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1　 Introduction
In recent decades, quantitative financial risk
measurements have become more and more fundamental
in investment decisions, capital allocation, and
regulation. Among them, quantiles are one of the most
popular measurements. It is the minimizer of an
asymmetric linear loss function. Koenker and Bassett[1]
exploited this property to propose quantile regression.
Quantiles satisfy the property of robustness but lack
sensitiveness. If we modify the loss function to be
minimized, we will get different statistical functions.
Therefore, different generalized quantiles are created.
Newey, Powell[2] and Efron[3] proposed expectile
regression, one of the generalized quantiles, which
switches asymmetric linear loss function to asymmetric
least square. Expectile is sensitive but lacks the property
of robustness. Chen[4] proposed the Lp quantile that
minimizes asymmetric power function, combining the
property of quantile and expectile. Lp quantile is both
sensitive and robust. Breckling and Chamber[5]
considered a generic asymmetric loss function including
the class of M-quantile.

Volatility estimation plays a significant role in
almost all quantitative financial risk measurements,
including the estimation of VaR, expectile, and Lp

quantile. Parkinson[6], Garman and Klass[7] considered
the daily high-low range as an improved volatility

estimator compared to the daily return. Since Engle[8]

introduced auto-regressive conditionally heteroske-
dasticity (ARCH) model, different volatility estimators
have been proposed in the past decades. Bollerslev[9]

proposed generalized ARCH (GARCH) in 1986, which
is a big step for volatility estimation. Since high-
frequency intra-day data is available to us now, we can
calculate realized estimators more precisely. Realized
estimators include realized variance ( RV ) [10] and
realized range (RR) [11], etc. Regarding the volatility
modeling, Hansen et al. [12] proposed a volatility
framework named realized-GARCH, which incorporates
a measurement equation that connects the realized
estimators to return equation. Bee et al. [13] extended
realized GARCH to realized quantile. Gerlach et al. [14]

introduced CARE model with realized estimators, which
was an extension of expectile estimation.

In this paper, we combine realized measures with
Lp quantile regression to propose a generic framework
named realized Lp quantile regression, which is
analogous to realized quantile. realized Lp quantile
regression adds a measurement equation that links the
latent conditional Lp quantile with realized measures into
the conventional Lp quantile model. Additionally we
find that minimizing the Lp loss function is equal to
maximizing the likelihood when adopting asymmetric
exponential power distribution. To evaluate the forecast
performance, we adopt the Lp loss function as the



penalty function. We find p = 1. 2 and p = 1. 5 are the
best indices, neither p = 1 ( quantile ) nor p = 2
(expectile) . It means different indices are applicable to
different p, but p=1. 2 and p=1. 5 are more likely to be
accepted. And the frequency of the realized measures
around 2 to 5 min is more acceptable.

The paper is organized as follows: Section 2
presents the model. The realized measures will be
introduced in Section 3. In Section 4, we will introduce
asymmetric exponential power distribution and the
likelihood adopting asymmetric exponential power
distribution. Simulation and empirical study are
discussed in Section 5 and Section 6, respectively.
Finally, Section 7 concludes the paper.

2　 Quantile, expectile and Lp quantile
with realized measures

Bee et al. [13] proposed a realized quantile model. Let rt
be the portfolio return at time t, xt be a realized measure
observable at time t and θ be the probability associated
with the quantile regression model. And let ( β ( θ),
γ(θ)) be a vector of parameters associated respectively
with past conditional quantiles and the realized
measures. The general structure can be written as the
following system of equations:

rt = qθt + θt (1)
qθt = f(qθt-1,…,qθt-p,xt -1,…,xt -q;β(θ),γ(θ)) (2)

xt = ω(θ) + ϕ(θ)qθt + τ1(θ)zθt +
τ2(θ)[(zθt )2 - 1] + ut (3)

where θt is such that given the information to time t-1,
the θ quantile of θt is equal to 0; zθt = rt / qθ

t , ut ~
N(0,σ2

u) . The function τ1(θ) zθt +τ2(θ)[(zθt )2-1] is
called the leverage function because it captures the
dependence between return and future volatility,
according to Ref. [12] . The equations (1) -(3) are
called the return equation, the quantile equation and the
measurement equation, respectively.

