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Abstract: Ranking the node of a network is one of the central problems in a complex network. Here, An
improved SpringRank method was proposed that builds an adaptive physical model with variable-spring
connected between nodes and a novel penalty function. By minimizing the penalty function, the method
can rank the nodes of a directed and weighted complex network. To decrease the computation complexity
which increases too fast with the number of nodes, quantum algorithms were used to speed up the process
of minimizing the penalty functions. The convexity enables us to find the minimum by solving a linear
system. When the linear system has the properties of sparsity and a small conditional number, we use the
HHL algorithm to find the minimum of the penalty function by solving the linear equation. And we use
the QITE algorithm to find the minimum by updating the parameters iteratively when the linear system
doesn’ t have those properties. Lastly, using the quantum simulator QPanda, we implemented the
algorithms for several networks and gave the right ranking results.
Keywords: network ranking; adaptive physical model; penalty function minimizing; quantum linear

system solver; quantum imaginary time evolution
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1　 Introduction
For a complex network with a large number of
nodes[1-8,54] , one of the most important information is to
tell which nodes are more important than others, in
other words, ranking nodes is one of the most important
tasks for a complex network[9] . It has been applied in
many fields, such as epidemic control[10-12], power
communication networks[13,14], biological networks[15] .
biological networks[16,17], and link prediction[18] .

The key point of the algorithms to rank the nodes
of complex networks is to determine the importance of a
node[19,20] . In Degree Centrality ( DC ) [21] and
Betweenness Centrality ( BC ) [22] algorithms, the
importance of a node is determined by the number of its
neighbor nodes. The properties of the adjacent matrix of
the complex network, the eigenvalues, also imply the
importance of nodes, for example, the spectral
method[20,23] and Eigenvector Centrality (EC) [24] which
are the core algorithms of some search engines,
PageRank algorithm[25] and LeaderRank algorithm[23] .

Other algorithms are more flexible, such as Minimum
Violation Ranking[26,27], SyncRank[28], and SpringRank
method[20], they describe the complex network by an
adaptive physical model and introduces penalty function
which depends on the specific networks. By minimizing
the penalty function, one can obtain the rank of the
nodes. However, those methods can not solve the
ranking issues for the directed and weighted complex
networks.

In this work, we propose an improved SpringRank
method by introducing variable-spring in adaptive
physical model and construct a novel penalty function.
Minimizing the penalty function by classical algorithms
needs a lot of computation resources, hence we use
quantum optimizers to minimize the penalty
function[29,30] .

Since the penalty function is convex, the minimum
can be found by solving a linear equation. If the linear
system is sparse and has a small conditional number, we
use the HHL algorithm to solve the linear equation. The
HHL algorithm has speedup compared to the classical



linear equation solver exponentially[31] . In the cases that
the linear system is non-sparse or has a large conditional
number, which leads to the result that the quantum
circuit has qubit number and depth too large for the
NISQ devices[35] which is the most feasible form of
quantum computer in the near future, the Quantum
Imaginary Time Evolution (QITE) algorithm can be
used[36] . These two kinds of optimizers are both tested
in this paper and results show that the quantum
algorithm is capable of ranking the nodes in a complex
network.

2　 Model
The SpringRank method[20] defines a Hamiltonian,
which is also a penalty function, converts the ranking
problem to finding the ground state of Hamiltonian, or
in other words, the minimum of the penalty function. In
the SpringRank method, springs are placed between
each pair of connected nodes. In Ref. [20], Bacco set
the rest length of each spring to be 1, which is
incomplete for weighted and directed networks. In this
paper, we generalize the springs with fixed lengths to be
the variable-springs whose lengths are determined by the
difference of the characters of two connected
nodes[37,38] . The characters describe the importance of
each node.

Their definitions are as follows. In a weighted
directed network, the nodes connected to more high-
weight edges are usually more important than the others.
So we define the first character strength.

