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Abstract . Numerical solutions of the M-matrix algebraic Riccati equation (MARE) were studied, which
has become a hot topic in recent years due to its broad applications. A novel linear iteration method for
computing the minimal nonnegative solution of MARE was proposed, in which only matrix
multiplications are needed at each iteration. Convergence of the new method was proved by choosing
proper parameters for the MARE associated with a nonsingular M-matrix or an irreducible singular M-
matrix. Theoretical analysis and numerical experiments show that the new method is feasible and is
effective than some existing methods under certain conditions.
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1 Introduction

In this paper, we consider numerical solution of the
matrix equation
XCX -XD-AX+B=0 (1)
where A, B, C, D are real matrices of sizes mxm, mX
n, nxm, nxn respectively and
D -C
k= (— B A ) 2)
is an M-matrix. This class of nonlinear matrix equation
is called M-matrix algebraic Riccati equation (MARE).
MARE arises from many areas of scientific
computing and engineering applications, such as
transport theory, Markov chains, applied statistics,
control theory and so on"' '), In recent years, MARE
has been extensively studied (see Refs. [6-10,18]).
In the following, we first give some notations and
definitions which will be used in the sequel.
Denote R " to be the set of all real mxn matrices.
Let AeR"™, if a;=0(a,;>0) for all i ,j, then A is
called a nonnegative (positive) matrix, denoted by A=
0(A>0). Let A=(a;), B=(b;) eR"™", we write
A=ZB(A>B), if a;=b,;(a;>b;) for all i,j. A matrix
AeR ™ is called a Z-matrix, if a,; <0 for all i#. A Z-
matrix A is called an M-matrix if there exists a
nonnegative matrix B such that A=s/-B and s=p(B),

where p(B) is the spectral radius of B. In particular, A
is called a nonsingular M-matrix if s> p(B) and singular
M-matrix if s=p(B).

The following are some basic results of M-matrix,
which can be found in Ref. [ 11, Chapter 6].

Lemma 1.1 Let A be a Z-matrix. Then the
following statements are equivalent;

(D A is a nonsingular M-matrix ;

@ A =0;

@ Av > 0 for some vectors v>0;

@) All eigenvalues of A have positive real part.

Lemma 1.2 Let A and B be Z-matrices. If A is a
nonsingular M-matrix and A < B, then B is also a
nonsingular M-matrix. In particular, for any
nonnegative real number o, B=al/+A is a nonsingular
M-matrix.

Lemma 1.3 Let A be a nonsingular M-matrix or
an irreducible singular M-matrix. Let A be partitioned as

A — (All AIZ) ,
AZI A22
where A, and A,, are square matrices. Then A,, and A,,
are nonsingular M-matrices.
For the Eq. (1), the solution of practical interest
is the minimal nonnegative solution. The following

important result on the minimal nonnegative solution is
from Refs. [2,5,12].
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Lemma 1.4 If K is a nonsingular M-matrix or an
irreducible singular M-matrix, then Eq. (1) has a
minimal nonnegative solution S. If K is nonsingular,
then A-SC and D-CS are also nonsingular M-matrices.
If K is irreducible, then S>0 and A-SC and D-CS are
also irreducible M-matrices.

In the past decades, many efficient numerical
methods have been proposed for solving the MARE,
such as fixed-point iteration methods, Newton method,
ALI iteration method, SDA, and so on. For details see
Refs. [2,5-7,9,10].

In this paper, we propose a novel linear iteration
method for solving the MARE, in which at each
iteration only matrix multiplications are needed. Hence,
as compared with other methods, less CPU time are
required for solving the MARE. Theoretical analysis and
numerical experiments show that the new method is
feasible and effective than some existing methods under
suitable conditions.

The rest of the paper is organized as follows. In
Section 2, we review some methods for solving the
MARE. In Section 3, we propose the novel linear
iteration method and give its convergence analysis. In
Section 4, we use some numerical examples to show the
feasibility and effectiveness of the new method.
Conclusion is given in Section 5.