The model with a linear specification is defined by
the following quantile and measurement equation:

qθt = β1 + β2qθt-1 + β3xt -1 (4)
xt = ξ + ϕqθt + τ1zθt + τ2[(zθt )2 - 1] + ut (5)

where zt and ut share the same meaning mentioned
above. β1,β2,β3,ξ,ϕ,τ1,τ2, and σu are the parameters
to be estimated.

The model can adopt the quantile regression model
as loss function to estimate parameters. Consider the
return equation only, the loss function can be written as
follows:

ρθt(rt,qt) = | θ - I{rt < qt} | | rt - qt | (6)
　 　 Based on this model and loss function, we can
estimate quantiles more precisely, and this is a good
way to incorporate high-frequency data into models.

What’s more, we can forecast returns.
Bee et al. [13] proposed quasi-maximum likelihood

to estimate the parameters. The logarithm of the tick-
exponential density is proportional to the function ρθt ,
which means minimizing ρθt is equal to maximizing the
likelihood. According to Ref. [ 15 ], the quantile
regression minimization of expression (6) is equivalent
to maximizing likelihood based on the asymmetric
Laplace density. Gerlach et al. [14] proposed the model
that switches the power index of the loss function (6)
from 1 to 2. The new loss function is

ρθt(rt,qt) = | θ - I{rt < qt} | | rt - qt | 2 (7)
　 　 This is exactly the expectile regression. And they
found that by adopting asymmetric Gaussian density,
the maximization of the likelihood function is equivalent
to minimizing the loss function (7) .

In this paper, we let p represent the power index of
the loss function, where 1≤p≤2. see Eq. (8) . In
addition, we combine Eq. (8) with return equation
(1), quantile equation (4), and measurement equation
(5) . The total structure is named realized Lp quantile
regression.

ρθt(rt,qt) = | θ - I{rt < qt} | | rt - qt | p,
1 ≤ p ≤2 } (8)

Realized Lp quantile regression is a generic model
including quantile regression and expectile regression.
When p=1, the model is quantile regression. When p=
2, the model is expectile regression.

We find minimizing Eq. ( 8 ) is equivalent to
maximizing the likelihood function when adopting
asymmetric exponential power distribution. More details
will be discussed in Section 3.

3　 Realized measures
This section introduces different volatility estimators,
especially the realized variance (RV) and realized range
(RR) . Since we concentrate on the comparison of
realized measures with different time-frequencies, we
adopt RV and RR to be our realized measures.

Let Ht, Lt, and Ct be the daily high, daily low,
and closing prices in day t respectively. The daily return
is the difference between the consecutive log daily
closing prices, which is

rt = lnCt - lnCt -1 (9)
Then the daily range (DR) proposed by Ref. [8] is
calculated as follows:

DR2
t = (lnHt - lnLt)2

4ln2
(10)

where 4ln2 scales DR2
t to be an unbiased return variance

estimator. Supposing that day t is divided into N equally
sized intervals of length Δ, we have the subscription of
each intra-day set Θ = 0,1,2,…, N and can calculate
the high-frequency volatility measures. For day t,
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denote the ith interval closing price as Pt-1+iΔ . Then
Ht,i = sup

( i-1)Δ<j<iΔ
Pt-1+j and Lt,i = inf

( i-1)Δ<j<iΔ
Pt-1+j represent the

high and low prices during this interval. The RV
proposed by Ref. [10] is calculated as follows:

RVΔ
t = ∑

N

i = 1
[ln(Pt -1+iΔ) - ln(Pt -1+( i -1)Δ)]2 (11)

　 　 Further, Ref. [11] developed the realized range
(RR), which sums the intra-day range.

RRΔ
t =

∑
N

i = 1
(lnHt,i - lnLt,i)2

4ln2
(12)

　 　 In this paper, we use RV and RR with different
frequencies such as 1, 2, 3, 4, 5, 10, and 20 min to be
the realized measures. And we will select which
measure performs best.

4　 Asymmetric exponential power
distribution and likelihood

4. 1　 Asymmetric exponential power distribution
Ref. [16] proposed an exponential power distribution.
We will modify the distribution to an asymmetric
distribution so the kernel of a probability density
function (PDF) for the asymmetric exponential power
distribution random variable is exactly the loss function
of Lp quantile regression. Minimizing the loss function
of Lp quantile regression is equivalent to maximizing the
likelihood function when adopting our asymmetric
exponential power distribution. Now we introduce an
exponential power distribution and our asymmetric
exponential power distribution. The PDF of exponential
power distribution is

f(x | σ,p) = 1
2σ1 / pΓ(1 + 1 / p)

exp - | x | p

σ( )
(13)

where σ is the scale factor, and p is the power index.
Then, we will modify the distribution. For simplicity
we let the scale parameter σ be 1.

