantic segmentation network
within SS-HSP is designed, which exploits self-supervised learning by constructing a pretext task of predicting future
frames. The network learns precise human semantic parsing together with the motion field of each body part between con-
secutive frames, which permits the reconstruction of future frames with the aid of several customized loss functions. Local
aligned features of body parts are obtained according to the estimated human parsing. Moreover, an aggregation network is
proposed to explore the correlation information across video frames for refining the appearance and motion representa-
tions. Extensive experiments on two video datasets have demonstrated the effectiveness of the proposed approach.

Keywords: person re-identification; self-supervised learning; semantic parsing
CLC number: TP181 Document code: A

1 Introduction MARS!"" and iLIDS-VID!".

To leverage appearance information, some preliminary
methods learned frame-level appearance features by consider-
ing the whole frames and then aggregating them through
pooling operation or recurrent neural network'. The ubiquit-
ous presence of temporal appearance misalignment problem
caused by partial occlusions, inaccurate detection or human
pose variations, etc., leads to severe performance degradation
for these preliminary methods. Recent works attempted to ad-
dress the misalignment issue: including fixed partition based
methods which directly partition video frames into rigid hori-
zontal stripes!* ", and attention based methods which discov-
er distinctive body parts by using diverse spatial attentions
and crucial frames by wusing temporal attentions'*'".
However, they are rough with much background noise in their
located partial regions, thus can not accurately extract fea-
tures from body parts. Instead of utilizing these self-learned

Person re-identification (Re-ID) is the task of associating in-
dividuals across non-overlapping camera views. It has drawn
increasing attention in recent years, as it plays a significant
role in various practical applications, such as intelligent sur-
veillance, activity analysis, smart retail, etc."* The surge of
deep learning techniques has been reflected in the task of per-
son Re-ID, achieving exciting progresses on many bench-
mark datasets. Nevertheless, it remains challenging in real
scenario, due to cluttered background, partial occlusion,
heavy illumination changes, viewpoint variations, etc.””
Person Re-ID is often approached with either image or
video data for representation®. Most existing approaches re-
cognize pedestrians in static image setting, mainly focusing
on learning image-level discriminative representations. In
parallel with the impressive progress of image-based person
Re-ID, video-based person Re-ID has recently attracted signi-

ficant attention. Compared to an image with limited appear- styles, some other methods exploit augmented information,
ance information, a video sequence captures abundant visual including object segmentation”* or pose estimation'™*", to
details in a long time, presenting appearance under diverse achieve part alignment at pixel level. Nevertheless, they de-
posture and viewpoint variations. Hence, a video provides pend on the accuracy of the pre-trained semantic segmenta-
crucial knowledge to alleviate visual ambiguity. Besides, it tion or pose estimation models by additional datasets with an-
also contains rich motion patterns of pedestrians, e.g., walk- notations and are thus susceptible to dataset discrepancy.
ing style and moving direction” ', contributing to identifying Compared to appearance representation, motion patterns
pedestrians apart from appearance. The key to video-based own strong robustness to the variations in illumination and
person re-identification is effectively excavating appearance viewpoint, which provide complementary cues for alleviating
and motion information from video sequences. Fig. | illus- visual ambiguity and realizing precise matching. To leverage
trates some sample video sequences on the two datasets, i.e., motion information from video sequences, most existing ap-
5-1 DOI: 10.52396/JUSTC-2021-0212
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iLID-VID

Fig. 1. Example video sequences in the MARS and iLIDS-VID person re-identification datasets.

proaches either employ 3D convolution or resort to hand-craf-
ted optical flow in an offline way”"*!. The 3D convolution
operation is limited by high computational complexity and the
unsatisfied ability for video analysis™!. However, pre-com-
puted optical flow is independent of video-based person re-
identification, which may not be optimal for this task.

