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Abstract: The problem of sampling multivariate count variables has practical significance. Ref. [ 1] proposed an

algorithm for sampling multivariate count random variables based on C-vine copulas, by which the parameters p; ;p

of edgee;,;p of the C-vine structure are estimated by optimizing the difference between the sample partial correlation

0:,;ip and the partial correlation g;,;p calculated from the prespecified correlation matrix by the Pearson recurrence

formula, where D is a conditioning node set. We introduce the concept of marginal regular vine copula, which leads

to directly optimizing the difference between the sample correlation 6ij and the targeted correlation o; for pairs of

variables. Three simulation studies illustrate that the new sampling method generates more accurate results than the

C-vine sampling method in Ref. [1]and the Naive sampling method in Ref. [3]. The sampling algorithm routines are

implemented in Python as package countvar in PyPi.
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0 Introduction

The study of multivariate discrete random
variables are important both in theoretical research
and in practical applications in the fields like signal
processing, management science, financial risk
management and particle physics. The statistical
analysis of multivariate counts has been proved
difficult because of the lack of a parametric class of
distributions supporting a rich enough correlation
structure. It remains a problem of sampling
multivariate count variables with specified marginal
distributions and their correlation matrix. The
progress that have made in vine copulas bring hope
to solving this problem. Through this paper, we
will denote the count random variables as Y;,:**,
Y,,. Y.~ F,, i =1,+,n, and the correlation
matrix corr (Y) =3,

Erhardt and Czado™ used a C-vine decomposition
and Gaussian copula to approximately sample high-
dimensional count random variables. Their method is
divided into two steps. The first step is to estimate
the parameter on each edge of the C-vine copula by
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approximating the partial sample correlation pAi,j‘D to
the target one p,,;|p » where D is a conditioning node
set. This step is carried out by the recursive
method™.

u,) € (0, 1" from the C-vine copulas and obtain

The second step is to sampleu =(u; ",

the multivariate count samples by the inverse
method, i.e., Y; =F7 (u;) , where F; is the left
continuous inverse function of F; defined by

F7y(w) =inf{zx: F;(x) =Zu}, u € (0,1).

Erhardt and Czado™! compared the C-vine sampling
approach with a naive sampling approach by an
extensive simulation study for a variety of marginal
distributions such as Poisson, generalized Poisson,
negative binomial, and zero-inflated generalized
Poisson distributions.

Inspired by Refs. [1, 3], we develop a new
sampling method. This method performs better in
simulation studies than the C-vine and the naive
sampling approaches. Firstly, we use regular vine
copulas, which have more flexible dependence
structures than C-vine and D-vine copulas, to
function of

approximate the  distribution
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multivariate uniform samples. Secondly, our

method directly optimizes the difference between
sample correlation and the target correlation based
on the concept of marginal regular vine copulas and

sampling algorithm

4]

the regular vine copula

implemented in Python package pyvine'*'. The vine

structure is determined with respect to the
maximum dependency criteria given in Ref. [ 5].
The formal definition of the marginal regular vine
copula is given in Section 2,

This paper is organized as follows. Section 1
briefly reviews the distributions of four kinds of
count random variables and some basic properties of
vine copulas. Section 2 introduces the concept of
marginal regular vine copula and our new sampling
algorithm. In Section 3, three cases of simulation
study are carried out to compare our sampling
method with the C-vine and the naive sampling
methods in terms of relative bias with respect to
target correlation and in terms of average number of
acceptance of specified correlation. In Section 4, the
sampling algorithm for multivariate count variables
in this paper is used in the simulation analysis of
financial

operational  risk  aggregation for

institutions. Section 5 gives a conclusion and

discussion.

1 Discrete distributions and vine copulas

1.1 Four families of discrete distributions

We briefly review four families of discrete
distributions: Poisson, generalized Poisson (GP),
zero-inflated generalized Poisson (ZIGP ), and
(NB) These

distributions have been applied to count data in

negative binomial distributions.

various fields such as sports, insurance, household
others?®, The GP
distribution generalizes Poisson distribution in the

fertility, genomics and
sense of over-dispersion using parameter ¢ , and
includes the case of Poisson distribution when ¢ =1
(see Ref. [6]). The ZIGP distribution adds an
additional zero-inflation parameter w allowing for
excess zeros, and includes the case of GP when w = 0.
Ref. [10] proved that GP is the mixture of Poisson
distributions and investigated how GP and NB as
well as ZIGP can be distinguished from each other.
The probability mass function (PMF), expectation
and variance for these distributions are summarized
in Tab. 1; also see Table 4.1 in Ref. [3].

1.2 Vine copulas

One can refer to Ref. [1,3] for the definitions
and related concepts of vine and regular vine
structures, vine and regular vine copulas,
conditioning and conditioned sets, H-functions and
inverse H-functions, The definition of regular vine
is reviewed as follows.