The modified distribution is called asymmetric
exponential power distribution, denoted by AExpPow
(α,q,p), and the PDF is as follows:

f(x | α,q,p) = 2
Γ(1 + 1 / p)
| α - 1 |

1
p

+ Γ(1 + 1 / p)
α

1
p( )

-1

·

exp( -| x - q | p | α - I(x < q) | ) (14)
where q is the mode, α is the shape parameter and p is
the power index. Let p = 1, the PDF be an asymmetric
Laplace distribution, which can be used for quantile
regression. Let p = 2, the PDF is an asymmetric
Gaussian distribution, which can be used for expectile
regression.

Fig. 1 shows AExpPow (α, q, p) with different
settings. We fix α=0. 1 and q=0 to observe the impact
of the changes of p. We can see that the graph is
asymmetric whatever p is. The left tails are all thinner

Fig. 1 　 Asymmetric exponential power distribution with
different p from 1 to 2, where we set q=0 and α=0. 1.

than the right tails. The higher the p, the higher the
peak and the thinner the right tail. When p = 2, q = 0
and α = 0. 5, we get symmetric standard Gaussian
distribution mentioned in Ref. [14] .
4. 2　 Realized log-likelihood

After introducing asymmetric exponential power
distribution, we can rewrite our return equation (1) for
knowing the distribution of θt as follows:

rt = qθt + θt , θt ~ AExpPow(α,0,p) (15)
where θt is an independent and identically distributed
process with mode 0, shape parameter α, and power
index p. The corresponding pseudo-log-likelihood based
on a sample r1,r2…rn from Eq. (15) is equivalent to

L(r;δ) = - ∑
n

t = 1
| rt - qθt | p | α - I(rt < qθt ) |

(16)
where δ represents all the parameters needed to be
estimated.

Adopting the asymmetric exponential power
distribution, we see that the quasi-log-likelihood of Eq.
(16) has a similar form to Eq. (8) . Minimizing Eq.
(8) is equivalent to maximizing Eq. (16) .

Eq. ( 16 ) is a part of the full log-likelihood
function. It can be used as a score function to compare
forecast results with different power index p since it can
exclude the influence of measurement equation. While
the realized quantile framework has a quantile equation
(4) and a measurement equation (5) with ut ~ N(0,
σ2

u), the full log-likelihood function equals to the sum
of log-likelihood of return equation, L(r;δ), and log-
likelihood of the measurement equation L(x | r;δ),
where

ut = xt - ξ + ϕqθt + τ1zθt + τ2[(zθt )2 - 1] .
　 　 Therefore, the full log-likelihood is as follows:

L(r,x;δ) = L(r;δ) + L(x | r;δ) =

- ∑
n

t = 1
| rt - qθt | p | α - I(rt < qθt ) |

üþ ýï ï ï ï ï ï ï ï ï ï ï ï ï ï

L(r;δ)

+

- 1
2 ∑

n

t = 1
(ln(2π) + ln(σ2

u) + u2
t / σ2

u)( )

üþ ýï ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï

L(x| r;δ)

(17)

　 　 Given q1, as xt can be observed, qt can be written
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as a formulation of xt and δ by the iteration of Eq. (4) .
Then L(r;δ) is an expression only consisting of δ. So
is L(x | r;δ) . Then we use the optim function of R to
solve the log-likelihood. And the method of the optim
function we used is “L-BFGS-B” .

In Section 6, we will use Eq. (17) to estimate the
parameters of empirical data and forecast returns by the
estimated parameters. Then we will use Eq. (16) as the
score function to find for the best results.

5　 Simulation study
A simulation study is conducted to illustrate whether the
maximum likelihood approach can estimate the
parameters well. Then we compare the simulation
performance of different power index p.

We simulate 500 datasets from return equation

( 18 ), quantile equation ( 19 ) and measurement
equation ( 20 ) for each θt following different
distributions including normal distribution, student t and
different AExpPow distributions with different power
index p. Each dataset consist of 4000 data of r and x.

rt = qθt + θt (18)
qθt = - 0. 023 + 0. 6qθt-1 - 0. 17xt -1 (19)

xt = 0. 1 - 0. 76qθt + 0. 02zθt + 　 　 　 　 　 　 　
0. 02[(zθt )2 - 1] + ut, ut ~ N(0,0. 032) (20)

　 　 Then we use different Lp quantile regression models
to estimate parameters with these datasets respectively.
We consider the mean and the standard error to compare
the bias and the precision respectively. Some estimation
results are summarised in Tabs. 1-5, where bold one
represents the best result in each row.