2 Some existing methods

In this section, we will review some efficient methods
for solving the MARE.

In Refs. [2,7], the Newton method was proposed
for solving the MARE as follows:

Xpn(D = CX,) + (A -X,0)X,,, =

B+XCX,X,=0 (3)
Convergence analysis in Ref. [ 7] showed that the
Newton method is quadratically convergent for the
noncritical case, and is linearly convergent for the
critical case. At each iteration, the overall cost of
Newton method is one Sylvester matrix equation and
three matrix multiplications. However, since solving a
Sylvester matrix equation will costs 60n° if m=n, the
Newton method is very expensive.

In Refs. [2, 10 ], some fixed-point iteration
methods were proposed for solving the MARE. The
general form of the fixed-point iteration methods is as
follows .

A X XDy =

X.CX, +XD, +AX, +B,X,=0 (4)
where A=A, -A,, D=D,-D, are given splittings of A
and D. Some choices of splitting are given in the
following ;

FP1; A, = diag(A), D, = diag(D);

FP2: A, = wil(A), D, = triu(D);

FP3.A = A, D, = D.

Though the fixed-point iteration methods are easy
to implement, they may require a large number of
iterations to converge. Convergence analysis in Ref. [2]
showed that the fixed-point iteration methods have linear
convergence rate for the noncritical case and have
sublinear convergence rate for the critical case.

Ref. [ 6] proposed an alternately linearized implicit
iteration method ( ALI) for solving the MARE as
follows

Xipiplad + (D - CX,))= (al —A)X, +B, }

(el + (A =X,,,,0)) X,y = X, 0(al = D) +B
(5)
where X, =0 and « >0 is a given parameter. In the ALI
iteration method, only two linear matrix equations are
needed to solve, which are easier than Sylvester matrix
equations. At each iteration, the overall cost is two
matrix inverses and six matrix multiplications. The ALI
iteration method is linearly convergent for the noncritical
case and is sub-linearly convergent for the critical case.

The doubling algorithm is one of the most efficient
methods for solving the MARE. It was first proposed in
Rer. [9]. Later, some extensions were proposed in
Refs. [5,10,13,14,19 ], among which the ADDA in
Ref. [ 10 ] is the fastest one. The iterations of the
doubling algorithm are defined as follows

E..= E(-6, Hk)lEk’} (6)
Fo., = F(U-H, Gk)_]Fk
G = G, +E(I -G H,) G, F/r’} 7
H,, = H, + F,(] - H, Gk)ilHk E,

where E, ,F,,G,,H, are some initial settings (see Refs.
[9,10] for details). At each iteration, the overall cost
of the doubling algorithm is two matrix inverses and ten
matrix multiplications. Convergence analysis in Refs.
[5,10, 13 ] showed that the doubling algorithm is
quadratically convergent for the noncritical case and is
linearly convergent for the critical case.

For other efficient numerical methods, see Refs.
[5,9,10,14-16] for an incomplete references.

3 A novel linear iteration method

In the following we will propose a novel linear iteration
method for the MARE.

First, write Eq. (1) as the following form

AX + XD = B + XCX (8)
By choosing a>0, 8>0, Eq. (8) can be written as
(Bl +A)X(al +D) - (al —A)X(BI - D) =
(a +B)(B + XCX).

Making use of generalized Cayley transform and
multiplying both sides by (BI+A)™", (al+ D)™
respectively, we then can transform Eq. (8) into the
following discrete form

X= (BI+A) " (al =A)X(BI -D)(al +D)™" +
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(a +B)(BI +A)'B(al +D) ™" +
(a +B)(BI+A)'XCX(ad + D).

Denote
U= (BI+A)(al —A), V= (Bl -D)(al + D)
(9)
W= (a+B)(BI+A)'B(al + D) =
1
m(]+U}B(1+V) (10)

then we can get the iteration as follows
X, = UXV+W+ (1 +U)X,CX,(1+V).
a+f

Thus we have the following novel linear iteration
method for computing the minimal nonnegative solution
of Eq. (1).