Definition 1, 1 (Regular vine) V is a regular
vine on n elements if

(IDV=(Tyy =+ Tor)

(Il) Fori=1, **y, n—1, T, is a connected tree
with edge set E; and node set N; =E,, with N; =
n— (i —1), where # N, is the cardinality of the
set N;;

() Fori=2, *«, n —1, ifa ={a1, a,} and
b={b,,b,} are two nodes in N; connected by an
edge, wherea,, ay, 61,6, € N;.;, then # a N b=
1.

Let (U;,+*+,U,) have a regular vine copula with
regular vine structure V. For each edge ¢ in V,
consider the following mapping:

e >c(F(uc,, |up)F (uc,, | up,)sup ) (1
where {C,,;,C.,;} is the conditioned node set of edge
e » D, is the conditioning node set, and c(e+, *;
up_) is the density function of a bivariate copula
which corresponds to the conditional distribution
of random variables ch,l and UCe,z givenUp, =up, =
(u;» i € D,). The joint density function of (U,
s+, U,) can be constructed via multiplication of the

above mappings:

p—1
cCurssuy) =[] I c(Fuc,, 1up)s

i=1e€E;

F(uch | Up, ) 3uD2) ¢))

where e runs over all edges in E; of theith tree T; .
The term L‘(.F(uch1 | uDe), F(uce’z | uDe);uDe)

2

depends on up, not only through its conditional

margins F (uc | up ) and F (uc | up ), but
EyUl e e,uz e

also directly throughup_ .

When the length of up increases, it is difficult
to estimate the bivariate copula ¢(+, «;up ). Ref.
[11] stated that the simplified form ¢ (F(uc, |
up,)s F(uc,, | up,)) can be used to approximate
the right hand side in Eq. (1) well enough, in which
the bivariate copula depends on conditioning
variables up_only through the two conditional marginal

distributions, while Ref. [12] pointed out that this
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Tab.1 PMFs, expectations and variances of the Poisson, GP, ZIGP and NB distributions

P XY =y) E (¥ Var(Y)
Poi ¢ e’ © ©
y!
—Dy)”! 1
GP "‘"“i' &l $rexpl= Gt (1)) “ e
where ¢ > max{%, 1— %} and m is the largest
natural number withpy +m(g—1) >0if ¢ <1.
ZIGP 1<y=0)[w+(1—w)exp{—§}]—|— A—wp A—)p($®+ pw)
— Dy 1
Lo (1— @) “("Hi‘ )9) $rexpl— Gt D)
the same condition as GP.
r'(y+¢ ¢ # “
NB ( )¢ ( )Y a+-+-
TPyl utd utg # Ty

could be misleading, and introduced a nonpara-
metric smoothing method for R-vine with p =3. We
adopt this simplified form as follows, which will be
used in the sequel:

p—1
cCursesuy) =[] [l (Fluc, | 1 un),

i=1e€E;

Fluc,, | up ) €)

Vine copula provides a flexible way of
constructing multivariate distributions. Ref. [13]
first introduced the pair copula construction (PCC)
for multivariate distributions. Refs. [14-157] found
that PCC can be represented or indexed by a
hierarchical tree structure named vine structure. A
wide range of dependence structures can be
constructed by combining the large number of vine
structures and different families of bivariate copulas
on each edge of trees from the vine structure. Ref.
[5] gave algorithms for sampling and testing two
special cases of vine structures, the C-vine and D-
vine structure. Ref. [16] applied vine copulas for
sampling joint uniform distributions. Ref. [ 17 ]
investigated the density evaluation, structure
selecting and sampling procedure for the generalized
regular vine copulas based on the array
representation of the vine structure. Ref. [ 18]
developed a vine copula modeling {ramework for
multivariate discrete data that is flexible, easy to
estimate and applicable in high dimensions. For
packages on modeling, sampling and testing of C-
vine, D-vine and regular vine copulast**®!. For

standard references on vine copulast®”.

2 Sampling multivariate count variables

The problem of sampling multivariate count
random variables Y, ,+-+,Y, with different marginal
distributions and a prespecified correlation matrix 3
remains open because of the lack of parametric
families of multivariate discrete distributions. The
sampling algorithm for one distribution is usually
designed specifically. The inverse method is used
widely. However, this method is invalid for some
distributions like normal distribution™®!, Though
method for
distributions has several shortcomings such as low

the inverse sampling univariate
efficiency, complexity in the form of explicit
expressions of inverse functions etc. , it is the only
choice under the current solution framework to
generate multivariate discrete samples from u
generated from specified copulas. Take the Naive
method as an example; given a correlation matrix 3
which is the target correlation structure of
multivariate count variables, we first simulate from
the Gaussian copula C,(u; ) to obtain samples u
€ (0,1)" , and then apply the inverse method to
each margin so as to get multivariate count samples
Y.