Definition 2. 1　 Strength
Si = ∑

j∈Vin

wij + ∑
j∈Vout

wji (1)

where wij is the weight of edge i→ j, Vin(Vout) is the
ingoing(outgoing) node set of i.

The second character called irreplaceable number
Ri is defined as follows.

Definition 2. 2 　 Local irreplaceable number Ri is
the total number of the shortest path between every
neighbor pairs of node i that run through node i.

This character describes that if the node is deleted
from the network, whether it’ s neighbors can find
another shortest path to keep the connection between
them.

However, in general, Ri cannot give a complete
description of local connection information. For
example, in Eq. (1), node B and node E have the same
irreplaceable number. For node B, there are 6 different
shortest paths through it which are ABC, CBA, ABE,
EBA, ABD, DBA. And similarly, the shortest paths
through E are BEH, HEB, CEG, GEC, DEF, FED.

Therefore, one more character should be defined to
give a complete description of the local connection
information in the network.

Definition 2. 3　 Local uniqueness

Fig. 1　 9-node network.

Ri =
Ri

R︿ i

(2)

where R︿ i = |Vneighbor of i | ×( |Vneighbor of i | -1) is the number
of total path through node i.

The character called local uniqueness describes that
among all the paths between the neighbors of node i,
the ratio of the shortest path. This character also cannot
describe the local connection information in the

network. In Fig. 1, we have RB =
1
2

and RE =
1
5

which

is a reasonable result. While RA = 1, it is unreasonable
to infer that node A is more important than node B.

Based on Definitions 2. 2 and 2. 3, we define a new
character Ui for each node i as

Definition 2. 4

Ui = RiRi (3)

　 　 We get UA = 2, UB = 3, UE =
6
5

in Fig. 1, which

means that in terms of local connection information,
their importance order is B>A>E. This is a reasonable
result.

According to Ref. [20], there is a kind of mutual
influence of these characters between pairs of nodes.
They are defined as

ΔUji =
(wij + wji)2

SiSj
(Uj - Ui) (4)

ΔSji =
(wij + wji)2

SiSj
(Sj - Si) (5)

The mutual influence has the function that larger
quantities will increase the corresponding quanties of its
neighbors, and vice versa. So the mutual influence
between Ui and Si is defined as

U︿ i = λ ∑
j∈Vin∪Vout

ΔUji + Ui (6)

S︿ i = λ ∑
j∈Vin∪Vout

ΔSji + Si (7)

For computation convenience, we renormalize the Si and
Ui to the range [1,n],

Si = 1 + n - 1
S︿ max - S︿ min

(S︿ i - S︿ min) (8)

8051 中国科学技术大学学报 第 50 卷



Ui = 1 + n - 1
U︿ max - U︿ min

(U︿ i - U︿ min) (9)

We divide the nodes into several categories according to
their importance. The number of categories n and the
number of nodes m should satisfy the condition n≤m.

Our model based on the SpringRank method
generalizes the rest length from a fixed value to the
difference between the linear combination of the

characters Ui and Si defined above. The linear

combination of these two characters λ1Si + λ2Ui is a
measurement of the importance of different nodes,
where λ1, λ2 are two combination coefficients that
satisfy λ1+λ2 =1. If the difference is large, the ranking
of two different nodes should also be large, and vice
versa. Based on this idea, the general elastic potential
energy is defined as

Hij =
1
2
wij{si - sj - [λ1(Ui - Uj) + λ2(Si - Sj)]}2

(10)
si is the ranking value of the nodes that should be found
by our optimizer. And the Hamiltonian for the whole
network is the sum of all elastic potential energy
between each pair Eq. (11) . The Hamiltonian is also
known as the penalty function. The minimum of the
penalty function is the ground state energy of the
Hamiltonian. Now we have transformed the ranking
problem to the problem of finding the minimum of the
penalty function,