Novel linear iteration (NLI) method:

@D Set X,=0eR"™".

@ Compute U,V,W as in (9)-(10), where a>0,
B>0 are two given parameters.

@ For k=0,1,---, until {X,} converges, compute
X, from X, by

1
a +ﬁ(l + U)X, CX,(I+7V)
(11)

At each iteration of the novel linear iteration
method, only matrix multiplications are needed, which
is much cheaper than the existing methods in Section 2.
The overall cost is only six matrix multiplications.
Hence less CPU time are required for solving the
MARE.

In the following, we give convergence analysis of
the novel linear iteration method.

Lemma 3.1 For the MARE (1), if Kin Eq. (2)
is a nonsingular M-matrix or an irreducible singular M-
matrix and the parameters o, 3 satisfy

a = maxia,|, B = max{d,| (12)
then U,V,Win (9)—-(10) are well defined and satisfy
U=0,V=0,W=0.

Proof Since K in Eq. (2) is a nonsingular M-
matrix or an irreducible singular M-matrix, we know
that A and D are nonsingular M-matrices by Lemma
1.3. Thus BI+A and al+D are nonsingular M-matrices
by Lemma 1.2. When « and B satisfy Eq. (12), we
have a/-A=0 and BI-D=0. Hence

U= (BI+A)(al —A) =0,
V= (Bl -D)(al +D)™" =0.

It is trivial that W=0.

Lemma 3.2 Under the assumptions in Lemma
3.1, the sequence {X,| generated by Eq. (11) satisfy

0sX, <X, ,X, <S,k=0,1,-- (13)

Proof (D First, we prove by induction that 0 <
X, =<X,,, holds true for k=0,1,---.

When k£ =0, it is clear that 0 = X, < X, = W.
Suppose that the assertion holds for k=1. It is clear from

X,., = UX,V+W+

Eq. (11) that X,,, =0. On the other hand, from
X, = W+UXV+ L (I+0)XCx(I+V),
a+f

L v oyx_cx,_ 1+,

X, = W+UX_V+
a+p

we have
X —X, = UX -X_)V+

1 _
m(l +U)(X,CX, = X,_,CX,_))(I+V)=

UX, -X,_))V+ (I+U)[(X,C(X, -X,_,) +

a+f
(X, = X,.)CX, I(+v) =o.

Hence the assertions hold for k=[/+1. Thus we have
proved by induction that 0 <X, <X,,, holds for all k=
0.

(2 Next, we prove by induction that X, <S holds
true for all £=0.

When k=0, it is clear that 0=X,<S. Suppose that
the assertions hold for k=/. Then from

X, = W+UXV+ - (I+ )X,CX(I+ V),
a+f

1
a +,3([ +U)SCS(I+7V),

S= W+ USV +

we have
Xy —-S=UX, -8V +

1 p—
o+ gt D XCX, - SCSH (T +V) =

1
a +,8(I +U)[X,C(X, -8S) +

(X, =S)CS](I+V) <O.

Hence the assertions hold for k=[/+1. Thus we have
proved by induction that X, =S holds for all £=0.

Using the lemmas above, we can prove the
following convergence theorem of NLI method.

Theorem 3.1 For the MARE (1), if K in Eq.
(2) is a nonsingular M-matrix or an irreducible singular
M-matrix and the parameters «, B satisfy a=max|{a, | ,
B=max{d,}, then the sequence {X,| generated by the
NLI method is well defined, monotonically increasing,
and converges to the minimal nonnegative solution S of
equation Eq. (1).

Proof We have shown in Lemma 3.2 that |{X, |
is nonnegative, monotonically increasing and bounded
from above. Thus there is a nonnegative matrix S such
that klika =S". From Lemma 3.2, we have §" <§.

U(X, -S)V +

On the other hand, take the limit in the NLI method,
we know S” is a solution of the MARE (1), thus by
Lemma 1.4 S<S§". Hence S=S".