Ref. [1] gave an algorithm for sampling
multivariate count variables via obtaining each
parameter of bivariate conditional Gaussian copulas
corresponding to each edge of a C-vine copula by
using bisection method for optimization. More
precisely, they determined the parameter p;,;p of
edge e =e;,;|p by the bisection optimization of object
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function

FCoizip) =l t;i,jm — o | W

where {i,; } is the conditioned set of edge e , D is

the conditioning set of edge e , aA,-,,-|D is the Pearson
correlation of Y; p =F; (u;p) andY;p =F; (u;p) »
follows the
gaussian copula with parameter p;,;jp » and g;,p is
the partial correlation of Y; , Y; givenY, , 2 € D .
Denote by ; the (i,7)th element of ). The partial

correlation ¢;,;|p is evaluated by Pearson recursive
[2]

(uiipsu;p) bivariate conditional

formula™® as follows:

Oij|ID\{k} ~ Oik|D\{k} O jk|D\{k}

» k € D,

Oijlp =

A —ohipvw) I —ohipve)

Inspired by Ref. [1], we suggest an algorithm
for sampling multivariate count variables based on
the proposed concept of marginal regular vine
copulas defined below. This will let us optimize the
objective function

f(pi.jID) :| o/:i,j —0i,j | )

on the left hand side of which p;,;p is the parameter

of edgee;,;|p [rom regular vine copulas V' . While aA,-,j
on the right hand side of the objective function
means the Pearson correlation of the two discrete
variableY; = F; (w;) , Y; =F; (u;) , in which u;
and u; are samples simulated from the marginal vine
copula V corresponding to edge e;,;|p belonging to
the regular vine copula V. Notice that the objective
function in Eq. (5) optimizes directly the distance
from the unconditional correlation, rather than the
partial correlation of samples in the objective
function of Eq. (4), to the pre-specified correlation
parameter o;,; belonging to Y, which is the key
point that we believe and will prove in later sections
to improve the sampling algorithm’s accuracy of
multivariate count variables.
2.1 Marginal regular vine copula

Marginal regular vine structure is in fact
composed of all j-fold unions of edge e; € E; ,
where j =1, -+, ¢ — 1, First, we review the
definition of regular vine and j-fold union of an edge
from Ref.[15].

Definition 2,1 Complete union, j-fold union.

For a regular vine and any e; € E,, the
complete union of e; is the subset

Ael. :{] 6 Nl: E|ek 6 Ek(k:].,'"ﬂ:) Wlth

JEerye, €Eep(B=1,,i—1},
and the j-fold union of ¢;(1 << j << i — 1) is the
subset

U, (G)={e.; € E;;:edges

e, €EE(k=i—j+1,,i—1),
with e, € e (B =i —j,, i —1)}.

For j =0, defineU, (0) ={e;} .

In the following corollary, we prove that the j-
fold union is essentially a vine tree but not a forest
with several isolated trees.

For each e € E; , the j-fold
union U, () forms a subtree of T,_; .

Proof It is obvious that U,(j) & E.—; . We
shall state that U,(j) is a tree rather than a forest
with several trees. Forj =1, U, (1) ={ey, e;} ife=

Corollary 2. 1

{e1s ez} » hence U,(1) is a tree with two edges.
Assume the conclusion holds forj =2 —1 << i —1
but not forj =k <{i—1, thatis, U,(k —1) is one
subtree and U, (k) is a forest containing more than
two subtrees, which leads to a conflict since
different trees of the forest U,(k) generate several
isolated subtrees of T ;1;.

Definition2. 2 Marginal regular vine structure,

For a regular vine structure V with n labels,
denote by T; the ith tree of V fori =1,+, n — 1.
For any edge e € E; , the marginal vine structure
with respect to edge e , denoted by V, , is obtained
by the j-fold union (1 <{j; <i), i.e.,

Ve:{Ue(i_].)9 Ue(i_2)9 Sty Ue(].)}.

The regular vine copula corresponding to the
marginal vine structureV, is marginal to the regular
vine copula corresponding to the full structureV .

Example 2.1 Fig. 1 displays an example. The

E—@

(a) Regular vine structure R

(b) Marginal vine structure R, 5.3

Fig.1 Marginal regular vine structure
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left panel is a regular vine structure R with labels 1,
2,3,4,5, while the right panel is the marginal vine
structure R 52,35 in which the dashed edges and
nodes are taken off from K.
2.2 Sampling algorithm

The sampling algorithm for multivariate count
variables based on the concept of marginal vine
copulas is composed of two sequential steps. The
first step generates a best fit regular vine structure
for the
multivariate count variables, and the second step

prespecified correlation matrix of
determines the parameters of bivariate Gaussian
copulas for all edges of the regular vine structure.
We give the details as follows.
2.2.1 Determine regular vine structure

There are many choices for the structure of a
regular vine, including the two special cases named
C-vine and D-vine. Ref. [5] suggested that the
should be

considering which bivariate relationships are most

selected structure determined by
important. This means that the variable pairs that
contain higher dependence shall be put into the top
trees with priority., We now give a method to
determine the regular vine structure based on the
maximum-spanning-tree which can guarantee the
sum of (conditional) absolute correlation on vine
tree are the largest. The steps are listed as follows:

(I)Let T, be the maximum-spanning-tree of
the complete undigraph G, with weight | o;; | of
each edge;

(Il ) Iterate through the neighbored edge pairs
denoted by {i,k} and {j ,&} of T, and treat them as
one edge denoted by e;,;» of the second graph G..
Let T, be the maximum-spanning-tree of graph G,
with weight | 6,,;. | for each edgee; ;. of G,

(I Repeat this procedure for T; till T,_;.

