5549455 91
201949 A

¥ & # 72 & £ %

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Vol. 49,No. 9
Sep. 2019

g 2 4

B GRE.0253-2778(2019)09-0699-05

Log-concavity of compound Poisson distributions

XIA Wanwan
(Department of Statistics and Finance s School o f Management , University of Science and Technology of China, Hefei 230026, China)

Abstract: log-concavity and total positivity of order 2 (TP, ) properties of two-parameter

compound Poisson distributions Q(x | 0,v) with respect to x » § and v was studied by exploiting

the interrelationships between log-concavity, TP, and reproductive property developed by the

existing literatures. One application was also presented.
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0 Introduction

Log-concave functions have many nice
analytical properties, and play an important role in
statistics, probability, economics, and other
fields""*!. A nonnegative functionh :R*—>R  =[0,
o) is said to be log-concave if, for all x,y € R”
and for alla € (0,1) , we have
hiax +Q—a)y) =[h(x) J*[h(y)] e,

Ifh(x) > 0 for all x € R" , then an equivalent

condition is

Received: 2018-02-02; Revised: 2018-05-04

Inh(axr +(1—a)y) =
aln h(x) + (1 —a)ln h(y).

Total positivity of order 2 (TP, )is a concept
closely connected with log-concavity as shown in
Lemma 1. 1. Let X and Y be two subsets of the
real lineR. A nonnegative function¢: XXY—>R.
is said to be TP, if

P s y ) =9 yPlxs y™)
(D
wheneverr,x* € X, vy, y* €Y, andx <z~

and y <y " . I the inequality in (1) is reversed,
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then ¢ is said to be the reverse rule of order 2
(RR,). For more details on TP, and RR,, see
Ref. [3].

A variety of log-concavity results for families
of distribution functions F(x | 8, v) and related
functions in x » 8 or v have been studied. Finner
and Roters!*™ and Das Gupta and Sarkar™® studied
the interrelationships between log-concavity, TP,
and reproductive property. In view of such an
interrelationship, Finner and Roters® obtained a
series of log-concavity results not only for central
but also for noncentral chi-square and F as well as
for beta distributions.

The purpose of this short note is to investigate
log-concavity and TP, (RR;) properties of two-
parameter  compound  poisson  distributions
Q(x | 0.,v) with respect to x » 0 and v by similar
arguments to those in Ref. [5]. The main results
are given in Section 2. Section 1 gives the
definition of reproductive property, and provides
the interrelationships between log-concavity, TP,
and reproductive property. A sufficient condition
under which a compound Poisson distribution
function possesses log-concavity is also recalled in
presented in

Section 1. One application is

Section 3.

1 Preliminaries

First, recall the reproductivity given in Refs.
[4-5]. Let (X, &/, u) denote a measure space
which is in general assumed to be equal to (R , %4,
A) or (Z, AZ)s k), where A denotes the
Lebesgue measure on the Borel o-field % of the set
of real numbers R, and « denotes the counting
measure on the power set A Z) of the set of
integers Z. Define N=1{1, 2, *=-} and N,=N U
{0} s and let®, T € {(0,2°),[0, =), N, N,}
and g: X X0 X T — R | be measurable in the first
component, The function g(x | @,7) is said to
have the reproductive property in@ € ® , denoted
by RP (0) , if for every 7 € © , there exists a
on (X, @) with
P,(R () X) =1 such that for all0 € O ,

probability measure P,

ng(x*y | 0,0)d P,(y) =

g [ 0+y,0)pras..

The first lemma below, which can be found in
Refs. [ 4-5] and also in Ref. [ 6] with minor
modification, reveals the relationship between TP,
property and log-concavity.,

Lemma 1.1 Let f(x | @, 7) be a density
function defined on XX® X T , and let F(x | 0, 7)
denote the corresponding distribution function.
Suppose that g (x | 0.7) € {F(x |0, 0)s F(x |0,
), f(x |0, v} is Borel measurable inx € X and
has RP (&) .

(a) f g(x | @, ) is log-concave in x for all @
and somet , then g(x | 0, ) is TP, in (x,0) €
XX40.

() fglx |0, o)is TP, in (x,0) € XXO for
somet , then g(x | 0, 7) is log-concave in @ for all
x.

Lemma 1.2 Let g(x | 0, ) be as defined
in Lemma 1. 1 with RP () property. If g(x | @,
) is TP, in (x,7) € XX T for each 8 , then g (& |
G, t)is RR, in (8,7) € ® X T for each x .

The third lemma, due to Ref. [ 8, Theorem
3.4 ],

distribution

states that the compound Poisson

function is log-concave if the
underlying distribution possesses a decreasing
density function on R | .