H(s→) = ∑
n-1

j = 0
∑
i∈Vj

Hji = 　 　 　 　 　 　 　 　 　 　 　 　 　

1
2 ∑

n-1

j = 0
∑
i∈Vj

wij{si - sj - [λ1(Ui - Uj) + λ2(Si - Sj)]}2

(11)

3　 Algorithms
3. 1　 Quantum linear system solver
After getting the Hamiltonian Eq. (11), we have to find
the minimum of it. Because it has a quadratic structure,
it is convex. We will get ∇H(s→)= 0 if and only if at
the minimum point. So the first algorithm we use to
find the minimum is solving the equation ∇H(s→)= 0,
which can also be written as

As→ = b
→

(12)
where

Aij =
∑
k = 1

(wkj + wjk) - (wij + wji), i = j;

- (wij + wji), i ≠ j{ (13)

b
→

j = ∑
n

i = 1
{wij[λ1(Uj - Ui) + λ2(Sj - Si)] -

wji[λ1(Ui - Uj) + λ2(Si - Sj)]} (14)

　 　 This is a linear equation, so our problem is
converted into solving the linear equation. Our goal is
to find a state,

| x〉: =
∑

i
xi | i〉

‖∑
i
xi | i〉‖

(15)

such that ‖ | x〉 - | x〉‖≤ . The amplitude of | x〉
satisfies x

→=A-1b
→
.

Before solving the equation, we need to encode the
coefficients of matrix A and the inhomogeneous term b

→

of the linear system into a quantum state that can be
manipulatedin a quantum circuit. In Ref. [ 32 ], a
quantum data structure based on Quantum Random
Access Memory(QRAM) [33,34] is proposed.

Theorem 3. 1 　 Let M∈RR m×n, there is a data
structure to store M such that the quantum algorithm
with access to the data structure can perform the
following unitary

| 0〉 →∑
ij

‖ Mij‖ | i,j〉 (16)

in time O(log2mn) .
The proof of Theorem 3. 1 is in Refs. [33,34] .

This algorithm tells us that the input algorithm depends
only logarithmically on the size of the system.

The famous quantum linear system solver was
developed by Harrow, Hassidim, and Lloyd(HHL) [31] .
The algorithm solves the linear equation Ax = b

→
, which

requires O(dlog N / ) oracle query and has the success
rate with O(1 / κ) where N represents the dimension of
the equation, d is the sparsity of the matrix,  the target
precision, and κ the conditional number of matrix A.

The result of the algorithm is stored in the
amplitude of the quantum state, and it can be extracted
through a sampling algorithm called l∞ -tomography[40] .

Theorem 3. 2 　 Given an algorithm U such that
U |0〉 = | x〉, there is a l∞ -tomography algorithm with
time complexity O( log d / δ2) that produces unit vector

X∈RR d such that ‖X-x‖∞ ≤δ with probability at least
1-1 / poly(d) .

The proof of Therem 3. 2 is in Ref. [40] . This
theorem tells us that we can recover the classical
information from the quantum state with an algorithm
that depends only logarithmically on the dimension of
the state.

In conclusion, the overall complexity of the input,
computation, and output process of the quantum linear
system solver only depends logarithmically on the
dimension of the linear equation, thus our algorithm has
exponential speedup compared to the classic algorithm.
3. 2　 Using QITE
When the linear system is too hard to solve by the HHL
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algorithm, such as the matrix A is not sparse or the
conditional number κ is too large. The HHL algorithm
is not suitable for these situations. A quantum-classical
hybrid algorithm, the QITE algorithm is used in these
situations[36] . The process can be decomposed into three
steps.

① Get the Hamiltonian.
② Design the ansatz for the QITE algorithm based

on the Hamiltonian.
③ Use imaginary time τ in the evolution operator

and let the initial state evolve to the ground state of the
system.

The design of the ansatz for variational quantum
imaginary time evolution is an open problem. We give a
general ansatz-design scheme to this problem.