Tab. 1　 Simulation results with θt following student t(8) distribution, n=500.

parameters true
p=1　

mean SD

p=1. 2

mean SD

p=1. 5

mean SD

p=1. 8

mean SD

p=2

mean SD

β1 -0. 023 -0. 0292 0. 0753 -0. 0240 0. 0040 -0. 0325 0. 1702 -0. 0257 0. 0305 -0. 0243 0. 0111

β2 0. 6 0. 5705 0. 0568 0. 5746 0. 0180 0. 5710 0. 0626 0. 5716 0. 0558 0. 5740 0. 0184

β3 -0. 17 -0. 1597 0. 0247 -0. 1601 0. 0183 -0. 1578 0. 0330 -0. 1579 0. 0214 -0. 1577 0. 0202

ξ 0. 1 0. 0503 0. 9926 0. 0987 0. 0070 0. 0974 0. 0747 0. 0921 0. 1071 0. 0958 0. 0629

ϕ -0. 76 -0. 8877 0. 9099 -0. 8443 0. 0752 -0. 8529 0. 1972 -0. 8657 0. 2491 -0. 8605 0. 1550

τ1 0. 02 0. 0172 0. 0038 0. 0171 0. 0010 0. 0154 0. 0369 0. 0170 0. 0010 0. 0168 0. 0024

τ2 0. 02 0. 0167 0. 0105 0. 0159 0. 0024 0. 0189 0. 0693 0. 0157 0. 0025 0. 0155 0. 0023

σu 0. 03 0. 0397 0. 0289 0. 0384 0. 0095 0. 0570 0. 4140 0. 0395 0. 0239 0. 0395 0. 0188

Tab. 2　 Simulation results with θt following student t(5) distribution, n=500.

parameters true
p=1

mean SD

p=1. 2

mean SD

p=1. 5

mean SD

p=1. 8

mean SD

p=2

mean SD

β1 -0. 023 -0. 0377 0. 2301 -0. 0286 0. 0532 -0. 0251 0. 0106 -0. 0280 0. 0460 -0. 0345 0. 0594

β2 0. 6 0. 5754 0. 0759 0. 5742 0. 0790 0. 5780 0. 0354 0. 5716 0. 1046 0. 5724 0. 0932

β3 -0. 17 -0. 1648 0. 0293 -0. 1655 0. 0246 -0. 1665 0. 0214 -0. 1642 0. 0232 -0. 1634 0. 0271

ξ 0. 1 0. 0948 0. 0819 0. 0911 0. 1379 0. 1007 0. 0119 0. 0897 0. 1473 0. 0721 0. 5899

ϕ -0. 76 -0. 8099 0. 1301 -0. 8262 0. 3365 -0. 8077 0. 0822 -0. 8429 0. 4321 -0. 8281 0. 2486

τ1 0. 02 0. 0162 0. 0387 0. 0183 0. 0078 0. 0184 0. 0032 0. 0181 0. 0019 0. 0135 0. 0975

τ2 0. 02 0. 0182 0. 0095 0. 0178 0. 0039 0. 0176 0. 0032 0. 0174 0. 0031 0. 0218 0. 0981

σu 0. 03 0. 0472 0. 0664 0. 0451 0. 0476 0. 0427 0. 0365 0. 0425 0. 0339 0. 0594 0. 3606
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Tab. 3　 Simulation results with θt following normal distribution, n=500.

parameters true
p=1

mean SD

p=1. 2

mean SD

p=1. 5

mean SD

p=1. 8

mean SD

p=2

mean SD

β1 -0. 023 -0. 0232 0. 0035 -0. 0228 0. 0061 -0. 0230 0. 0035 -0. 0229 0. 0035 -0. 0229 0. 0035

β2 0. 6 0. 5699 0. 0194 0. 5700 0. 0214 0. 5703 0. 0197 0. 5700 0. 0198 0. 5698 0. 0199

β3 -0. 17 -0. 1536 0. 0162 -0. 1535 0. 0195 -0. 1525 0. 0164 -0. 1518 0. 0162 -0. 1513 0. 0161