A corresponding pseudo-code for the algorithm
is presented in Algorithm 2. 1.

Algorithm 2. 1
based on correlation matrix 3= (o;;).

Require V={1,2,++,n}, the node set

Determine the regular vine structure

Require Y = (o;) is the prespecified correlation matrix

1 the regular vine structure is initialized as an empty list,
denoted by R={}

2 the graph list is initialized as an empty list, denoted by
G={}

3 G; is the connected weighted complete undirected graph
with vertices V

4 the weight of edge e; of G; is w;= | oy |

5. append (Gy)

6 For r from 1 to n—1 do

7 T,=maximum_spanning_tree (G,)

8 N. append (T,)

9 let G;4+; become an empty weighted graph

10 For two neighbored edge pair e= (e;, e;) in T,.
edges() do

11 e is a probable edge for next tree T+

12 G.+: add_edge (e)

13 let the conditioned set of e=(e;, e;) be {i,j}

14 let the conditioning set of e=(e;, €;) be D={k,,

ok} Difr=1, let D=0

15 let . = 6i,jip=1{k, ,~,k,_,) » Where oyp is the partial
correlation

16 End For

17 &. append (G;11)

18 End For

2.2.2 Estimate parameters of a regular vine copula

The estimation for parameters of all edges of a
specified regular vine structure R is listed as
follows:

( I ) Iterate through all edges of the first tree
T to obtain the optimized parameters p;,; that will
minimize the objective function

i) =l corr(Y;, Y;) —o.; |»
wheree ={i,j } is one of then — 1 edges of T, ;

(I )Tterate through all the edges of the second
tree T,. Lete;,;p=) denote one edge of T, where
D is the conditioning set of one element 2 , and
denote by R, ;ip—; the corresponding marginal vine
copula. According to the definition, R;;p=q) is
constituted with two vine trees and the parameters
of the first tree are obtained in Step 1. The
parameter of the second tree p; ;. can thus be
estimated through optimizing | corr(Y;, Y;) — ., |»
whereY;, =F; (u;) , Y; =F; (u;) and {u;, u;} is
simulated from R jip=q) 3

(Il Continue the procedure in step 2 above for
vine trees T till T,—,, and all the parameters of R
will be estimated sequentially.

A corresponding pseudo-code for the algorithm
is presented in Algorithm 2. 2.

Algorithm 2.2 Estimate the parameters of a regular vine
copula

Require R = {T,, T;, ***» T,.} is the structure of
regular vine

Require ), = (5;;) is the prespecified correlation matrix

Require regular _vine _ copulas _ sampling function from
package pyvine

Require univariate discrete distribution functions Fy, «+,
F,

1 Forr from1ton —1do

2 For e in T,. edges() do
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3 State let the conditioned set of edge e be {i,j}

4 State let the conditioning set of edge e be D= {k, ,
<kt D ifr=1, let D=0Q

5 State let R. be the marginal regular vine copulas
from R with respect to edge e

6 the Gaussian parameter p. of edge e is obtained by
pe=argmin {(p.), f(p.)=|corr(Yi, Y;) — ai;|

7 where Yi=F (), Y;=F (y), and u=(u, y,

W » ***» U ) is a joint uniform sample generated from .,

that is,
u = regular_vine_copulas_sampling(R, )
8 End For
9 End For

3 Simulation studies

This section investigates the performance of the
multivariate count variable sampling algorithm
based on marginal regular vine copulas, compared
with the algorithm given by Refs. [1, 3] and the
Naive method. These three algorithms are denoted
by M1, M2 and M3, respectively. To compare the
three approaches, we take the factors such as the
dimension, the size of parameters, the structure of
matrix, and the marginal
distributions of the
consideration. Three case studies are carried out to
illustrate  the

effectiveness of the three algorithms. They are

the correlation
count variables into

sampling  performance  and
Case 1 At different levels of dimension and

different size levels of the correlation in an
exchangeable target correlation structure;

Case 2 At different levels of dimension and
different unstructured correlation matrices;

Case 3 At different count margins and parameters.

We also use the maximum relative bias
(MAXRB) and the average number of acceptance
(AAC) from Ref. [1] to measure the performance
and effectiveness for comparison. The definitions of
these two statistics are recalled as follows.