Lemma 1.3 Let{X,;, =1} be a sequence of
i.i. d. nonnegative random variables, and N be a
Poisson random variable independent of {X,, i =
1} . If X, has a decreasing density function onR . ,

N
then the distribution function of Sy = 2 X, is log-
i=1

concave.,

For a distribution function G , denote by G**
the £-fold convolution of G , # € N, and by G**
the distribution function of a degenerate random
variable X =0. If G has a density functiong , then
denote by g** the density function of G** , where
k & N. The next lemma is an immediate
consequence of Ref. [ 8, Theorems 1. C. 11 and
1. C.12]. Recall that a random variable X or its
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distribution is said to be of increasing likelihood
ratio (ILR)[resp. decreasing reversed hazard ratio
(DRHR), increasing failure rate (IFR) ] if X has a
log-concave density or mass function [ resp.
distribution function, survival function].

Lemma 1.4 Let G be a distribution function
of a nonnegative random variable X . Then

() g"" () is TP; in (kyx) € NX Rif X
is ILR;

(b) G** () is TPy in (k,x) € NyX Rif X is
DRHR;

() G** () is TP, in (k.x) € NoX Rif X

is IFR.
2 Two-parameter compound Poisson
distributions

Ma"" introduced the following two-parameter
compound Poisson distribution:
. S
Qs 0.v. G)=e' >, GO @ @
k=0 .
with two parameters § = 0 and v a nonnegative
integer, where r is a given positive integer, and G

is a distribution function. Clearly, Q(x; @, v, G)

represents the distribution function of the
random sum
v r N
Soine = EXk + E X (3)
k=1 k=1

where {X,;, ¢ =1} is a sequence of i. i. d. random
variables with distribution G , N(8) is a Poisson
random variable with parameter # and independent
of {X,, i =1}.

Theorem 2. 1
function with G(0) =0. Then

(a) Q(x; 0, v, ) is log-concave inx € R for
all integerv € Nyandd € R ;

(b) Q(x; 8, v, G) is log-concave inv € N, for
all (x,0) € RXR . ;

(&) Q(x; 0, v, G)is log-concave ind € R for
all (x,v) € RXNy;

(d) Q(x; 0, v, G) is TP, both in (x,v) &
RXNyand in (x,0) €E RXR ..

Proof (a) For each pair (v, ) ,
QG 0,v,G)=Q(s50,v,G)* QCe5 0,0, G)

@)

Let G have a decreasing density

where Q(+; 0, v, G) =G** (+) , and * denotes
the convolution operation. Since G has a decreasing
density, G is DRHR by the definition, which, by
Ref. [ 8, Corollary 1. B. 63], implies that Q(+; 0,
v, ) is DRHR. On the other hand, for @ > 0, it

follows from (3) that
r N(@) N@) r

SNy = Z X = Z (Exmfmﬂz) ’
k=1 k

j=1 k=1

where N(0) and {X;, i =1} are the same as those
in (3). It can be checked that if the density

function g of G is decreasing, then

g () :Jig(l —wg" P (wdu

.
is also decreasing in x . Since ZXVHJ;D,% y J €
k=1

N, are i. i. d. nonnegative and have decreasing
density, by Lemma 1. 3, we know that Q(x; @, 0,
G) is DRHR for each @ > 0. It is trivial that Q(x;
0, 0, G is DRHR. SoQ(+; 0, 0, G) is DRHR for
0 € R, . Again, by Ref. [8,Corollary 1. B, 63], it
follows from (4) thatQ(+; @, v, G) is also DRHR
or, equivalently, Q(«;@, v, G) is log-concave in
x € R. This proves part (a).

(b) ~ (d) Observe that Q(+; 6, v, G) has
RP (@) and RP (v) . The desired results in parts
(b) ~(d) now follow from Lemma 1. 1 directly.
This completes the proof of the theorem.

Theorem 2.2 Suppose that G(0) =0.

(a) If G is ILLR and v = 1, then the density
function, g(x; 0, v.G) , of Q(x; 0, v, G) is TP,
in(x, ) ERXR,, RR;in(@,v) €ER XN, and
is log-concave in0 € R ;.

(b) If G is DRHR, thenQ(x; 8, v, G) is TP,
in (x,0) ERXR,,RR;in(0,v) €ER . XN,, and
is log-concave inf € R ;.

(¢) fG is IFR, thenQ(x; @, v, G)is TP, in
(s ) ERXR., RR;in(f,v) € R. XN, and is
log-concave inf € R ;.

