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W inter-gain  times are eneralized Erlang(n)
U =u—ct+ 2. Xi21 =0 1 : : .

i=1

where « (™>0) is the initial capital and ¢ (> 0) is the
expense rate. The revenue number process {N(z),
t =0} , defined by N(#) =max{n:T,+T,+-+
T, <t} , denoting the number of revenues up to
timet , is a renewal process, where T; fori = 2
denotes the inter-income time between the (i —1) th
and the i th income arrival and T'; is the time until
the first income arrival. {X,,n =1} (representing
the individual revenue amounts and independent of
{N(),t =0} ) is a sequence of independent and
identically distributed strictly positive random
variables with a common distribution function
P(x) that satisfies P(0) = 0 and has a positive
mean # . We assume that P(x) is differentiable
and p (x) =P’ (z) is the individual revenue amount
probability density function. Further assume
cE(T;) <p , providing a positive safety loading.

Recently, dual risk models have drawn lots of
attention in ruin theory. For the compound
Poisson dual risk model, Avanzi et al.'" have
studied the expected total discounted dividends
until ruin with barrier and Albrecher et al. '*' have
considered the tax payment problem when the
surplus is at a running maximum. And for
expected total discounted dividends before ruin for
exponentially distributed profits, see also Ref.
[3]. Besides, Landriault and Sendova*' generalized
the Sparre-Andersen dual risk model by adding a
budget-restriction strategy. Ji and Zhang"' have
shown the roots to the Lundberg’s equation of the
Sparre-Andersen dual risk model are distinct,
Rodriguez et al. ') derived an explicit form of the
Laplace transform of the ruin time under the
Sparre-Andersen dual risk model. Moreover, Yang
and Sendova'” derived an explicit expression for
the Laplace transform of the ruin time, which
involves multiple roots and also obtains the
expected discounted dividends for the threshold-
dividend strategy in the Sparre-Andersen dual risk
model. In this paper, we study a diffusion

perturbed Sparre-Andersen dual risk model, whose

distributed. We

equation with certain boundary for the ILaplace

derive an integro-differential
transform of the ruin time and then we obtain its
explicit expression. In particular, we derive an
explicit form of the Laplace transform of the time
to ruin when jump sizes are exponential. Finally,
we consider a threshold dividend payment strategy
in the model, and derive an integro-differential
equation with certain boundary for the expected
discounted dividends.

In this paper, we consider the diffusion
perturbed Sparre-Anderson dual risk model, which

can be described as:
N@)

U =u—ct+ 2. X, +eB@)t =0 (2)

i1
where ¢ > 0 represents the constant expense rate,
NG

S) = 2 X, is the aggregate revenue from time O
i=1

up to time ¢ , {B(t),t == 0} is a standard Wiener
process (that is independent of S(z) ) ande =0 is
the dispersion parameter. 2 % < Lﬁ is the

j
relative security loading. The time of ruin is
defined as 7: = inf{t = 0. UG) = 0}. And
probability of ruin can be defined as

P(u) =Pz < oo |UW) =u) =
E[I(z <oo) |UW) =u](u>0),

in which I (A) is the indicator function of an event
A . When the initial
transform of the ruin time can be defined as:

Jo(u) =E[e™I(r <o) | U =u] (u>0).

The rest of the paper is organized as follows.

j=1

capital is u , Laplace

In Section 1, we derive an integro-differential
equation with certain boundary for the Laplace
transform of the ruin time. In Section 2. we solve
the integro-differential equation deduced in Section
1 and obtain an explicit form of Laplace transform
of the ruin time, In Section 3, we obtain an
integro-differential equation with certain boundary
for the expected discounted dividends when the

threshold dividend strategy is discussed.
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1 An integro-differential equation for
Laplace transform of the ruin time

In this section, we focus on the Laplace
transform of the ruin time of the risk process (2).
A generalized Erlang (n) random variable can be
expressed as an independent sum of n exponential
random variables, i. e. , Z is a generalized Erlang ()
random variable, Z can be denoted as

YA éVV1 +W2 + "‘W,I .
where W, (G =1, 2, ++, n) are independent
exponential random variables with parameters
A:G=1, 2,

integro-differential equation with certain boundary

*=, n). Then we will derive an

for the Laplace transform of the ruin time.
Theorem 1. 1  When u > 0, the Laplace

transform of the time to ruin ¢, (u) satisfies

x S c o ot o
{E<I+ZI+Z£727/L ﬁ)}gbg(u)—

J:gbg(u—O—y)p(y)dy (3

and boundary conditions

£ B c o o &
{E<I+II+I£77A:§)}¢S(LO

k — 011’27"'77’171

4)
o] o* . .
where I , = and W denote the identity operator,
"

ou
differential

operator and  second-difference
operator, respectively.