Definition 3. 1 (Maximum relative bias) The
relative bias of the empirical correlation of the
sample values to the target correlation of (Y;, Y;) is

defined by

. 1 &ol; —oi;
RB,' ;= J Y i ]
] R ; o, y 1 F J o
where R is the number of replications of N samples

of Y = (Yy, =, Y,), and 5}, is the sample
correlation of (Y;, Y;) for the r -th replication of
sample set. The maximum relative bias is defined as

the maximal estimated relative bias

MAXRB; = max RB, ;.

1<i<j<n
Definition 3.2
acceptance) Consider the following hypothesis

( Average number of

Ho: O;,j =O'?,j, V1<1<] <n<—’H1: not Ho

with level « , where ¢7,; is the target correlation.
This composite test can be decomposed into n(n —
1)/2 individual tests
Hj . 6i; 7 U?,j‘_’Hlij : 65, =09,
with Bonferroni correction under level o, =
4
n(n—1)/2"
Reject HB’: 0 #aﬁ?j(:)«/N— )
| tanh™ (6%) —tanh™ (63;) |< q.,»

The reject region of HY is

where g, is the (1 — a.) -quantile of the standard
normal distribution, and N is the sample size. We
reject H, if for some (i,5) , H¥ can not be rejected.
ACC, is defined as the percentage of acceptances of
H, under level of @ among the R replications.

Tab.2 Marginal parameters chosen for simulation
study of Cases 1 and 2

n Parameters
Poi 2 pu:= (10,15

5 p:=(10,15,12,20,28)

9 p:=(0,15,12,20,28,17,27,13,19)

10 p. = (10,15,12,20,28,17,27,13,19,25)
GP o the same as in Poisson case

2 ¢:=(1.5,3.5

5 ¢:=(1.5,3.5,1.5,2,2.5)

9 ¢.=(1.5,3.5,1.5,2,2.5,2,3,1.5,1.5)

10 ¢.=(1.5,3.5,1.5,2,2.5,2,3,1.5,1.5,2.5)
ZIGP p and ¢ the same as in GP case

2 w:=(0.25,0.15)

5 w:= (0.25,0.15,0.10,0. 3,0.2)

g @ = (0. 25,0.15,0.10,0. 3,0.2,0.17,
0.24,0.24,0.2)
10 w: = (0. 25,0.15,0. 1010.390.2,0. 17’
0.24,0. 24,0.2,0.15)
NB ¢ the same as in Poisson case

5 ¢:=(8’ 4/3, 9.6, 20/31 16/3)

¢: = (8, 4/3, 9.6, 20/3, 16/3, 17/3,
3.375, 10.4, 15.2)

¢: = (8, 4/3, 9.6, 20/3, 16/3, 17/3,

10
3.375, 10.4, 15.2, 4.762)
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Tab.3 Maximum relative bias (MAXRB) and average number of acceptance (ACC) for simulation study of Case 1

based on R =1000 replications and N =500 samples of size n for exchangeable target correlation p and

different count margins and parameters as in Tab. 2 (here ACC is multiplied by 100)

Poisson GP

ZIGP ZIGP

o n M
MAXRB ACCy, 05

MAXRB  ACCo. 05

MAXRB  ACCo. 05 MAXRB  ACCo. 05

0.1 2 1 1.42 95.4 0. 68
2 0. 83 94.8 1. 96

3 0. 81 94.9 10. 36

5 1 4.47 94.2 1.19

2 11.74 95.3 22.35

3 4.21 95.8 11. 94

10 1 3.61 94. 4 3.85

2 16. 04 94.2 17.54

3 5.24 96.0 14.91

0.5 2 1 0.09 94.6 0.20
2 0.99 93.5 1.93

3 1.14 95.0 7.24

5 1 0. 46 94.4 0.75

2 4.48 94.1 2.15

3 1.03 95.0 7.54

10 1 0.48 95.8 0.55

2 4.45 91.5 3.65

3 1.55 95.3 7.79

0.9 2 1 0. 06 94.3 0.09
2 0.76 89.1 0.16

3 0.72 87.9 4,35

5 1 0. 06 95.8 0.09

2 1.03 86.1 2.66

3 0.78 91.3 4.64

10 1 0. 08 96.6 0.09

2 1. 40 78.6 2.61

3 0. 86 92.6 5.42

95.4 1.22 94.8 0.52 94.5
94.8 0.322 94.1 9.06 93.3
93.4 8.90 93.8 8.58 94.2
93.5 2.33 93.9 3.09 94.1
92.7 9.98 94.7 13.63 94.3
93.5 12.98 93.4 9.29 94.9
94.7 4.11 93.8 3.85 94.7
94.1 20.18 94.3 15.99 93.0
92.1 12.21 95.4 14.9 92.1
92.1 0.20 94.4 0.21 93.3
90. 6 0.63 95.3 0.22 91.4
78.8 9.39 74.5 6.19 83.6
92.6 0. 62 94.9 0.50 93.2
90.6 4.38 89.6 2.70 91.5
77.6 9.58 72.7 6. 66 85.7
90.5 0.98 94.9 0. 47 95.3
86.5 5.01 90.3 3.41 91.3
76.5 12.27 73.2 7.02 87.8
94.4 0.07 97.4 0.03 94.7
92.4 0.02 95.7 0.31 93.2
3.9 6. 64 0.0 4,33 3.7
92.0 0.11 97.1 0.09 95.0
53.5 3. 66 21.9 1.23 82.2
33.0 7.81 0.0 4.90 0.9
90.6 4.38 0.7 0.11 95.3
56.5 7.10 0.0 1. 84 74.7
18.0 12.15 0.0 5.03 1.5