① Calculate the value of local information Mi =

λ1Ui+λ2Si of each node.
② The node with the largest M value is selected as

the control node.
③ Add X gate to the front of the control node,

control RY gate in the middle, and RX gate to the end of
the control node.

Since the QITE algorithm is a quantum-classical
hybrid algorithm, so it is suitable for error mitigation
and can be implemented by shallow quantum circuits on
the NISQ computer[36] .

Now we give an example of constructing the
ansatz. For simplicity, we only consider the binary
ranking, which is the value of si only has two values 0,
1 and

I - Z
2

= 0 0
0 1( ) (17)

Eq. (17) has eigenvalues of 0 and 1. If each si is

replaced by II… I-Z
2

é

ë
êê

ù

û
úú

i
…I, we can rewrite the

Hamiltonian of the system as

H = ∑
n-1

j = 0
∑
i∈Vj

ajiZjZi + ∑
n-1

j = 0
ajZj + aI (18)

Given the Hamiltonian Eq. (18), and an initial state
|ψ(0)〉, the QITE is defined as
| ψ(τ)〉 = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

1
〈ψ(0) | exp( - Hτ) | ψ(0)〉

exp( - Hτ) | ψ(0)〉

(19)
which is equivalent to the Wick rotating Schrödinger
equation[36] .

 | ψ(τ)〉
τ

= - (H - E(τ)) | ψ(τ)〉 (20)

where E(τ)= 〈ψ(τ) |H |ψ(τ)〉 .
By replacing | ψ(τ)〉 with | ψ(θ

→
(τ))〉, we can

solve the imaginary time evolution by a quantum
circuit.

After applying McLachlan’s variational
principle[45,46], we get

δ‖( 
τ

+ H - Eτ) | ψ(τ)〉‖ = 0 (21)

We then get a differential equation,
∑

j
Aij θ̇j = Ci (22)

where

Aij = R 〈ψ(τ) |
θi

 | ψ(τ)〉
θj

( ) (23)

Cij = R - ∑
j
λj

〈ψ(τ) |
θi

hj | ψ(τ〉( ) (24)

by measuring the result of the quantum circuit in each
iteration.

In a small time interval δτ, the differentiation of θ
is θ̇=A-1(τ)C

→
(τ) . We use the update method as

θ
→
(τ + Δτ) ← θ

→
(τ) - δ(k)r

→
sgn A -1(τ)C

→
(τ)( )

(25)
where r

→
is a vector whose elements are random values

from [0, 1), δ(k) = δτ Qk, Q∈[0. 9,0. 95] . The
algorithm of ranking nodes based on QITE is as follows
Algorithm 3. 1.

Algorithm 3. 1　 QITE algorithm for ranking
Input: Network weight matrix W, number of iteration steps

T, time interval Δτ, Number of upthrow upNum; u = 0; t = 0;
Output: Ground state |φ〉 =Sbest |0〉;

1: Calculate the node strength D︿ and local irreplaceable value
U︿ after data preprocessing;

2: Generate the Pauli decomposition form H = ∑
l
λlhl of the

Hamiltonian matrix of the system;
3: Set up ansatz S θ→(0)( ) according to the network

topology;
4: while t<T do

5:　 Calculate Aij =R
〈ψ(τ) |

θi
 |ψ(τ)〉

θj( ) through quantum

circuit measurement to get A;

6: 　 Calculate Ci = R - ∑
j
λj

〈ψ(τ) |
θi

hj | ψ(τ)〉( )
through quantum circuit measurement to get C;