Apart from the methods mentioned above, some gait-
based ! and true motion-based” person Re-ID methods are
also proposed to leverage motion information from video se-
quences. The method in Ref. [24] introduces gait recognition
as an auxiliary task to drive person Re-ID models to learn
more effective representations by leveraging personal unique
and cloth-independent gait information. However, the learned
gait feature is heavily dependent on the pre-extracted input
silhouettes and pre-trained GaitSet (a set-based gait recogni-
tion model), which is thus susceptible to dataset discrepancy,
deteriorating its ability. Moreover, the method in Ref. [25]
formulates a FIne moTion encoDing (FITD) model based on
dynamic cues, which characters motion patterns by the tra-
jectory-aligned descriptors in a three-level body-action pyr-
amid. However, it can’t obtain robust motion features by only
using a fixed partition strategy to capture trajectory-aligned
descriptors, due to the widespread misalignment issue.

In this work, we propose a novel self-supervised human se-
mantic parsing approach (SS-HSP) for video-based person Re-
ID. It is the first work for video-based person Re-ID explor-
ing self-supervised learning to precisely locate human body
parts at pixel-level by estimating the motion of each body part
between consecutive frames without any manual annotation.
By constructing a pretext task of predicting future frames, SS-
HSP learns segmentation maps of body parts and the corres-
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ponding motion field and explores temporal relations across
video frames to generate reinforced appearance and motion
representations. As illustrated in Fig. 2, SS-HSP consists of a
backbone network for extracting low-level visual representa-
tion, a semantic segmentation network for predicting future
frames, and an aggregation network for Re-ID. The semantic
segmentation network composes a segmentation module and
a prediction module. The former is in charge of extracting the
segmentation maps of body parts and the optical flows corres-
ponding to these body parts. The latter is in charge of predict-
ing the next frame by employing the current frame and the
output of the segmentation module. Several customized loss
functions optimize the semantic segmentation network. After
obtaining the segmentation maps and optical flows, the ag-
gregation network extracts frame-level appearance and mo-
tion features. It explores the complementary relation informa-
tion across video frames via a temporal relation block to gen-
erate discriminative video-level representations. We conduct
extensive experiments to evaluate SS-HSP on two challen-
ging datasets and report superior performance over state-of-
the-art methods.

Although human semantic parsing has been explored in
person Re-IDF* these works are deigned for image-based
person Re-ID without considering video human semantic
parsing and temporal motion information. Thus they can not
be directly applied to video-based person Re-ID. Moreover,
they heavily rely on the performance of the pre-trained
human parsing models by auxiliary datasets. They do not effi-
ciently handle large-scale video datasets due to iteratively
cluster the pixels of all training samples’ feature maps simul-
taneously.
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Fig. 2. The overall architecture of the proposed SS-HSP. It consists of a backbone network, a semantic segmentation network as well as an aggregation

network.

The main contribution of this work is three-fold: (1) We
propose a novel self-supervised human semantic parsing ap-
proach (SS-HSP) for video-based person Re-ID. (ii) We
design a semantic segmentation network for precisely locat-
ing human body parts and estimating each body part’s mo-
tion information between consecutive frames. (iii) We devel-
op an aggregation network to explore the complementary re-
lation information among video frames for learning rein-
forced appearance and motion representations.

2 Related work

Existing person re-identification approaches can be summar-
ized into image-based person Re-ID and video-based person
Re-ID. We briefly review the two categories of related works
in this section.

2.1 Image-based person Re-ID

Conventional approaches for image-based person Re-ID
mainly focus on designing hand-crafted descriptors®-* or
learning appropriate distance metric®”*). Recently, deep
learning based methods have been widely proposed for learn-
ing distinctive features!”*". For example, Zhou et al.”” pro-
posed a local-refining based deep neural network for person
Re-ID, which contained a main branch network and a pose
branch network to fuse pose and attribute information in a
consistent way. Zhang et al."" proposed a Relation-Aware
Global Attention (RGA) module, which captured the global
structural information for better attention learning. Jin et al.™”!
designed a semantics aligning network (SAN) for learning se-
mantics-aligned feature representations from images under
the joint supervision of re-identification and semantics-
aligned texture generation.