For all three case studies, the number of
replications R is set to 1000, and the number of samples
in each replication N is set to 500. The first two case
studies share the same marginal distributionparameters
listed in Tab. 2, and the marginal parameters of the
third case study are listed.

3.1 Casel

In this case, we compare the three sampling

algorithms at different levels of dimension and size
of parameters with constraint to the exchangeable
structure of correlation matrix, that is, p; =p for all
i 7 j . The settings arep € {0.1, 0.5, 0.9} and
n € {2,5,10} , and the parameter choices of
marginal count variables are listed in Tab. 2. The
simulation results are summarized in Tab. 3. From
Tab. 3, we observe that
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(1) For all the three algorithms, the higher
the p is, the smaller the MAXRB will be;

(Il )For all the three algorithms, MAXRB will
increase with dimension n ;

(Il ) MAXRB of M1 is almost smaller than
those of M2 and M3;

(IV)ACC is higher and more stable for M1 than
M2 and M3 when p is large.
3.2 Case2

We compare the performance of the three

[1.00 —0.71 —0.80 0.33
—0.71 1.00 0.78 —0.33
—0.8 0.78 1.00 —0.34
0.33 —0.33 —0.34 1.00
Yo=|0.40 —0.38 —0.37 0.48
0.37 —0.36 —0.37 0.44
0.51 —0.51 —0.52 0.19
0.50 —0.50 —0.51 0.19
1 0.35 —0.32 —0.34 0.13

It should be pointed out that some negative
correlations are included in the correlation matrix
Y. For M1, we additionally specify C-vine for the
regular vine structure in order to examine the
influence of the structure upon the performance of
sampling algorithms. Results are summarized in
Tab. 4. We find that

(I )MAXRB for n =9 is significantly larger

0.

sampling

algorithms

with

unstructured

target

correlation matrices ,, specified forn =5and 9. X ;

and ), are given by

1.00 0.80 0.50 0.40 0.35
0.8 1.00 0.70 0.65 0.50
>s=10.50 0.70 1.00 0.40 0.30 (6)
0.40 0.65 0.40 1.00 0.55
0.35 0.50 0.30 0.55 1.00
and
40 0. 37 0.51 0. 50 0.35 ]
—0.38 —0.36 —0.51 —0.50 —0.32
—0.37 —0.37 —0.52 —0.51 —0.34
.48 0.44 0.19 0.19 0.13
. 00 0. 60 0.22 0.22 0.14 (D
. 60 1. 00 0.23 0. 23 0.15
22 0. 23 1.00 0.95 0.68
22 0.23 0.95 1. 00 0.59
.14 0.15 0.68 0.59 1.00 |

O O O O +H O

than that forn =5;

(I )MAXRB of M2 has pool performance;

(Il ) MAXRB of Mlr (M1l with R-vine
structure) is smaller than Mlc (M1 with C-vine
structure) when n =5, while MAXRB of Mlr is
larger than M1lc whenn =9;

(IV) The performance of the naive method M3
is close to Mlr and Mlc;

Tab.4 MAXRB and ACC for simulation study of Case 2 based on R=1 000 replications and N =500

samples of size n for specified target correlation matrices (6) and (7) and different count

margins and parameters as in Tab, 2 (here ACC is multiplied by 100)

Poisson GP ZIGP NB

" MAXRB ACCy, s MAXRB ACCy, s MAXRB ACCy, s MAXRB  ACCy.0s

5 1r 0.71 95.5 0.48 91.6 0.36 94.7 6.70 93.2
lc 0.80 95.0 0.85 91.0 0.84 94.9 10. 52 91.7
2 4,64 93.3 9. 86 71.3 15. 40 64.4 9.93 86.1
3 1. 20 95.9 6.95 45.2 8.62 18.2 6.24 58.8

9 1r 4.83 96. 4 31.50 85.8 22. 65 88.2 15. 08 95.2
1c 3.98 96.3 12.55 95.7 17.32 88.1 7.27 86.1
2 102. 24 0.0 58. 32 8.3 48.12 12.8 71.73 0.8
3 1. 80 94.3 19. 38 1.9 19. 22 0 11. 54 30.2

