.

文章编号:0253-2778(2019)09-0699-05

Log-concavity of compound Poisson distributions

XIA Wanwan

(Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China)

Abstract: Log-concavity and total positivity of order 2 (TP₂) properties of two-parameter compound Poisson distributions $Q(x \mid \theta, \nu)$ with respect to x, θ and ν was studied by exploiting the interrelationships between log-concavity, TP₂ and reproductive property developed by the existing literatures. One application was also presented.

Key words: reproductive property; total positivity of order 2; reverse rule of order 2; increasing likelihood ratio; increasing failure rate; decreasing reversed hazard rate

CLC number: O211. 3

Document code: A

doi:10.3969/j.issn.0253-2778.2019.09.002

2010 Mathematics Subject Classification: Primary 60E05; Secondary 60E15

Citation: XIA Wanwan. Log-concavity of compound Poisson distributions [J]. Journal of University of Science and Technology of China, 2019,49(9):699-703.

夏婉婉. 复合泊松分布的对数凹性质[J]. 中国科学技术大学学报,2019,49(9):699-703.

复合泊松分布的对数凹性质

夏婉婉

(中国科学技术大学管理学院统计与金融系,安徽合肥 230026)

摘要:根据前人文献给出的对数凹性质、TP。性质和再生性的关系,得到了双参数复合泊松分布关于其参数的对数凹性质以及 TP。性质的相关结论.

关键词:再生性;二阶全正性;二阶反向正则;似然比递增;失效率递增;反向失效率递减

0 Introduction

Log-concave functions have many nice analytical properties, and play an important role in statistics, probability, economics, and other fields^[1-3]. A nonnegative function $h: \mathbb{R}^n \to \mathbb{R}_+ \equiv [0, \infty)$ is said to be log-concave if, for all $x, y \in \mathbb{R}^n$ and for all $\alpha \in (0,1)$, we have

$$h(\alpha x+(1-\alpha)y)\geqslant [h(x)]^{a}[h(y)]^{1-\alpha}.$$
 If $h(x)>0$ for all $x\in\mathbb{R}^n$, then an equivalent condition is

$$\ln h(\alpha x + (1 - \alpha)y) \geqslant \alpha \ln h(x) + (1 - \alpha) \ln h(y).$$

Total positivity of order 2 (TP_2) is a concept closely connected with log-concavity as shown in Lemma 1. 1. Let \mathbb{X} and \mathbb{Y} be two subsets of the real line \mathbb{R} . A nonnegative function $\psi \colon \mathbb{X} \times \mathbb{Y} \to \mathbb{R}_+$ is said to be TP_2 if

$$\psi(x,y)\psi(x^*, y^*) \geqslant \psi(x^*, y)\psi(x, y^*)$$
(1)

whenever x, $x^* \in \mathbb{X}$, y, $y^* \in \mathbb{Y}$, and $x < x^*$ and $y < y^*$. If the inequality in (1) is reversed,

Received: 2018-02-02; Revised: 2018-05-04

Biography: XIA Wanwan, female, born in 1992, PhD candidate. Research field; Log-concave, entropy, stochastic comparison. E-mail; xiaww@mail. ustc. edu. cn

then ψ is said to be the reverse rule of order 2 (RR₂). For more details on TP₂ and RR₂, see Ref. [3].

A variety of log-concavity results for families of distribution functions $F(x \mid \theta, \nu)$ and related functions in x, θ or ν have been studied. Finner and Roters^[4-5] and Das Gupta and Sarkar^[6] studied the interrelationships between log-concavity, TP_2 and reproductive property. In view of such an interrelationship, Finner and Roters^[5] obtained a series of log-concavity results not only for central but also for noncentral chi-square and F as well as for beta distributions.