ξ 0. 1 0. 0964 0. 0058 0. 0962 0. 0060 0. 0962 0. 0059 0. 0962 0. 0059 0. 0961 0. 0059

ϕ -0. 76 -0. 8869 0. 0674 -0. 8896 0. 0689 -0. 8927 0. 0694 -0. 8966 0. 0687 -0. 8999 0. 0691

τ1 0. 02 0. 0159 0. 0005 0. 0156 0. 0052 0. 0158 0. 0005 0. 0158 0. 0005 0. 0157 0. 0005

τ2 0. 02 0. 0143 0. 0017 0. 0142 0. 0018 0. 0142 0. 0017 0. 0140 0. 0017 0. 0139 0. 0017

σu 0. 03 0. 0360 0. 0057 0. 0373 0. 0283 0. 0359 0. 0057 0. 0360 0. 0045 0. 0360 0. 0045

Tab. 4　 Simulation results with θt following AExpPow distribution with p=1, n=500.

parameters true
p=1

mean SD

p=1. 2

mean SD

p=1. 5

mean SD

p=1. 8

mean SD

p=2

mean SD

β1 -0. 023 -0. 0214 0. 0032 -0. 0218 0. 0109 -0. 0212 0. 0031 -0. 0211 0. 0031 -0. 0216 0. 0169

β2 0. 6 0. 5870 0. 0143 0. 5848 0. 0517 0. 5868 0. 0146 0. 5865 0. 0149 0. 5843 0. 0486

β3 -0. 17 -0. 1539 0. 0205 -0. 1530 0. 0211 -0. 1525 0. 0202 -0. 1511 0. 0197 -0. 1491 0. 0205

ξ 0. 1 0. 0944 0. 0034 0. 0947 0. 0077 0. 0942 0. 0033 0. 0940 0. 0033 0. 0926 0. 0263

ϕ -0. 76 -0. 8746 0. 0762 -0. 8774 0. 0766 -0. 8827 0. 0763 -0. 8905 0. 0756 -0. 9045 0. 1293

τ1 0. 02 0. 0164 0. 0007 0. 0163 0. 0023 0. 0163 0. 0007 0. 0162 0. 0007 0. 0159 0. 0038

τ2 0. 02 0. 0153 0. 0029 0. 0152 0. 0029 0. 0151 0. 0028 0. 0148 0. 0027 0. 0144 0. 0026

σu 0. 03 0. 0367 0. 0074 0. 0376 0. 0230 0. 0366 0. 0074 0. 0366 0. 0075 0. 0377 0. 0278

Tab. 5　 Simulation results with θt following AExpPow distribution with p=2, n=500.

parameters true
p=1

mean SD

p=1. 2

mean SD

p=1. 5

mean SD

p=1. 8

mean SD

p=2

mean SD

β1 -0. 023 -0. 0264 0. 0768 -0. 0229 0. 0053 -0. 0261 0. 0935 -0. 0255 0. 03667 -0. 0364 0. 0781

β2 0. 6 0. 5885 0. 0377 0. 5873 0. 0564 0. 5865 0. 0619 0. 5914 0. 0373 0. 5846 0. 0662

β3 -0. 17 -0. 1687 0. 1162 -0. 1610 0. 0189 -0. 1505 0. 0541 -0. 1004 0. 1771 -0. 0324 0. 2898

ξ 0. 1 0. 0947 0. 0491 0. 0965 0. 0070 0. 0960 0. 0043 0. 0934 0. 0876 0. 1137 0. 3772

ϕ -0. 76 -0. 8131 0. 0712 -0. 8434 0. 4006 -0. 8578 0. 0975 -0. 9520 0. 2562 -1. 1885 0. 8190

τ1 0. 02 0. 0131 0. 1100 0. 0177 0. 0018 0. 0174 0. 0210 0. 0252 0. 0864 0. 0302 0. 3277

τ2 0. 02 0. 0174 0. 0068 0. 0171 0. 0029 0. 0157 0. 0044 0. 0130 0. 0130 0. 0076 0. 0182

σu 0. 03 0. 0419 0. 0625 0. 0401 0. 0265 0. 0404 0. 0377 0. 0623 0. 1692 0. 1345 0. 9715

　 　 In these tables, the bold parameters are preferred to
others for both bias (mean) and precision ( standard
deviation, SD) . We can see that all models generate

close to unbiased and quite reasonably precise parameter
estimation. It provides an evidence that maximum
likelihood approach is a good approach to estimate the
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parameters in this model when adopting the asymmetric
exponential power distribution.