Note In the NLI method there have two
parameters o and 3, and how to choose the optimal
values of them is very important. However, this is very
difficult to discuss. Numerical examples show that when



%12

A novel linear iteration method for M-matrix algebraic Riccati equations 1475

a=max {a;| and B=max {d, |, the NLI method needs
the least iteration numbers. So in the numerical
experiments we just choose a = max {a;} and B =
max {d,|.

4 Numerical experiments

In this section we use several examples to show the
feasibility and effectiveness of the NLI method. We
compare the NLI method with the fixed-point iteration
method (FP3)"? | Newton method (Newton) > ALI
iteration method ( ALI)'®', ADDA"®  and present
computational results in terms of the numbers of
iterations (IT), CPU time (CPU) in seconds and the
residue (RES), where
| XCX -=XD -AX +B |
IXCX ||, + IXDl . + [AX | . + [IBI.

In our implementations all iterations are performed
in MATLAB (version R2012a) on a personal computer
with 2 GHz CPU and 8 GB memory, and are terminated
when the current iterate satisfies RES<10°. In the FP3,
Newton, ALI, and NLI methods, the iterations are all
started from X, = 0, while in the ADDA the initial
settings are chosen according to Ref. [10].

Example 4.1 Consider the MARE (1) with

A=-10F,, +180.0021 ,B= 0.001 E

C=B",D=0.0181,,

is the mXn matrix with all ones and 7, is the
identity matrix of size m with m =2, n = 18. This
example is from Ref. [5] where the corresponding M is
an irreducible singular M-matrix. The numerical results
are summarized in Tab. 1. For this example, the ALI
iteration method can not converge in 9000 iterations,
while the other four methods perform very well.

Example 4.2 Consider the MARE (1) with

3 -1
3

RES =

nxXm

where E

mxXn

A:D: ERnxn,

., — ]

-1 3
B=1,6C=¢l,0<¢é<2

This example is from Ref. [6], where the corresponding

K is a nonsingular M-matrix. For n=500 with different

values of £, we report the numerical results in Tab. 2.

For this example, all the four methods perform very

well, while FP3 is a little expensive.

Example 4.3 Consider the MARE (1) with

3 -1
3
A= ol
-1 3
B=2I,C= 10B, D= 10A.
This example is from Ref. [ 10 ], where the

corresponding K is an irreducible singular M-matrix.
For different sizes of n, the numerical results are

summarized in Tab. 3. For this example, all the four
methods perform very well, while FP3 is a little
expensive.

Tab. 1 Numerical results of Example 4. 1

Method 1T CPU RES

Newton 3 0.0022 7.4339e-8

ADDA 3 0.0012 8.2535e-9
FP3 8 0.0043 4.8065¢e-7
ALI - - -
NLI 8 0.0007 4.8065e-7

Tab. 2 Numerical results of Example 4.2

£ Method IT CPU RES

Newton 3 2.9530 1.2567e-13
ADDA 3 2.4787 8.1793e-12
0.2 FP3 4 3.6906 9.9510e-8
ALI 5 1.8868 8.9388¢-8
NLI 5 1.6646 4.3011e-7

""""""""" Newlon 3 2.8326  2.0915e-11
ADDA 3 2.3911 3.1459¢-11
0.5 FP3 5 4.4415 2.5827e-7
ALI 5 1.9527 2.0268e~7
NLI 6 1.8987 3.5791e-7

""""""""" Newlon 3 2.6065  3.006c-9
ADDA 3 2.3925 2.8378¢-10
1 FP3 7 6.2273 1.6131e-7
ALI 5 1.8948 7.6678e-7
NLI 7 2.0148 9.8902e-7

""""""""" Newlon 4  3.3157  1.0240e-12
ADDA 3 2.4871 2.2541e-8
2 FP3 10 8.8082 7.4006e-7
ALI 7 2.4239 1.7466e~7
NLI 11 2.9268 6.6354¢~7