2.2 Video-based person Re-ID

Early approaches for video-based person Re-ID concentrated
on hand-crafted video-level descriptors or distance metric

5-3

learning"**. Recent works mostly utilized deep learning
techniques to extract discriminative representations from
videos. Some methods'”! were proposed to formulate video-
based Re-ID as an extension of image-based Re-ID simply.
They extracted appearance features from each frame by vari-
ous deep learning models, and aggregated frame-level fea-
tures across time by pooling operation or RNN. For example,
McLaughlin et al."*! proposed a Siamese network, which cap-
tured pedestrian features and then employed a recurrent layer
and a temporal pooling layer to abstract video-level features.
For learning effective appearance features against the mis-
alignment issue, rigid stripe partition!” and attention mechan-
ism" have been widely applied to plenty of person Re-ID
methods. For example, Li et al."” proposed a spatio-temporal
attention model automatically discovering a diverse set of dis-
tinctive body parts and extracting useful information from all
frames against occlusions and misalignments. Moreover, a
few works!* " utilized the augmented information to enhance
feature representation. For example, Jones et al."”! proposed a
pose-guided alignment network which mimicked the top-
down attention of the human visual cortex. On the other hand,
for learning motion representation, some existing methods in-
troduce 3D convolution” or pre-computed optical flow".
For example, Liu et al.”"! proposed a Dense 3D-Convolution-
al Network (D3DNet) to jointly learn spatio-temporal and ap-
pearance representation from videos by 3D convolution.

3 Method

In this section, we first present the overall architecture of SS-
HSP and then introduce each component of SS-HSP in the
following subsections.

3.1 Architecture overview

For video person Re-ID, we aim at learning effective and dis-
criminative appearance and motion representations from
videos. The overall architecture of SS-HSP is illustrated in-
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Fig. 2. It consists of a backbone network, a semantic segment-
ation network and an aggregation network. Supposing a video
sequence is denoted as {I,}", where T is the sequence length.
The backbone network takes each frame as an input to ex-
tract the initial feature maps {X,|X, e R®*"}"  where C, H,
and W denote the channel, height, and width of the feature
maps, respectively. The backbone network is built on the Res-
Net-50 model”, which contains five residual layers, each of
them is composed of several convolution layers, batch nor-
malization (BN) layers, rectified linear units (ReLU) layers,
and max-pooling layers. The semantic segmentation network
consists of a segmentation module and a prediction module.
The network learns the segmentation maps of human body
parts and the corresponding optical flows among consecutive
frames by constructing a pretext task of predicting future
frames. The estimated segmentation maps and motion inform-
ation together with the feature map X, are fed into the ag-
gregation network to generate reinforced clip-level appear-
ance and motion features. These features are finally taken in-
to a classifier and optimized by two Re-ID loss functions.

3.2 Semantic segmentation network

The misalignment and visual ambiguity issues are ubiquitous
in person Re-ID, which deteriorate the ability of the extracted
representation and compromise the performance. Consider-
ing that the annotation of human body parts is unavailable, we
introduce a self-supervised learning strategy inspired by the
work"” to design a semantic segmentation network for adapt-
ively locating body parts of pedestrians and extracting the
corresponding motion information across consecutive frames.
As shown in Fig. 3, the network consists of a segmentation
module and a prediction module. The semantic segmentation
network employs the current frame with the motion informa-
tion of body parts between consecutive frames to predict the
next frame.

The segmentation module takes a pair of frames I, and I,,,
sampled from a video as input and generates the segmenta-
tion maps and motion field of body parts between the two
consecutive frames. Concretely, the module is based on U-
Net architecture®™, which consists of four 3 x3 convolution
layers followed by BN layer, ReLU layer, and average pool-

ing layer, and four 3 x 3 up-sampling convolution layers fol-
lowed by BN layer and ReLU layer. The resolution of the in-
put frames is H' X W’, and the outputs of the modules are two
(6K +1)-channel tensors S,,S,,, € R6<+<#>W " The tensor S,
composes one (K + 1)-channel tensor, one K-channel tensor,
and one 4K-channel tensor. The K-channel and 4K-channel
tensors are used to calculate the motion field between the two
consecutive frames. The remaining (K + 1)-channel tensors
are applied with a channel-wise softmax operation to gener-
ate the segmentation maps M,, M,,, €[0, 1]*V of body
parts (K + 1 denotes K body parts of a pedestrian with addi-
tional background).