However, there are still some small differences
between models with different power index. When
considering bias, we count the estimated parameters
closest to the true value, which are bold in the mean
column. When θt follows the normal distribution, power
index p=1 is preferred than other power indices, with 5
of 8 parameters outperforming others. When θt follows
student t ( 8 ) distribution, power index p = 1. 2 is
preferred, with 6 parameters estimated better than
others. When θt follows student t ( 5 ) distribution,
power index p =1. 5 is preferred, 6 of 8 parameters are
estimated better. When θt follows AExpPow distribution
with p = 1, power index p= 1. 2 is preferred. When θt
follows AExpPow distribution with p = 2, power index
p=1 is preferred. All the standard deviations are at an
acceptable low level.

We can conclude that in simulation, datasets with
different shapes need different power indices to model.
We need to select the best one by estimation results
before forecast. However, the simulation also indicates
that lower power indices such as p = 1 and p= 1. 2 are
more preferable than higher power indices.

6　 Empirical study
6. 1　 Data description
All market data including daily open, daily close, daily
high, daily low prices as well as 1-minute open, 1-
minute closing 1-minute high and 1-minute low price
data are downloaded from Bloomberg. We collect the
S&P 500 Index to represent the market index. The time
range is from January 2008 to May 2019, with a total of
2853 trading days. The RV5min data for AEX, FTSE,
GDAXI, and N225 come from the Oxford-Man Institute
" Realized Library " , ranging from January 2001 to
October 2019.

Fig. 2 　 Daily return of S&P 500 Index from January
2008 to May 2019.

The daily return is calculated using daily price data
by Eq. (9), which includes overnight jumps. We plot
the daily return of S&P 500 Index in Fig. 2. Fig. 2
exhibits the biggest fluctuant of returns that occurred at

Fig. 3　 Value of RV1min at different times.

Fig. 4　 Value of RV10min at different times.

Fig. 5　 Value of RR1min at different times.

Fig. 6　 Value of RR10min at different times.

the end of the year 2008, which is exactly the global
financial crisis period.

We adopt RV and RR as our realized measures,
which are calculated by Eqs. ( 11 ) and ( 12 ) with
different frequencies. We use time-frequencies of 1, 2,
3, 4, 5, 10, and 20 min for comparison to select the
most proper time-frequency. Fig. 3 -Fig. 6 show the
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Fig. 7 　 Boxplot of β2 for different realized measures with
different p.

RV with 1 and 10 min and RR with 1 min and 10 min.
Different realized measures provide different

patterns. We can see that RV1min has two much higher
peaks in 2008 and 2010 than the other measures. In
addition to different realized measures, they have
different peaks at different times. That means they can
capture different information.

In the next subsection, we will use 2200 days’
daily data for estimation, approximately 9 years. The
remaining 653 observations are reseverd for the out-of-
sample evaluation. And we compare them with the out-
of-sample data by using Eq. (16) as our score function.
The lowest score provides the best prediction.
6. 2　 In-sample parameters estimation
In this subsection, we will use in-sample data to fit
Eqs. (1), (4) and (5) to estimate β1, β2, β3, ξ, ϕ,
τ1, τ2, and σu . We use MLE to estimate our
parameters. The likelihood function is Eq. (17) . We
choose 5 different power indices to estimate the
parameters, which are 1, 1. 2, 1. 5, 1. 8, and 2. All the
computations are done with optim function of R.

We choose α = 0. 1, which produces 10%-Lp

quantile. When p = 1, the result is 10%-quantile, and
when p=2, the result is 10%-expectile.

The value of β2, see Fig. 7, is around 0. 85 in all
realized measures with different p. It is very close to 1,
which means the Lp quantile is mostly determined by its
previous value, that is highly persistent. The parameter
ϕ, see Fig. 8, is around -0. 92 regardless of power
index p and realized measures, which is nearly -1 and
is negative. That means that realized measures are
influenced by the quantile of the same period to large
extent and their correlation is negative.

The parameter β3, see Fig. 9, is significant
regardless of the realized measure used and the power
index. They almost have the same value of - 0. 1,
which means the previous realized measure also
contributes to Lp quantile to some extent but negatively.