Example 4.4 Consider the MARE (1) for which
A= D= tridiag( - I,T, -I) e R
are block tridiagonal matrices,
C= 5’Lotlridiag(l,Z,l) e R™

is a tridiagonal matrix, and
B= SD + AS - SCS
such that
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1 ¢ uxn Tab.5 Numerical results of Example 4.5
S= —e €R
50 a B IT
is the minimal nonnegative solutionn of Eq. (1) ,where 4 4 0
Tab. 3 Numerical results of Example 4.3
n Method ~ IT CPU RES 3 > 1
Newton 3 0.0386 3.6818¢-8 6 6 12
ADDA 3 0.0118 4.1856e-11 8 8 14
50 FP3 8 0.0445 2.3094e-7 10 10 17
ALI 10 0.0292 3.5113e-7 20 20 31
____________________ N8 006 3ese7 50 0 7
Newton 3 0.0835 3.6818e—8
4 10 11
ADDA 3 0.0301 4.1856e-11
4 20 12
100 FP3 8 0.1337 2.3094e-7
4 50 12
ALI 10 0.0584 3.5113e-7
NLI 8 0.0295 3.9584¢~7 10 4 1
Newton 3 2.8493 9.3985¢-8 20 4 12
ADDA 3 1.6299 4.1856e-11 50 4 12
500 FP3 8 7.6668 2.3094e-7
ALI 10 2.7959 3.5113e-7 T = tridiag( - 1,4 + AZ -1) e R™",
(m+1)
NLI 8 1.6058 3.9584e-7
................................................................................ . e= (1,~,)" eR",
Newton 3 21.7717 3.6818e-8 and n = m’. This example is from Ref. [6]. For
ADDA 3 15. 3004 4.1856e-11 different sizes of m, the numerical results are
1000 FP3 8  57.9162  2.3094e-7 summarized in Tab. 4.
For this example, all the four methods perform
ALI 10 19.0729 3.5113e-7 very well, while FP3 is a little expensive.
NLI 8 12.7018 3.9584e-7 From the four examples, we can conclude that NLI

Tab. 4 Numerical results of Example 4.4

m Method IT CPU RES

Newton 2 0.0135 1.3048e-8
ADDA 3 0.0026 2.0662¢e-12
5 FP3 3 0.0184 5.3544e-7
ALI 5 0.0023 9.0345e-8
NLI 5 0.0015 5.9335e-8

""""""""" Newton 3 0.0726  2.507le-1l
ADDA 4 0.0365 4.6985¢e-13
10 FP3 5 0.0876 3.4722e-7
ALI 9 0.0456 4.8599¢-7
NLI 9 0.0341 2.8401e-7

""""""""" Newlon 3 1819 691987
ADDA 4 0.7517 5.3607e~7
20 FP3 13 5.0155 6.2371e-7
ALI 20 1.4911 5.0121e-7
NLI 19 1.2310 8.5316e-7

is feasible. In addition, it is effective when the
problems are far from critical.
Example 4.5 Consider the MARE (1) for which

4 -1 1 1
A= (—1 4 )’B" (1 1)’
1 1 4 -1
€= (1 1)’0‘ (—1 4 )
In this example, we choose different values of
parameters in the NLI method and show its numerical
behaviour. For different values of o and 3, the iteration
numbers are summarized in Tab. 5.
From Tab. 5 we can conclude that, when choosing
a=max {a,| =4 and B=max {d, | =4, the NLI method
needs the least iteration numbers.

5 Conclusions

We have proposed a novel linear iteration ( NLI)
method for computing the the minimal nonnegative
solution of MARE. Convergence of the NLI method is
proved for the MARE associated with a nonsingular M-
matrix or an irreducible singular M-matrix. Numerical
experiments have shown that the novel linear iteration
method is feasible and needs less CPU time than some
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existing methods in some cases. However, for the
critical case or near-critical case, the NLI method will
be very slowly and in this case the doubling algorithms
will be more preferable. Finally, how to design
algorithms with small computation cost and fast
convergence remains to be further studied.
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