Moreover, we employ optical flows to represent the mo-
tion field between the two consecutive frames, which maps
each position of pixels in I,,, to its corresponding position in
I,. Note that the module does not use external optical flow es-
timators to calculate the motion between the two frames. In-
stead, it models the temporal motion of the pixels within each
body part by an affine transformation. Therefore, the back-
ward optical flow G between the two consecutive frames can
be approximately by combining the affine transformation of
each body part. Let Z* ={z| M’ [z] =1} denotes the loca-
tions in the segmentation map associated to kth body part for
frame I,,,. Following the previous work"", the optical flow for
kth body part is computed as follows:

G'(2) =€ +AJA] (z-e),),

(M
where ¢!, e, € R* denote the shift parameters of th body part
for the two frames, which are estimated by performing
the soft-argmax operation on the K-channel tensors in S,, S,,,.
A, AY, € R¥ denote the affine parameters, which are estim-
ated by performing the spatial weighted average operation on
the 4 K-channel tensors in S,, S,,,. After that, the partial optic-
al flow fields {G* € R*""'}£ for K body parts is obtained by
repeating G*(z) for H' x W’ times. Supposing that the back-
ground is static, an addition optical flow field for the back-
ground is G**' = z. Consequently, the final overall optical

flow field G is modeled as follows:

K+1

6-3
k=1

M, oG, 2

M,

Segmentation
module

Prediction
module

Fig. 3. Detailed structure of the semantic segmentation network.
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where the segmentation map M?,, allocates the partial optical
flow field G* of human body parts to each location.

The prediction module takes the current frame I, and the
estimated optical flow field as input. It then warps the feature
of I, according to the estimated optical flow field between the
two frames for predicting the next frame I,,. The module is
based on the encoder-decoder architecture™”, which contains
two down-sampling layers, a deformation layer™", five resid-
ual layers and two up-sampling layers. The deformation layer
is employed to warp the feature of I, with the optical flow
field, which is defined as follows:

v, =00f,0,.6),
K

0y M).
k=1

where v, denotes the extracted feature map of I, after two
down-sampling layers, f,(:,-) denotes the back-warping func-
tion. O refers to the background visibility map, which indic-
ates the pixels of the background in I,,, are occluded by the
foreground body parts in I,. The background visibility map
suppresses the occluded regions’ information and provides an
important regularization to enforce superior foreground/
background region segmentation. Finally, the transformed
feature map v’ is fed to subsequent layers of this module for
rendering the next frame I’,,. The whole semantic segmenta-
tion network is trained by several losses, including recon-
struction loss, equivariance loss, and geometric concentration
loss.

0= 1_(MK+I (3)

t+1

3.3 Aggregation network

The aggregation network is designed with a temporal relation
block to employ temporal relation among video frames and
generate reinforced clip-level appearance and motion fea-
tures. The network receives the initial feature map X from the
backbone network, the estimated segmentation map, and the
optical flow field from the semantic segmentation network.
The initial feature map X is fed to a global average pooling
(GAP) layer and a fully connected (FC) layer to produce the
global appearance features {f,}",. Moreover, the feature map
X and the K segmentation maps {M', M?,..., M*} of body
parts are applied with a weighed pooling layer and a FC layer
to generate the (K+1) Ilocal appearance features
Lo £, The last local appearance feature f**' is as-
sociated with the overall foreground region ¥°, M* of video
frames. The motion information of G are fed into a 1x 1 con-
volution layer, an average pooling layer, and an FC layer to
obtain the motion features {f,,}_,.