Tab.5 Marginal parameter choices for simulation study of Case 3

small

large

©5=0,3,2,2,1.5)
$° =(1.1,2.5,1.5,3,2)
»® =(0.05,0.1,0.05,0.08,0.07)
¢° (p®) =(4.7619,0.5714,1.6,0.25,0.5)
& (ub) =(142.9,3. 810,28,6. 25,8. 333)

#t =(30,20,35,50,25)
¢t =(6,5,3,4,4.5)
" =(0.25,0. 2,0, 35,0.15,0, 4)
oF (u%) =(0.029,0.125,0. 25,0. 133,0, 078)
- (ut) =(0.857,0. 833,4. 375,3. 333,1. 299)
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Tab.6 MAXRB and ACC for simulation study of Case 3 based on R=1 000 replications and N =500
samples of size n=>5 for specified target correlation matrix (6) and different margin
parameters as in Tab. 5 (here ACC is multiplied by 100)

Milr Milec M2 M3
ko p @

MAXRB ACC. 05 MAXRB ACC. 05 MAXRB ACC. o5 MAXRB ACC. o5

Poisson S 1 0 1.17 94.2 1.91 92.5 7.85 89.1 11.61 29.1
L 1 0 2.70 95.4 1.11 96. 8 5.68 93.7 0.73 95.2

GP S S 0 26.17 36.1 9. 50 62.9 13.65 46.5 25.16 1.4
S L o 17. 22 10.0 19.11 8.1 37.92 1.0 55. 83 0.0

L S 0 6.99 92.5 6. 66 93.1 9.21 89.1 2.98 88.7

L L o0 10. 26 71.8 18.94 51.3 18.97 50. 2 15. 85 21.1

ZIGP S S S 1.21 61.6 1.49 61.9 14. 27 37.8 25. 66 0.5
S S L 18.72 39.2 0.79 54.2 11. 64 34.2 32. 64 0.3

S L S 14.16 8.7 19.74 11.6 36. 00 2.0 63. 06 0.0

S L L 11. 47 8.6 14.91 9.0 113.45 0.0 68. 37 0.0

L S S 16. 77 90. 4 11. 96 91.1 11.72 53.6 11. 87 0.1

L S L 0.21 95.9 11.97 91.6 12. 42 80. 8 16. 29 0.1

L L S 0.93 79.8 1.17 78.6 20.02 45. 8 16. 82 20.3

L L L 1.10 80.6 14.14 70. 8 22.59 41.9 22. 30 13.6

NB S S 0 16.18 47.0 11.49 62.0 13.57 79.3 26.53 0.1
S L o0 18. 34 4.1 16.13 5.9 13.59 81.1 67.54 0.0

L S 0 1. 45 95.3 3.66 95.0 9. 37 86. 3 2.50 92.1

L L o0 9.14 80.1 3.70 83.5 9.31 85.4 12. 89 4.2

(V) ACC, s of both the Mlr and Mlc defeat
M2 and M3 significantly., ACC, ;s of M1r and Mlc
maintain at above 0. 85, while it will drop below
0.10 for M2 and M3 when the marginal count
variable comes from the families of GP, ZIGP or
NB.
3.3 Case3

In this section, we compare the influence of
different sizes of marginal parameters zs ¢, w and .
Two sets of marginal parameters are prespecified:
the set of small (S) values and the set of large (L)
values. Marginal parameter choices are presented in
Tab. 5 withn =5, and the target correlation matrix
is fixed to be X5 as in Eq. (6). In order to keep the
variances of the ith GP and NB margins delete
equal, we should set ¢ =14 g, /¢, or, equivalently,
g: =p;/($* —1) . For ¢ = (g7, =+, ¢3) and ¢" =
(¢t 5 +==5 ¢%) , the entries in Tab. 5 were calculated
according to

b

(/)?(/li) :(755,;7;_17 Qb{‘(/ll) ==

Hi
(¢5)F—1

where g; could be either 4 or 47 . The comparison

results are displayed in Tab. 6.

The above results are briefly interpreted as
follows:

(I)The smaller the mean parameter p is, the
larger MAXRB is, and the smaller AAC is;

(1) The larger the parameter ¢ is, the larger
MAXRB is, and the smaller AAC is;

(I ) MAXRB (AAC) of Mlc and Mlr are
significantly less (larger) than M2 and M3;

(IV) The influence of w is not significant.

4 Application in simulation analysis
of operational risk aggregation

Operational risk category was adopted by Basel
Committee II for financial regulation over banks,
which is the risk resulting from the actual losses,
incurred by inadequate or failed internal processes,
people and systems, or from external events
(including legal risk). The variation version was
adopted by Solvency II directives for insurers
regulation.