The purpose of this short note is to investigate log-concavity and TP₂ (RR₂) properties of twocompound poisson distributions parameter $Q(x \mid \theta, \nu)$ with respect to x, θ and ν by similar arguments to those in Ref. [5]. The main results are given in Section 2. Section 1 gives the definition of reproductive property, and provides the interrelationships between log-concavity, TP₂ and reproductive property. A sufficient condition under which a compound Poisson distribution function possesses log-concavity is also recalled in Section 1. One application is presented in Section 3.

1 Preliminaries

First, recall the reproductivity given in Refs. [4-5]. Let (X, \mathcal{A}, μ) denote a measure space which is in general assumed to be equal to $(\mathbb{R}, \mathcal{B}, \lambda)$ or $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}), \kappa)$, where λ denotes the Lebesgue measure on the Borel σ -field \mathcal{B} of the set of real numbers \mathbb{R} , and κ denotes the counting measure on the power set $\mathcal{P}(\mathbb{Z})$ of the set of integers \mathbb{Z} . Define $\mathbb{N} = \{1, 2, \cdots\}$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, and let $\mathcal{O}, T \in \{(0, \infty), [0, \infty), \mathbb{N}, \mathbb{N}_0\}$ and $g: \mathbb{X} \times \mathcal{O} \times T \to \mathbb{R}_+$ be measurable in the first component. The function $g(x \mid \theta, \tau)$ is said to have the reproductive property in $\theta \in \mathcal{O}$, denoted by $\mathbb{RP}(\theta)$, if for every $\eta \in \mathcal{O}$, there exists a probability measure P_{η} on (X, \mathcal{A}) with $P_{\eta}(\mathbb{R}_+ \cap X) = 1$ such that for all $\theta \in \mathcal{O}$,

$$\int_{\mathbf{X}} g(x - y \mid \theta, \tau) d P_{\eta}(y) =$$

$$g(x \mid \theta + \eta, \tau), \mu\text{-a. s.}.$$

The first lemma below, which can be found in Refs. [4-5] and also in Ref. [6] with minor modification, reveals the relationship between TP_2 property and log-concavity.

Lemma 1. 1 Let $f(x \mid \theta, \tau)$ be a density function defined on $\mathbb{X} \times \Theta \times T$, and let $F(x \mid \theta, \tau)$ denote the corresponding distribution function. Suppose that $g(x \mid \theta, \tau) \in \{F(x \mid \theta, \tau), \overline{F}(x \mid \theta, \tau), f(x \mid \theta, \tau)\}$ is Borel measurable in $x \in \mathbb{X}$ and has RP (θ) .

(a) If $g(x \mid \theta, \tau)$ is log-concave in x for all θ and some τ , then $g(x \mid \theta, \tau)$ is TP_2 in $(x, \theta) \in \mathbb{X} \times \theta$.

(b) If $g(x \mid \theta, \tau)$ is TP_2 in $(x, \theta) \in \mathbb{X} \times \Theta$ for some τ , then $g(x \mid \theta, \tau)$ is log-concave in θ for all x.

Lemma 1. 2^[6] Let $g(x \mid \theta, \tau)$ be as defined in Lemma 1. 1 with RP (θ) property. If $g(x \mid \theta, \tau)$ is TP₂ in $(x,\tau) \in \mathbb{X} \times T$ for each θ , then $g(x \mid \theta, \tau)$ is RR₂ in $(\theta,\tau) \in \Theta \times T$ for each x.

The third lemma, due to Ref. [8, Theorem 3.4], states that the compound Poisson distribution function is log-concave if the underlying distribution possesses a decreasing density function on \mathbb{R}_+ .

Lemma 1.3 Let $\{X_i, i \geqslant 1\}$ be a sequence of i. i. d. nonnegative random variables, and N be a Poisson random variable independent of $\{X_i, i \geqslant 1\}$. If X_1 has a decreasing density function on \mathbb{R}_+ , then the distribution function of $S_N = \sum_{i=1}^N X_i$ is log-concave.