In order to effectively explore the complementary relation
information across video frames and enhance the frame-level
appearance and motion features, we develop a temporal rela-
tion block to refine the frame-level features by their relation
with features of the other frames and aggregate them into ro-
bust clip-level features. Specifically, the frame-level features
are firstly fed into a correlation block, which produces the in-
formative and compact relation features. The formulation of
this block is defined as follows:

rz,m = hl([¢(f;)? So(j:‘ _ﬁrx)])s

i.r = Concat([rt,lsrr,?_a ""rLT])7

.ﬁ = h2([ r’i'r])s

where f, denotes the local appearance feature, the global ap-
pearance feature, or the motion feature of zth video frame. ¢,
@, h,, h, are the embedding functions implemented by a full
connected layer with a BN layer and a ReLU layer. The rela-
tion feature f, aggregates the global relation information of all
other frame-level features. Afterwards, the generated relation
features go through an attention block to infer the temporal at-
tention score for each video frame and form the reinforced
clip-level appearance and motion features by weighted sum
operation. It is formulated as follows:

a, = SigmoidBN(W, [ f,.F])).

Zr:az'f;

r=1

“4)

©)

f=

T )

2a
=1

where a, is a temporal attention value, W is parameter matrix
and f denotes the reinforced appearance or motion clip-level
features. After the temporal relation block, the generated rein-
forced global and local appearance features f,, { f,f},’f:,‘ are su-
pervised by identification loss. Meanwhile, the reinforced ap-
pearance and motion features f,, { f? }¥41, and f, are concaten-
ated, and then supervised by triplet loss. In the testing stage,
the final video representation of pedestrians is formed by con-

catenating these features.
3.4 Loss function and optimization

We adopt reconstruction loss, equivariance loss and geomet-
ric concentration loss to optimize the semantic segmentation
network. The reconstruction loss is based on the perceptual
loss™!, which assesses the reconstruction quality between the
predicted next frame and the ground-true next frame. The for-
mulation of this loss is defined as follows:

L= ) Nl ) = ¢, (©)

where ¢,(-) denotes the i-th channel feature extracted from a
pre-trained and fixed VGG-19 model®”. This loss calculates
on three resolutions of 256 x 128, 128 x 64, and 64 x32 for
I, and I, . The equivariance loss encourages the learned seg-
mentation maps and the optical flow field to be robust against
the appearance variation and consistent with geometric trans-

formation. It is formulated as follows:

Loy =D (MT (M) +|A, = T (A)I} +lle. ~ T.(e)lb,  (7)

where Dy, denotes the Kullback-Leibler divergence distance,
M., A, and é, are the estimated segmentation map, the affine
and shift parameters from the transformed frame
I =TJ(T.(1)). T, refers to spatial transformation by thin plate
splines, and T, refers to appearance perturbation by color
transforms. The geometric concentration loss enforces all the
pixels that belong to a body part and are spatially close to the
center of this body part'*!. The formulation of this loss is
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defined as follows:

L= Y DM = el D,

k hw

=y p M(khw) L2 =) Mk hw),

hw

®)

hw

where ¢, denotes the center of the k-th body part along di-
mension h, and z* represents transforming the segmentation
map of k-th body part into a spatial probability distribution
function. The total loss for the semantic segmentation net-
work is sum of the three losses (4, L.t Legu A3 Lyeo)-

Identification loss and triplet loss are the widely-used
losses for person Re-ID™. Thus, we adopt triplet loss with
hard mining strategy £ and identification loss with label
smoothing regularization £,/ to optimize the aggregation
network. Thus, the total loss for this network is sum of the
two losses (A, L4+ L;). The whole training process of SS-
HSP contains two stages. In the first stage, the semantic seg-
mentation network is trained until convergence for the task of
predicting future frames. In the second stage, the backbone
network is followed by the aggregation network, and the pre-
trained segmentation module is optimized until convergence
for person re-identification.

Although our semantic segmentation network is inspired by
the method mentioned in Ref. [37] (hereinafter, the previous
method), there are significant differences between SS-HSP
and the previous method. ( 1) The previous method was pro-
posed for image animation tasks that use a representation con-
sisting of a set of learned key points along with their local af-
fine transformations to encode the motion information. Thus,
It cannot directly locate body parts of pedestrians and learn
the corresponding motion information, which are the main
purpose of video person Re-ID. (ii) The previous method re-
quires at least 2 frames to predict key-point neighborhoods,
even during the inference, which makes its predictions highly
dependent on the other frame in a pair. In contrast, SS-HSP
encodes more semantically meaningful body parts by making
independent frame-based predictions, thus can adaptively loc-
ate body parts of pedestrians for a single image during the in-
ference. (iii) Different from the previous method using recon-
struction loss and equivariance loss, SS-HSP employs recon-
struction loss, reinforced equivariance loss, and geometric
concentration loss to impel the semantic segmentation net-
work and to estimate more accurate segmentation map of
body parts and learn more effective motion feature.