7:　 Calculate the generalized inverse of A;
8:　 θ→(τ + Δτ)←θ→(τ)-δ(k)r→sgn A-1(τ)C→(τ)( ) ;
9:　 Limit parameter θ→(τ+Δτ) to [0,2π);
10: 　 Update the ansatz S θ→(τ+Δτ)( ) according to the

parameter θ→(τ+Δτ);
11:　 Calculate the expectation E θ→(τ+Δτ)( ) according to

the ansatz S θ→(τ+Δτ)( ) ;
12:　 if E θ→(τ+Δτ)( ) <E θ→(τ)( ) then
13:　 　 Sbest←S θ→(τ+Δτ)( ) ;
14:　 end if
15: end while
Works show that QITE[36] has great practical

value[41-44] . For QITE, the complexity of each iteration
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Fig. 2　 Network of different nodes.

is O(NP
2NA+NPNHNC+log NP), where NP is the number

of parameters used in the ansatz, NH is the number of
items in the Pauli matrix in the Hamiltonian, NA is the
number of measurements required to determine the
elements of matrix A with required accuracy, NC is the
number of measurements required to determine the
element of C with required accuracy. The complexity of
solving the linear equations of θ̇ is the complexity of the
HHL algorithm which is O(log NP) .
3. 3　 Advantages over classical algorithms
Given a matrix A and a vector b

→
, we find a vector x

→

such that Ax→ = b
→

where A has a size N × N and has
conditional number κ. The fastest known classical
algorithms can find x

→
in time scaling roughly as N κ .

While the HHL algorithm has a runtime of log N and
κ[31] . So there is an exponential speed up when the
optimization problem can be solved by solving a linear
system when the A is sparse and has small κ.

When the matrix A is not sparse or the conditional
number κ is too large, the HHL circuit may have qubit
number or depth too large for NISQ devices to execute
because when the circuit gets longer, we need quantum
error correction (QEC) algorithm which requires qubit
number that is intractable in the NISQ devices[50,51] .
NISQ devices are the most feasible form of the quantum
computer under the technical constraint. QITE algorithm
can be used in this situation. QITE is a hybrid algorithm
with a shallow quantum circuit and leaves the higher
level calculation to the classical computer[36] . Even
without error correction, noise in the shallow circuit can
be suppressed via error mitigation, which indicates that
QITE is feasible to the NISQ devices[41] . In Refs. [52,
53], Bravyi gives proof of the existence of quantum
advantage with shallow circuits such as QITE. The
quantum algorithms running in a constant time are
strictly more powerful than their classical counterparts

and they are probably better at solving certain linear
algebra problems associated with binary quadratic forms
which are exactly our optimization problem.

4　 Evaluation
We use QPanda[48](an SDK for building, running, and
simulating quantum algorithms ) to evaluate our
methods.

We use the following networks Fig. 2 to benchmark
our algorithms.
4. 1　 Using the HHL algorithm
Tab. 1 and Fig. 3 shows the numerical calculation
results of the 7-node network. The classical results are
obtained by using the Moore-Penrose Generalized
Inverse (MPGI) method[49] . The more important the
node i is, the larger the value s will get. It can be seen
that quantum and classical algorithms have the same
ranking results.

Tab. 1　 Numerical calculation results of 7-node network.

Node number s(MPGI) s(HHL)

1 -0. 467501 -0. 406306

2 -0. 037204 -0. 031877

3 0. 850730 0. 739830

4 -0. 119542 -0. 104146

5 0. 051456 0. 044585

6 -0. 119542 -0. 104146

7 -0. 158398 -0. 137941

4. 2　 Using QITE
We also test the QITE algorithm with the networks in
Algorithm 3. 1. The ansatz is implemented according to
Eq. ( 18 ) . After randomly choosing the initial
parameters θi, we use stochastic gradient descent to
update the parameters. We set the δτ = 1. 0 and the
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Fig. 3　 Comparison of the HHL and MPGI results of four different node networks.

Fig. 4　 Ansatz quantum circuit of 7-node network.

number of the steps to be T=50.
According to the ansatz constructing rule, the

ansatz of the 7-node network is shown in Fig. 4.
The penalty function value descendent curves are

shown in Fig. 5. It can be seen that our parameter
update policy is not sensitive to the initial parameters θ

→
i .