For a distribution function G, denote by G^{k*} the k-fold convolution of G, $k \in \mathbb{N}$, and by G^{0*} the distribution function of a degenerate random variable $X \equiv 0$. If G has a density function g, then denote by g^{k*} the density function of G^{k*} , where $k \in \mathbb{N}$. The next lemma is an immediate consequence of Ref. [8, Theorems 1. C. 11 and 1. C. 12]. Recall that a random variable X or its

distribution is said to be of increasing likelihood ratio (ILR) [resp. decreasing reversed hazard ratio (DRHR), increasing failure rate (IFR)] if X has a log-concave density or mass function [resp. distribution function, survival function].

Lemma 1.4 Let G be a distribution function of a nonnegative random variable X . Then

- (a) $g^{k*}(x)$ is TP_2 in $(k,x) \in \mathbb{N} \times \mathbb{R}$ if X is ILR;
- (b) $G^{k*}(x)$ is TP_2 in $(k,x) \in \mathbb{N}_0 \times \mathbb{R}$ if X is DRHR:
- (c) $G^{k*}(x)$ is TP_2 in $(k,x) \in \mathbb{N}_0 \times \mathbb{R}$ if X is IFR.

2 Two-parameter compound Poisson distributions

 $Ma^{[9]}$ introduced the following two-parameter compound Poisson distribution:

$$Q(x; \theta, \nu, G) = e^{-\theta} \sum_{k=0}^{\infty} \frac{\theta^k}{k!} G^{(\nu+rk)*}(x)$$
 (2)

with two parameters $\theta \geqslant 0$ and ν a nonnegative integer, where r is a given positive integer, and G is a distribution function. Clearly, $Q(x; \theta, \nu, G)$ represents the distribution function of the random sum

$$S_{\nu+rN(\theta)} = \sum_{k=1}^{\nu} X_k + \sum_{k=1}^{rN(\theta)} X_{\nu+k}$$
 (3)

where $\{X_i, i \geq 1\}$ is a sequence of i. i. d. random variables with distribution G, $N(\theta)$ is a Poisson random variable with parameter θ and independent of $\{X_i, i \geq 1\}$.

Theorem 2.1 Let G have a decreasing density function with G(0) = 0. Then

- (a) $Q(x; \theta, \nu, G)$ is log-concave in $x \in \mathbb{R}$ for all integer $\nu \in \mathbb{N}_0$ and $\theta \in \mathbb{R}_+$;
- (b) $Q(x; \theta, \nu, G)$ is log-concave in $\nu \in \mathbb{N}_0$ for all $(x, \theta) \in \mathbb{R} \times \mathbb{R}_+$;
- (c) $Q(x; \theta, \nu, G)$ is log-concave in $\theta \in \mathbb{R}_+$ for all $(x, \nu) \in \mathbb{R} \times \mathbb{N}_0$;
- (d) $Q(x; \theta, \nu, G)$ is TP_2 both in $(x, \nu) \in \mathbb{R} \times \mathbb{N}_0$ and in $(x, \theta) \in \mathbb{R} \times \mathbb{R}_+$.

Proof (a) For each pair (ν, θ) , $Q(\bullet; \theta, \nu, G) = Q(\bullet; 0, \nu, G) * Q(\bullet; \theta, 0, G)$

(4)

where $Q(\bullet; 0, \nu, G) = G^{\nu*}(\bullet)$, and * denotes the convolution operation. Since G has a decreasing density, G is DRHR by the definition, which, by Ref. [8, Corollary 1. B. 63], implies that $Q(\bullet; 0, \nu, G)$ is DRHR. On the other hand, for $\theta > 0$, it follows from (3) that

$$S_{rN(\theta)} = \sum_{k=1}^{r} X_{\nu+k} = \sum_{j=1}^{N(\theta)} \left(\sum_{k=1}^{r} X_{\nu+(j-1)r+k} \right)$$
 ,