4 Experiments

In this section, we conduct several experiments on two widely-
used video datasets to evaluate the effectiveness of SS-HSP.
These experiments consist of comparative analysis with state-
of-the-art methods and ablation studies.

4.1 Experimental settings

Datasets. MARS dataset"" is one of the largest video-based
person Re-ID dataset, consisting of 1261 identities and a total
of 20715 video sequences. Each identity contains 13.2 video
sequences on average, and the length of each video sequence
varies from 2 to 920 frames, with an average number of 59.5.

5-6

Following the work!"", we fixedly divide this dataset into 625
identities for training and remain 636 identities for testing.
iLIDS-VID dataset " is another video person Re-ID dataset.
It contains 300 identities from 600 video sequences. Each
identity captured from two cameras has a pair of video se-
quences. Each video sequence contains variable lengths ran-
ging from 23 to 192 video frames, with an average number of
73. Following the work!”, this dataset is randomly divided in-
to 150 identities for training and 150 identities for testing.

Evaluation metrics. Cumulative matching characteristic
(CMC) is widely used to quantitatively evaluate the perform-
ance of person Re-ID algorithms. The rank-k recognition rate
in the CMC curve indicates the probability that an approach
retrieves the ground-truth identity in the top-k position. An-
other evaluation metric is the mean average precision (MAP),
which evaluates the algorithms in a multi-shot setting.

Implementation details. The implementation of SS-HSP
is based on the PyTorch framework with four Titan RTX
GPUs. We randomly select 7 =8 frames from a variable-
length video sequence as the input clip. Each min-batch con-
tains 16 pedestrians and 4 input clips for each pedestrian. All
video frames are resized to the dimension of 3 X256 x 128,
which are then normalized with 1.0/256. The input frames are
enlarged by data augmentation including random horizontal
flipping and random erasing probability of 0.3. The paramet-
ers of H' X W’ are set to 64 x 32, and K is set to 6. The dimen-
sions of f, f:" and f, are 256. The hyper-parameters of
Ay, A, ..., A5 are set to 1. We adopt the Adam optimizer with
the initial learning rate (Ir) of 3e™, the weight decay of 5e™,
and the Nesterov momentum of 0.9. In the first stage, the se-
mantic segmentation network is trained for 120 epochs, which
takes about 10 h. Ir is decreased by 0.1 after every 40 epochs.
In the second stage, the whole model is optimized for 400
epochs, which takes about 12 h. Ir is decreased by 0.1 after
every 150 epochs.

4.2 Comparison to state-of-the-arts

MARS: In Table 1, 14 state-of-the-art methods of person Re-
ID are compared with SS-HSP. The first two approaches be-
long to image-based person Re-ID, and the remaining ap-
proaches belong to video-based person Re-ID. From the res-
ults, SS-HSP achieves superior performance in terms of both
Rank-1 accuracy and mAP over most of the state-of-the-art
methods, especially for image-based Re-ID algorithms. The
Rank-1 accuracy and mAP of SS-HSP reach 91.0% and
85.9%, respectively. Compared with the 2nd best method
DenselL, SS-HSP improves Rank-1 accuracy by 0.2%. Con-
sidering the high performance, the improvement of SS-HSP is
appreciable. The comparison indicates the effectiveness of SS-
HSP for learning reinforced appearance and motion represent-
ations from video sequences against temporal appearance
misalignment and visual ambiguity problems.