Proof We give the proof of part (a) only;
the proofs of parts (b)and (c¢)are similar. First,
note that whenv =1, the density functionq(x; 0,
v, G) of Q(x; 0, v,G) exists and is given by

o
q(xs 0, v, G):eﬂE o
2k

ge (@) (5)
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where g is the density function of G. Since

g¥™ > () is TPy in (k,2) € Ny X R by part (a) of
Lemma 1.4, and ¢* /! is TP, in (0, k) € R . X
Ny, applying the basic composition formula (cf.
Ref. [3:17]) in Eq. (5) yields that ¢(x; 0, v, G)
is TP, in (x,0) € R X R .. On the other hand,
since g(x3 0, v, G) has RP (@) and RP (v) , it
follows from Lemmas 1.1 and 1. 2 thatg¢(x; 0, v,
() is log-concave in @ € R, for each x , and that
qg(x30, v, G) is RR; in (d,v) € R . X N. This

completes the proof of the theorem.

3  One application

Let x.s denote the noncentral chi-square

distribution with n degrees of freedom and
noncentral parameter @ , where (n, 0) € R%. We
adopt the convention that y, = x..,, the central
chi-square distribution with n degrees of freedom.
The density function of y; is given by

eﬁl//? n/2—1

22T (n/2)
For n =0, 5. is called the purely eccentric part by

hix | n)= ,x ER . (6)

Hjort"'", while x6.0 1s the degenerate distribution
with all mass at 0, and for 0 = 0, ¥, puts mass
e ”?at0. Rel.[5, Theorem 3. 4] proved that y2 4 is
DRHR for all (n, ) € R% by using a more refined
technique. They first proved that the density
function of the continuous part of ¥5, is log-
concave, and then proved that y5, is DRHR. We
now present a different, but simple, proof by
using LLemma 1. 3.
3.1 Special case: n €N,

First consider the casen € Ny, and let X,y ~

xao . Then, X,, has the following stochastic

representation:
u 2 N/
X=X+ 20 Xou (D
i=1 k=1
where {X,;, i = 1} is a sequence of i. i d. xi-

and N(/2) is
Poisson random variable with parameter 0/2,
independent of {X;, i = 1}. Let H(C+| n.0)

denote the distribution function of ¥, . From Eq.

distributed random variable,

(6), it follows that the density function of y;, is

decreasing when m € [0,2]. Applying Theorem
2.1 to Eq. (6), we conclude that

@D H(x | n,0) is log-concave inx € R | ;

@ H(x | n,0)is TP, in (xsn) € R XN, and
TP, in (x.0) € R%;

@ H(x | n,0) is log-concave inn € N, for all
(x,0) € R%

@ H(x | n,0) is log-concave in0 € R, for all
(xsn) € R XN;.

3.2 General case: n€R ;

Theorem 3. 15’ xn0 is DRHR for all (n, )
€ RL.

Proof First, consider the case §# = 0. Note
that ¥, is ILR for n = 2, and that %, has a
decreasing density for n € (0,2) and x§ is the
degenerate distribution with all mass at zero. Then
x» is DRHR for alln € R .

Next, consider the case 8 > 0. Let X, be a
random variable with distribution y., . and
N(/2) be a Poisson random variable with

parameter 8/2. For n =0, it follows from Ref.
[10] that

N/2)

d
Xo,@: 2 Y.,
k=1

where = means equality in distribution, and {Y},
k= 1} is a sequence of i i d. y3-distributed
random variables, independent of N(0/2) . Since
the density of 33 is decreasing, by Lemma 1. 3, we
get that yi, is DRHR. Forn € (0, =), from
Ref. [11], we have
Yo =n ¥ Yoo (8
Note that 3 is DRHR for alln = 0. Applying
Ref. [ 8, Corollary 1. B. 63] in Eq. (8) yields that
¥n.0 is DRHR. This completes the proof.
From Ref, [11], it also follows that
Xy tny 0 =0 % xn, forall (mys myy 0) € RY

€D
and
X0, 10, =Y mo, * o, for all (ny 015 0,) € RY
(10)

Let H(+| n,0) denote the distribution function of
xno - Then (9) and (10) state that H(+| n,0) has
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both RP (n) and RP (#). Based on these Stanford University Press, 1968.

observations, we conclude from Lemmas 1. 1 and
1. 2 and Theorem 3. 1 that (see Ref. [5, Theorem
3.9D

DO H | n,0)is TP, in(xsn) € R% and TP,
in(x,0) € R%;

@ H(x | n,0) is log-concave inn € R, for all
(x,0) € R%;

@ H(x | n,0) is log-concave ind € R, for all
(x.n) € RE.

The main results in this short note can be used
to establish the log-concave properties of F and

beta distributions; interested readers could view

Ref. [5].
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