where $N(\theta)$ and $\{X_i, i \ge 1\}$ are the same as those in (3). It can be checked that if the density function g of G is decreasing, then

$$g^{r*}(x) = \int_{-\infty}^{\infty} g(x-u)g^{(r-1)*}(u)du$$

is also decreasing in x. Since $\sum_{k=1}^{r} X_{\nu+(j-1)r+k}$, $j \in \mathbb{N}$, are i. i. d. nonnegative and have decreasing density, by Lemma 1. 3, we know that $Q(x;\theta,0,G)$ is DRHR for each $\theta > 0$. It is trivial that Q(x;0,0,G) is DRHR. So $Q(\bullet;\theta,0,G)$ is DRHR for $\theta \in \mathbb{R}_+$. Again, by Ref. [8, Corollary 1. B. 63], it follows from (4) that $Q(\bullet;\theta,\nu,G)$ is also DRHR or, equivalently, $Q(\bullet;\theta,\nu,G)$ is log-concave in $x \in \mathbb{R}$. This proves part (a).

(b) \sim (d) Observe that $Q(\cdot; \theta, \nu, G)$ has RP (θ) and RP (ν). The desired results in parts (b) \sim (d) now follow from Lemma 1. 1 directly. This completes the proof of the theorem.

Theorem 2.2 Suppose that G(0) = 0.

- (a) If G is ILR and $\nu \geqslant 1$, then the density function, $q(x; \theta, \nu, G)$, of $Q(x; \theta, \nu, G)$ is TP_2 in $(x, \theta) \in \mathbb{R} \times \mathbb{R}_+$, RR_2 in $(\theta, \nu) \in \mathbb{R}_+ \times \mathbb{N}$, and is log-concave in $\theta \in \mathbb{R}_+$.
- (b) If G is DRHR, then $Q(x; \theta, \nu, G)$ is TP_2 in $(x, \theta) \in \mathbb{R} \times \mathbb{R}_+$, RR_2 in $(\theta, \nu) \in \mathbb{R}_+ \times \mathbb{N}_0$, and is log-concave in $\theta \in \mathbb{R}_+$.
- (c) If G is IFR, then $\overline{Q}(x; \theta, \nu, G)$ is TP_2 in $(x, \theta) \in \mathbb{R} \times \mathbb{R}_+$, RR_2 in $(\theta, \nu) \in \mathbb{R}_+ \times \mathbb{N}$, and is log-concave in $\theta \in \mathbb{R}_+$.

Proof We give the proof of part (a) only; the proofs of parts (b) and (c) are similar. First, note that when $\nu \ge 1$, the density function $q(x; \theta, \nu, G)$ of $Q(x; \theta, \nu, G)$ exists and is given by

$$q(x; \theta, \nu, G) = e^{-\theta} \sum_{k=0}^{\infty} \frac{\theta^k}{k!} g^{(\nu+rk)*}(x)$$
 (5)

where g is the density function of G. Since $g^{(\nu+rk)*}(x)$ is TP_2 in $(k,x)\in\mathbb{N}_0\times\mathbb{R}$ by part (a) of Lemma 1. 4, and $\theta^k/k!$ is TP_2 in $(\theta,k)\in\mathbb{R}_+\times\mathbb{N}_0$, applying the basic composition formula (cf. Ref. [3:17]) in Eq. (5) yields that $q(x;\theta,\nu,G)$ is TP_2 in $(x,\theta)\in\mathbb{R}\times\mathbb{R}_+$. On the other hand, since $q(x;\theta,\nu,G)$ has $\mathrm{RP}(\theta)$ and $\mathrm{RP}(\nu)$, it follows from Lemmas 1. 1 and 1. 2 that $q(x;\theta,\nu,G)$ is log-concave in $\theta\in\mathbb{R}_+$ for each x, and that $q(x;\theta,\nu,G)$ is RR_2 in $(\theta,\nu)\in\mathbb{R}_+\times\mathbb{N}$. This completes the proof of the theorem.