iLIDS-VID: In Table 2, 12 state-of-the-art methods of per-
son Re-ID are compared with the proposed SS-HSP. SS-HSP
surpasses all the existing methods from Rank-1 to Rank-20 by
a large margin, except for the method DenselL. Especially on
Rank-1 accuracy, it boosts the compared method AP3D by
1.6%. Moreover, compared with the 2nd best method Den-
selL, SS-HSP improves Rank-5 accuracy by 0.4%. The
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Table 1. Performance comparison to the state-of-the-art methods on MARS dataset.
Method Rank-1 (%) Rank-5 (%) Rank-20 (%) mAP (%)
CNN+XQDA "1 68.3 82.6 89.4 49.3
QAN I 73.5 84.9 91.6 51.7
STAN 1 82.3 - - 65.8
M3D & 84.4 93.8 97.7 74.0
COSAM ™ 84.9 95.5 97.9 79.9
Snippet 7 86.3 94.7 98.2 76.1
GLTR 9 87.0 95.8 98.2 78.5
RGSAT ™ 89.4 96.9 98.3 84.0
AGRL ™! 89.8 96.1 97.6 81.1
TCLNet 89.8 - - 85.1
STGCN 1 90.0 96.4 98.3 83.7
AP3D B 90.1 - - 85.1
STRF 90.3 - - 86.1
DenselL " 90.8 97.1 98.8 87.0
SS-HSP 91.0 96.9 98.6 85.9
Table 2. Performance comparison to the state-of-the-art methods on iLIDS-VID dataset.
Method Rank-1 (%) Rank-5 (%) Rank-20 (%)
CNN+XQDA "1 53.0 81.4 95.1
QAN I 68.0 86.8 97.4
M3D & 74.0 94.33 -
COSAM 1 79.6 95.3 -
STAN @ 80.2 - -
AGRL 1 83.7 95.4 99.5
Snippet 17! 85.4 96.7 99.5
RGSAT ! 86.0 98.0 99.4
GLTR ¥ 86.0 98.0 -
TCLNet 86.6 - -
AP3D B4 86.7 - -
DenselL ©" 92.0 98.0 -
SS-HSP 88.3 98.4 99.9

comparison shows the effectiveness of the proposed SS-HSP
on relatively small video datasets. Note that Snippet and
AP3D utilize the optical flow or 3D convolution kernels to
learn motion features, VRSTC, AGRL, and RGSAT attempt
to learn appearance feature for handling temporal appearance
misalignment problem. These methods are all inferior to SS-
HSP, which indicates SS-HSP is able to learn reinforced and
discriminative appearance and motion features for person
Re-ID.

4.3 Ablation studies

Effectiveness of components. Table 3 summarizes the exper-
imental results of the ablation studies for SS-HSP on MARS
dataset. Basel, Basel+Part, Basel+Part+Motion, Basel+
Part+Motion+TRB denote using SS-HSP to extract the glob-

al appearance feature with temporal averaging pooling (TAP),
the global and local appearance features with TAP, the ap-
pearance and motion features with TAP, the reinforced ap-
pearance and motion features with the temporal relation
block, respectively. Compared with Basel, Basel+Part boosts
Rank-1 accuracy and mAP by 2.2% and 3.7%, respectively.
The comparison shows that the semantic segmentation net-
work can precisely learn the segmentation maps of body parts
and guide SS-HSP to learn aligned part representations. By
utilizing the motion representation, Basel+Part+Motion
achieves obvious performance improvement over Basel+Part.
The improvement indicates the semantic segmentation net-
work can effectively extract optical flows, which contain
abundant complementary information for appearance features.
Moreover, by adding the temporal relation block, the best per-
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Table 3. Evaluation of the effectiveness of each component within SS-HSP on MARS dataset.
Model Rank-1 (%) Rank-5 (%) Rank-20 (%) mAP (%)
Basel 86.3 94.6 97.2 79.1
Basel+Part 88.5 95.7 98.0 82.8
Basel+Part+Motion 89.9 96.4 98.4 84.9
Basel+Part+Motion+TRB 91.0 96.9 98.6 85.9

formance is obtained. The boosting demonstrates that this
block effectively explores the complementary correlation in-
formation among video frames to refine the representations.