Another interesting finding is that the leverage
parameters τ1 and τ2, see Fig. 10, are always
significant. The τ1zt +τ2 ( z2t -1) represents a leverage

Fig. 8 　 Boxplot of ϕ for different realized measures with
different p.

Fig. 9 　 Boxplot of β3 for different realized measures with
different p.

Fig. 10　 Boxplot of τ1 and τ2 for different realized measures
with different p.

function as we mentioned in Section 2. The significant
parameters value mean they are indispensable. Adding
them to the measurement equation can improve
performance. However, while τ1 and τ2 are very small
in most circumstances, their contribution to realized
measure xt and Lp quantile is very small. Nevertheless,
they are not ignorable.

The parameters estimated are very close regardless
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of power index p and realized measures. In the next
subsection, we will compare the prediction results with
different power index p and realized measures.
6. 3　 Out-of-sample forecast
In this section, we compare the out-of-sample
forecasting performance of Lp regression with different
power indices and different realized measures. We
consider the loss function of Eq. (16) introduced in
Section 4, but with an adaption. The score function is

L(r;θ) = ∑
n

t = 1
| rt - qθt | | α - I(rt < qθt ) | (21)

　 　 The parameters are estimated in the previous
subsection by 2200 in-sample-data. We use the
estimated parameters to forecast 653 returns. Then we
compare the forecast return to the real data to get the
absolute error. By using Eq. (21) as score function, we
get different absolute errors in the different models,
which we call them scores. The scores with different
power index and different realized measures are shown
in Tab. 6. The lower the scores, the better the model.

The boxplot of scores by power index p is shown in
Fig. 11. Though through Tab. 6 we see that the best
three are p = 1. 5 with RV4min, p = 1. 8 with RV3min
and p=2 with RV3min, Fig. 11 shows that these three
results are all outliers. Fig. 11 shows that p = 1 and p =
1. 2 outperform others on average. The scores in p = 1
and p = 1. 2 are very close, but when we consider the
extreme value, p = 1 is better than p = 1. 2 here.
However it seems the results are influenced by the data
we use. Other datasets may support others. So, we can
only say that p=1 is preferred in our results by S&P 500
Index.

Tab. 6　 Scores for different power indices and
different realized measures.

p=1 p=1. 2 p=1. 5 p=1. 8 p=2

RV1min 1. 751 0 2. 039 0 2. 507 1 2. 367 1 2. 155 1

RR1min 2. 064 9 2. 840 9 3. 115 4 2. 112 1 2. 805 5

RV2min 1. 981 1 1. 584 1 2. 620 6 2. 513 8 2. 377 3

RR2min 2. 640 1 2. 870 7 3. 033 5 3. 189 3 2. 776 1

RV3min 2. 028 7 3. 532 9 2. 246 2 1. 051 2 1. 060 1

RR3min 2. 615 1 2. 084 9 3. 076 8 2. 855 9 2. 827 8
RV4min 2. 011 2 1. 927 4 1. 047 0 2. 360 4 2. 289 5
RR4min 2. 719 7 2. 645 6 3. 177 7 2. 971 4 1. 997 4
RV5min 1. 140 0 1. 881 1 2. 478 4 2. 008 2 1. 191 8
RR5min 2. 625 5 2. 127 7 2. 083 7 2. 318 9 2. 796 2
RV10min 2. 014 6 1. 770 3 2. 462 1 2. 202 4 2. 143 4
RR10min 2. 050 1 2. 658 8 2. 762 2 2. 896 9 3. 537 5
RV20min 1. 063 3 2. 048 7 2. 418 2 2. 378 4 2. 379 9
RR20min 2. 072 9 2. 081 6 2. 703 9 2. 399 0 2. 384 6

Fig. 11　 Scores classified by power index p.

Fig. 12　 Scores classified by realized measures.

Fig. 13　 Scores of RV with different time-frequency.

Fig. 14　 Scores of RR with different time-frequency.

　 　 Then we compare different realized measures. Fig.
12 shows that RV measures are better than RR measures
on average. Though the best result of RV20min is a
very good result, the boxplots shows it is an outlier. By
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the boxplot, RV3min and RV5min are preferred. It also
indicates that high time-frequency is not recommended
when calculating RV and RR. Because too frequent data
includes too big micro noise. In a word, from Fig. 12
we can conclude that RV measures are preferred to RR
measures overall.