3 One application

Let $\chi_{n,\theta}^2$ denote the noncentral chi-square distribution with n degrees of freedom and noncentral parameter θ , where $(n,\theta) \in \mathbb{R}^2_+$. We adopt the convention that $\chi_n^2 \equiv \chi_{n,0}^2$, the central chi-square distribution with n degrees of freedom. The density function of χ_n^2 is given by

$$h(x \mid n) = \frac{e^{-x/2} x^{n/2-1}}{2^{n/2} \Gamma(n/2)}, x \in \mathbb{R}_+$$
 (6)

For n=0, $\chi_{0,\theta}^2$ is called the purely eccentric part by Hjort^[10], while $\chi_{0,0}^2$ is the degenerate distribution with all mass at 0, and for $\theta>0$, $\chi_{0,\theta}^2$ puts mass $e^{-\theta/2}$ at 0. Ref. [5, Theorem 3.4] proved that $\chi_{n,\theta}^2$ is DRHR for all $(n,\theta)\in\mathbb{R}^2_+$ by using a more refined technique. They first proved that the density function of the continuous part of $\chi_{0,\theta}^2$ is log-concave, and then proved that $\chi_{0,\theta}^2$ is DRHR. We now present a different, but simple, proof by using Lemma 1.3.

3.1 Special case: $n \in \mathbb{N}_0$

First consider the case $n \in \mathbb{N}_0$, and let $X_{n,\theta} \sim \chi_{n,\theta}^2$. Then, $X_{n,\theta}$ has the following stochastic representation:

$$X_{n,\theta} = \sum_{i=1}^{n} X_i + \sum_{k=1}^{2N(\theta/2)} X_{n+k}$$
 (7)

where $\{X_i, i \geq 1\}$ is a sequence of i. i. d. χ_1^2 -distributed random variable, and $N(\theta/2)$ is Poisson random variable with parameter $\theta/2$, independent of $\{X_i, i \geq 1\}$. Let $H(\cdot | n, \theta)$ denote the distribution function of $\chi_{n,\theta}^2$. From Eq. (6), it follows that the density function of χ_m^2 is

decreasing when $m \in [0,2]$. Applying Theorem 2.1 to Eq. (6), we conclude that

- ① $H(x \mid n, \theta)$ is log-concave in $x \in \mathbb{R}_+$;
- ② $H(x \mid n, \theta)$ is TP_2 in $(x, n) \in \mathbb{R}_+ \times \mathbb{N}_0$ and TP_2 in $(x, \theta) \in \mathbb{R}_+^2$;
- $\textcircled{4} H(x \mid n, \theta)$ is log-concave in $\theta \in \mathbb{R}_+$ for all $(x, n) \in \mathbb{R}_+ \times \mathbb{N}_0$.

3.2 General case: $n \in \mathbb{R}_+$

Theorem 3. 1^[5] $\chi_{n,\theta}^2$ is DRHR for all $(n, \theta) \in \mathbb{R}^2_+$.

Proof First, consider the case $\theta = 0$. Note that χ_n^2 is ILR for $n \ge 2$, and that χ_n^2 has a decreasing density for $n \in (0,2)$ and χ_0^2 is the degenerate distribution with all mass at zero. Then χ_n^2 is DRHR for all $n \in \mathbb{R}_+$.