Different components of the loss function. The results in
Table 4 show the influence of different components of the
loss function. SS-HSP w/o L, SS-HSP w/o L., SS-HSP
w/o L., and SS-HSP w/o L,, denote SS-HSP is trained
without triplet loss, identification loss, equivariance loss, and
geometric concentration loss, respectively. By comparing SS-
HSP w/o L, with SS-HSP w/o L., we can observe that
triplet loss can enforce the model to learn more effective rep-
resentation. Moreover, both of SS-HSP w/o £,; and SS-HSP
w/o L. are inferior to SS-HSP, indicating that jointly em-
ploying triplet loss and identification loss contributes to su-
perior feature representation. Besides, the comparison results
of SS-HSP w/o L., SS-HSP w/o L,.,, and SS-HSP show that
equivariance loss and geometric concentration loss can impel
the semantic segmentation network to learn more accurate hu-
man semantic parsing and effective motion representation to-
wards better feature alignment and representation.

Number of body parts. In Fig. 4a, we investigate the in-
fluence of different numbers of body parts on SS-HSP and
find the most suitable K. From the results, we can see that the

performance of SS-HSP is robust to different values of K. As
the number of body parts increases, the performance of SS-
HSP improves. SS-HSP obtains the best results with the set-
ting of 6 body parts, and the performance drops when K in-
creases from 6 to 8. We further visualize two examples of the
estimated segmentation maps of 6 body parts in Fig. 5, which
validates that SS-HSP can precisely locate human body parts
and extract aligned local appearance features.

Sequence with different lengths. In Fig. 4b, we investig-
ate the influence of sequence length. We select T frames from
a video sequence as the input clip. From the results, we can
see that SS-HSP is robust to the variations in 7. When the se-
quence length 7 increases, the model captures wider range of
temporal complementary information and obtains better re-
identification performance. The longer sequences bring more
computation complexity. Considering the limited computa-
tion resources, We set 7' = 8 for SS-HSP in the experiments.

Retrieval results. Fig. 6 shows the retrieval results of three
pedestrians by SS-HSP on the MARS dataset. We can ob-
serve that Rank-1 retrieval results by SS-HSP are all match-
ing. This indicates CTL effectively alleviates the problem of
misalignment and occlusion, viewpoint variation, etc. and
realizes precise re-identification.

Table 4. Evaluation of the effectiveness of each component of the loss function on MARS dataset.

Model Rank-1 (%) Rank-5 (%) Rank-20 (%) mAP (%)
SS-HSP w/o Ly 87.2 94.7 97.8 81.8
SS-HSP w/o Lige 88.3 95.5 98.1 83.0
SS-HSP w/0 Lequ 89.0 96.0 98.4 84.1
SS-HSP w/0 Lyeo 90.3 96.5 98.5 85.2

SS-HSP 91.0 96.9 98.6 85.9
—— -
Rank-1 —<~mAF ~—Rank-1 ~=—mAP
92
o1 92 r
g 90 '/d“\‘ é ol /
g a9 T a3 |
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Fig. 4. Parameter analysis of (a) the number of body parts ¢ and (b) the sequence length 7 on the MARS dataset.
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Fig. 5. Visualization results of the estimated segmentation maps of two video sequences.

Rank-5 Retrieval Result

Rank-5 Retrieval Result

Rank-5 Retrieval Result

Fig. 6. Example of retrieval results by SS-HSP on MARS dataset. Correct matches are highlighted red.

5 Conclusions

In this work, we propose a novel self-supervised human se-
mantic parsing approach (SS-HSP) for video-based person re-
identification. It explores self-supervised learning to pre-
cisely locate body parts of pedestrians at pixel-level by estim-
ating the corresponding optical flows between consecutive
frames and utilizes the temporal relation information across
video frames to learn reinforced appearance and motion rep-
resentations. The semantic segmentation network builds a
pretext task of predicting future frames in a self-supervised
learning manner and learns the segmentation maps of body
parts and the optical flow field from video sequences. The ag-
gregation network refines the frame-level features by their re-
lation to features of the other frames for accurate matching.
Extensive experiments on the two challenging benchmarks
have shown that the proposed SS-HSP achieves superior per-
formance over a wide range of state-of-the-art methods.
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