All of the curves converge quickly to the ground state
energy value. This indicates the robustness of our
method.

The ground states corresponding to Hamiltonian of
the 7, 9, 10, 12 node networks are as follows. The
results in Tab. 2 are reasonable, for example, in Fig. 2
(c), if any one of the nodes 3, 4, and 7 is deleted from
the network, the network will become two sub-network
that is not connected.

Tab. 2　 The ground state of each Hamiltonian.

Network Ground state

7-node |0010000〉

9-node |001001000〉

10-node |0011001000〉

12-node |000101000101〉

5　 Conclusions
In this paper, we propose an improved SpringRank
method by introducing variable-spring which is
determined by local connection information of the
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Fig. 5　 The penalty function value descendent curve. Different curves in the same subfigure represent the learning processes with
different initial parameters.

network, and construct a penalty function. Because the
classical algorithms demand unpractical computation
resources, quantum algorithms are used to find the
minimum of the penalty function. Convexity of the
penalty function allows us to find the minimum by
solving a linear equation. If the linear system is sparse
and has a small conditional number, we use the HHL
algorithm which has speedup compared to the classical
linear equation solver exponentially to solve the linear
equation. If the linear system is non-sparse or has a
large conditional number, we use the QITE algorithm
which is a kind of shallow circuit feasible to NISQ
devices to find the minimum point iteratively.
Experiments test both kinds of algorithms and results
show that the quantum algorithm can rank the nodes in a
complex network.

Only the binary ranking result is obtained in the
experiments. What we solve is the snapshot of the
current network, that is, the order of importance of
nodes corresponding to the topology of the network at
this moment. If the network structure is changing, the
importance of its nodes has been changing.

In the future, we will further improve and develop
our approach in the following three aspects. First, we
will try to explore the methods with more accuracy, in

other words, with the ability to divide the nodes into
more categories i. e. the ranking score can be (0, 1, 2,
3,. . . ) . Second, there are other kinds of quantum
algorithms for combinational optimization problems such
as quantum annealing and Quantum Approximate
Optimization Algorithm ( QAOA ), hence we will
compare and find the suitable quantum algorithms for
different situations. Third, we will promote our work so
that it can solve the dynamic network scheduling
problem.
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基于自适应物理模型的量子网络排序算法

卢斌汉1,2,韩永建1,2,吴玉椿1,2,李叶3,安宁波3,窦猛汉3,赵东一3,郭国平1,2∗

1. 中国科学技术大学物理学院中科院量子信息重点实验室,安徽合肥 230026;
2. 中国科学技术大学中科院量子信息与量子科技创新研究院,安徽合肥 230026;

3. 合肥本源量子计算科技有限责任公司,安徽合肥 230026

摘要: 对网络节点进行排序是复杂网络分析的核心问题之一. 提出了一种改进的 SpringRank 算法. 该算法基于一

个把节点之间连接视为静止长度可变的弹簧的自适应物理模型,并基于此定义一个新型罚函数. 通过最小化罚函

数,该算法可以对有向和加权复杂网络的节点进行排序. 为了避免经典算法中计算复杂度随着节点数量的增加而

过快增加的情况,使用量子算法加速罚函数最小化过程. 罚函数的凸性使我们能够通过求解线性系统的方式找到

最小值. 当线性系统具有稀疏且条件数较小的性质时,使用量子线性求解器 HHL 算法找到罚函数的最小值. 如果

线性系统没有这两个性质,则使用量子虚时演化 QITE 算法通过迭代方法找到最小值. 最后,使用量子模拟器

QPanda 对多个网络用所提出的两种求最小值算法进行了节点排序测试,实验结果显示两种算法都能给出正确的

排序结果.
关键词: 网络节点排序;自适应物理模型;最小化罚函数;量子线性方程求解器;量子虚时演化
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