Next, consider the case $\theta > 0$. Let $X_{n,\theta}$ be a random variable with distribution $\chi^2_{n,\theta}$, and $N(\theta/2)$ be a Poisson random variable with parameter $\theta/2$. For n = 0, it follows from Ref. [10] that

$$X_{0, heta} \stackrel{ ext{d}}{=} \sum_{k=1}^{N(heta/2)} Y_k$$
 ,

where $\stackrel{d}{=}$ means equality in distribution, and $\{Y_k, k \geqslant 1\}$ is a sequence of i. i. d. χ_2^2 -distributed random variables, independent of $N(\theta/2)$. Since the density of χ_2^2 is decreasing, by Lemma 1.3, we get that $\chi_{0,\theta}^2$ is DRHR. For $n \in (0, \infty)$, from Ref. $\lceil 11 \rceil$, we have

$$\chi_{n,\theta}^2 = \chi_n^2 * \chi_{0,\theta}^2 \tag{8}$$

Note that χ_n^2 is DRHR for all n > 0. Applying Ref. [8, Corollary 1. B. 63] in Eq. (8) yields that $\chi_{n,\theta}^2$ is DRHR. This completes the proof.

From Ref. [11], it also follows that $\chi_{n_1+n_2,\theta}^2 = \chi_{n_1,\theta}^2 * \chi_{n_2}^2 \text{ for all } (n_1, n_2, \theta) \in \mathbb{R}^3_+$ (9)

and

$$\chi_{n,\theta_1+\theta_2}^2 = \chi_{n,\theta_1}^2 * \chi_{0,\theta_2}^2 \text{ for all } (n,\theta_1,\theta_2) \in \mathbb{R}^3_+$$

$$\tag{10}$$

Let $H(\cdot \mid n, \theta)$ denote the distribution function of $\chi^2_{n,\theta}$. Then (9) and (10) state that $H(\cdot \mid n, \theta)$ has

both RP (n) and RP (θ) . Based on these observations, we conclude from Lemmas 1. 1 and 1. 2 and Theorem 3. 1 that (see Ref. [5, Theorem 3.9])

- ① $H(x \mid n, \theta)$ is TP_2 in $(x, n) \in \mathbb{R}^2_+$ and TP_2 in $(x, \theta) \in \mathbb{R}^2_+$;
- ② $H(x \mid n, \theta)$ is log-concave in $n \in \mathbb{R}_+$ for all $(x, \theta) \in \mathbb{R}_+^2$;

The main results in this short note can be used to establish the log-concave properties of F and beta distributions; interested readers could view Ref. [5].

References

- [1] BAGNOLI M, BERGSTROM T. Log-concave probability and its applications[J]. Economic Theory, 2005, 26: 445-469.
- [2] EATON M L. Lectures on Topics in Probability Inequalities (CWI Tract 35) [M]. Amsterdam: Centrum voor Wiskunde en Informatica/ Stichting Mathematisch Centrum, 1987.
- [3] KARLIN S. Total Positivity [M]. Stanford, CA:

- Stanford University Press, 1968.
- [4] FINNER H, ROTERS M. Distribution functions and log-concavity [J]. Communications in Statistics: Theory and Methods, 1993, 22: 2381-2396.
- [5] FINNER H, ROTERS M. Log-concavity and inequalities for chi-square, F and beta distributions with applications in multiple comparisons[J]. Statistica Sinica, 1997, 7: 771-787.
- [6] DAS GUPTA S, SARKAR S K. On TP₂ and log-concavity [C]// Inequalities in Statistics and Probability. Lecture Notes: IMS Monograph Series, Vol. 5. Beachwood, OH: Institute of Mathematical Statistics, 1984: 54-58.
- [7] CAI J, WILLMOT G E. Monotonicity and aging properties of random sums[J]. Statistics & Probability Letters, 2005, 73: 381-392.
- [8] SHAKED M, SHANTHIKUMAR J G. Stochastic Orders[M]. New York: Springer, 2007.
- [9] MA C. ISO* property of two-parameter compound Poisson distributions with applications[J]. Journal of Multivariate Analysis, 2000, 75: 279-294.
- [10] HJORT N L. The eccentric part of the noncentral chi-square[J]. American Statistician, 1988, 42: 130-132.
- [11] SIEGEL A F. The noncentral chi-square distribution with zero degrees of freedom and testing for uniformity [J]. Biometrika, 1979, 66; 381-386.