To acquire more detailed information, we plot
boxplot for RV measures and RR measures separately in
Fig. 13 and Fig. 14 respectively.

In Fig. 13, we find that RV3min and RV5min
perform best. The performance of RV with time
frequency 1 min is not as good as 3 min and 5 min. This
means that not the most frequent realized measures
produce the best results. The high frequency realized
measures may contain much more micro noise that needs
to be ignored in modeling.

The boxplot of RR measures is shown in Fig. 14.
The results seem to be different from those of RV
measures. The best 3 results are RR with time frequency
1, 5 and 20 min, where RR20min is the best one. The
best time-frequencies of RV measures are bigger than
those of RR measures, which means RV measures can
accept more micro noise data. The most suitable time-
frequencies are not the same as those of RV measures,
which means different realized measures have different
time-frequencies to suit for the best results.

In conclusion, this is not a simple case where the
higher or the lower the power index p, the better the
measure. Different datasets need different power
indices. RV measures are better than RR measures in
our empirical study. And we find that different time-
frequency realized measures are suitable for different
data. Moderate frequency is better.
6. 4　 More indices
In subsection 6. 3, we draw a conclusion that the power
index should be moderate. In this subsection, we exam
that different power indices are suitable for different
market indices. We use AEX, FTSE, GDAXI, and
N225 as our new datasets ranging from 2000-01-01 to
2019-10-08. The first 3000 observartions ( in sample)
are used to estimate parameters, and the rest 2014 data
are out-of-sample for examination. We adopt RV5min
as the realized measure. The scores are also calculated
by Eq. (21) .

Tab. 7 shows that p = 1. 2 is the best power index
for AEX, GDAXI, N225, and SPX, while p = 1. 5 is
best for FTSE, with p = 1. 2 the second best. We can
conclude that different indices need different power
indices. We should try different power indices for better
estimation. And the preferred power index may be
located at around 1. 2 to 1. 5.

Tab. 7　 Scores for different power indices for different indices.

p=1 p=1. 2 p=1. 5 p=1. 8 p=2

AEX 202. 50 24. 06 24. 53 24. 91 24. 29

FTSE 15. 10 14. 02 4. 78 14. 10 13. 33

GDAXI 13. 10 12. 98 13. 13 13. 30 13. 30

N225 21. 41 20. 44 21. 43 22. 15 21. 73

SPX 13. 41 12. 71 13. 15 13. 70 114. 81

7　 Conclusions
In this paper, we propose an Lp quantile regression

model with realized measures, in which a measurement
equation incorporates intra-day and high-frequency
volatility. This is a generic model including realized
quantile and expectile models. We can use it to model
different data with different power indices.

We also develop an asymmetric exponential power
distribution. We find that when adopting our
asymmetric exponential power distribution, maximizing
likelihood function is equivalent to minimizing the loss
function of Lp quantile regression. This is a generic
model including realized quantile model and realized
expectile model. We can useit to model different data
with different power index p.

The simulation results show that all the power
indices p in 1 to 2 perform well. The empirical results
show that both qt and xt are self-correlated and the
leverage function is of significance in measurement
equation. In addition, in our empirical study, RV is
preferred to RR overall. We also find that different
frequency data suits different realized measures, and that
higher frequency is not always better.

However in this paper, power indices are some
fixed parameters. In the next stage, power indices
should be variables to be estimated for different data.
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基于已实现波动率的 Lp 分位数回归

汤李,陈昱∗

中国科学技术大学管理学院统计与金融系,安徽合肥 230026

摘要: 提出了一种基于已实现波动率的 Lp 分位数回归模型,这是一种新的金融风险模型. 基于已实现波动率的 Lp

分位数回归模型将已实现波动率与 Lp 分位数回归结合起来,并且将 Lp 分位数加入模型的度量等式中. 该模型是

囊括基于已实现波动率的分位数回归模型和基于已实现波动率的 Expectile 回归模型的更为一般的模型. 通过非

对称幂指数分布(AExpPow)导出模型的对数似然函数,并且通过模拟证实了所提出的对数似然函数的正确性. 最
后通过实证研究证实基于已实现波动率的 Lp 分位数回归模型的有效性,得出如下结论:不同的幂指数 p 适用于不

同的数据,不同的时间频率适用于不同的已实现波动率,而不是时间频率越高越好.
关键词: 已实现波动率;基于已实现波动率的 Lp 分位数回归;非对称幂指数分布
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