The regulatory capital of operational risk for

small banks or insurers can be figured out by the
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advanced measurement approach. Fist, we divide
the activities of financial institutions into B (= 8)
business lines as in Tab. 7 (see Table 13. 1 in Ref.
[22]), and then categorize operational losses into L
(=7) loss event types as in Tab. 8 for each business
line. Then the aggregation loss of a certain period is
determined by

z

b,

X ®
1

s=3

b=1 l=1

a~
Il

where X, ,,,, stands for the £th loss of type I for
business line 4 , and N,,, is the corresponding loss-
count. The risk-capital for the special period is
hence determined by a risk measure o, like Value-at-
Risk (VaR) or Expected-Shortfall of S at some

confidence levela € (0,1) . Now, we consider o, =

VaR, , where VaR,(S) = F5 (a¢) , and Fs is the
distribution function of S. The sampling algorithm
for multivariate count variables in Section 3 provides
an effective method for simulation analyses of
operational risk aggregation S, hence the risk
capital charge for financial institutions.

Ref. [23] performed a detailed operational risk
analysis on the dataset of Quantitative Impact
Studies, and concluded that the loss value of the
single section of (b,/) can be modeled by a
generalized Pareto distribution (GPD) in the upper-
tail area under some appropriate assumptions. The
estimated marginal (GPD and NB) distributions for

the eight business lines are presented in Tab. 9,
which is taken from Ref. [23].

In the following, we give an illustration rather
than a real practice under Basel II, we assume that
there is only one loss event type, that is, L = 1.
Loss variables X,,, and loss-count variables N, are
assumed to follow GPD (B, , &) and NB(x , ¥ ) in
Tab. 9, respectively. Different loss variables within
the same business line are independent, and are
assumed to be independent among different business
lines. The correlation matrix of loss-count random
variables (N1, Nj, -+, Njg) is denoted by Ys,
which will be specified below. Hence, the aggregate

Nb
loss variables S, = Z X, are dependent for

k=1

different business lines only through loss-count
random variables N, . Here four correlation
matrices are utilized for the simulation of loss
aggregation:

( 1 ) Identity matrix for independent loss
relationship;

(i ) Exchangeable correlation with p =0.1 for
weak positive dependence;

(i ) Exchangeable correlation with p = 0.5 for
moderate positive dependence;

(V) Submatrix 2 i4,.,s of the correlation
matrix ), , specified in Eq. (7) for both unstructured

and negative dependence.

Tab.7 Eight business lines for an operational risk aggregation Tab.8 Seven loss event types for an operational risk aggregation

business lines

1. corporate finance
2. trading & sales
3. retail banking
4, commercial banking
5. payment & settlement
6. agency services
7. asset management

8. retail brokerage

loss event types

1. internal fraud
2. external fraud
3. employment practices & workplace safety
4, clients, products & business practices
5. damage to physical assets
6. business disruption & system failures

7. execution, delivery & process management

Tab.9 Empirical marginal distributions of loss and loss-count variables

b 1 2 3 4 5 6 7 8
loss B 774 254 233 412 107 243 314 124
(GPD) £ 1.19 1.17 1.01 1.39 1.23 1.22 0.85 0.98
loss-count P 0. 45 0.37 0.26 0.47 0.51 0.30 0.52 0. 24
(NB) v 0.25 0.05 0.02 0.10 0.13 0.07 0. 20 0.03
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Tab. 10 VaR, (S) under the four specified correlation matrices by simulation

Levela Ci) Ciii ) Civ)
0. 900 107052 115865 122038 112446
0. 950 221358 251937 257347 232932
0.975 485675 540765 545119 493801
0. 990 1471664 1576687 1616502 1441295
0.999 33337855 33800474 36440883 25872229

For the above correlation matrices, by
simulation with sample size N = 50000, the VaR,
values of an aggregation loss S with different levels
of a are presented in Tab. 10, which provides
reference information for the risk-capital of S.
Within each level @ , VaR, also increases from ( | )
to (i),
characteristic as ( | ), and the VaR, is small

Situation ( iV ) has a similar tail

compared with the other three cases, especially fora
= 0.999. This may be explained by by negative
dependence among the loss-count variables of the
eight business lines in Case (iV).

5 Conclusion

Sampling multivariate count random variables
difficult

methods  for

with specified correlation remains a

question. There exist two
approximately sampling: the Naive method (M3)
and the one suggested by Ref. [1] (M2). The Naive
method samples from a multivariate Gaussian
distribution with a correlation matrix identical to the
prespecified one, and then the inverse method are
utilized to generate multivariate count samples.
Hence M3 will suffer from great bias and could only
be treated as a benchmark. M2 outperforms M3.
However, the optimization by bisection to the
distance of sample partial correlation and target
partial correlation may also lead to some bias.

The method M1 we suggested in this paper
directly optimizes the distance between the sample
correlation and the target correlation for pairs of
random variables. Also, the R-vine structure is
more generalized than the C-vine. Hence, more
flexible dependence structures are available for the
sampling algorithm. We carry out simulation
studies so as to compare performance of the three
sampling methods. Results illustrate that M1
outperforms the other two methods. M1 and M2
have a shortcoming that they are more time-

consuming than the Naive one. The sampling

algorithm routines in this paper are implemented in

Python as package countvar in PyPit?,
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