Proof We consider the first time interval [0,
T.]. Since T, follows a generalized Erlang (n)
distribution, we can consider n states of the risk
process by decomposing the inter-income time into
exponential random

the independent sum of

variables with parameters A;,A;,°**,4, » L. e. »
T1 :W1 +W2 + +W71-

Suppose that there are n — 1 incomes that arrive at

S, :EW]- ,i =1,2,**, n — 1, but every income
i=1

n
amount is zero. Let T{’ = ZW_,-,Z' =1,2,",
=i

n — 1. Define
N, (t) =max{n: T +T,+-+T, <t}
(5

)
u=0 b
)

thus {N,;(z), t = 0} becomes a delayed update
process and N, (¢) is the same process as N () .
Now we introduce some notations in order to prove

this theorem. Denote by
N; @

U () =u—ct+ 2, X, +6B(), t =0;

i=1
and

o (w) =E[e ™ [(r; <<oo) | U, (0) =u](u > 0)
fori =1,2,->*sn ,» where r; is the time of ruin
which defined as z; : =inf{r —=0. U, () =0} . Itis
clear that ¢s(u) can be obtained from ¢5,;(u) by
lettingi =1. Whenj =1,+-,n — 1, by considering

whether or not W; is greater than the infinitesimal
time At(<{ —) and using the total probability
c

theorem, we have
o, (w) =PW; > At)e ™ »
E [¢s.,(u—cAt+oBA)) ]+
PW,; <At)e ™' »
El¢sj(u—cAt+0oBA)) ]4+0At)  (6)
For
PW; > At)e ™ =e 404 =
1—Q; +8At +0(A8), L N
PW, <Ape™ =1 —el*)e ™ =
XAt +o(A) J
Taylor expansion yields
¢ (u—cAt +0oB(A1)) =

2
2 /e%g[lé’) (u)[—cAt+oBA) JF +
k—o R:

B%Sbg-?; ([ —cht+oBWAOT
where u” is during the time interval from u —
cAt+ 6B(Ar) to u. In addition, E[B(A:)] =
E[B*(At) ]=0and E[ B*(At) ]=V[B(At) ]=At ,
we have

E [¢5,j(u _CA t +OB(AT)):| :sl)aéj(u) -
2
s, AL+ %(,b/g,j GOAL+0(A)  (8)

Thus,
9115,]‘ (Ll) :I:l* (A, +8)Af:| .

(o () — ey, G AL+ %¢’,§,i (A]+

/lef . [¢Jj+1 (u) 7C¢):§‘.j+l (w)At +
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2
%gl/fy,jﬂ(u)At] Lot )

After sorting, dividing two sides of the equation by
At and letting At — 0, we have

¢3]+1(u)—(1+ )(,bo,(u)—F
$¢g,j () — 2¢/§,j () =
o ot oF
{(1+)I+—2Aa Ma](u) (10)

When j =n , if W, <C At, then there is a revenue
during the time interval [0,Az]. Hence,
Gon (W) =P (W, > At)e ™ «
E [¢s.,(u—cAt +oBA)) ]+
PW, < Ar)e ™
El¢gs (u—cAt +oB(A) + X)) ]+ o0(Ar)
an
Again, we expand ¢;., (u—cAt+cB(At)) and
s (u —cAt +0B(At) + X) in a Taylor’s series
u » u+ X respectively, to the term of ¢s., s ¢’ .,

tOge‘[,
o o
[:(14—”)[—0—”&{2;{”8 :Igbgn(u)—

J:sba,l(uﬁty)p(y)dy 12
Applying Eq. (10), we have
k—1 62 82
{H[(H)lﬂ—%aﬁ“%(u), \/
k:27“'971

(13
Because ¢;.,(0) = 1, we arrive at the boundary
conditions.
According to ¢s(u) = ¢s, 1 (u) together with
Egs. (12) and (13), we get

{’ﬁl((le)I—i—Aa;:;Z )}(pg(u):

JO'¢8<u+y>p<y>dy.

We arrive at Eq. (3).

In particular, the ruin probability for the
process {U(¢),t =0} , denoted ¢(u) , is obtained
from ¢; (u) by letting § =0.

Theorem 1. 2 When u > 0, ¢(u) is the

solution of the following integro-differential
equation:
. c o o oF
L+ 5 =5 o) oo =
J:</J(u+y)p(y)dy (14)
and with boundary conditions
ot of - l
RIS ] =1
k=0,1,2,+sn—1 J
(15

2 The explicit expression of the Laplace
transform of the ruin time

In order to solve Eq. (3), we first derive the
Lundberg’ Then,

Theorem we prove that the generalized Lundberg’s

s equation, applying Rouch
equation has n roots in the right half of the
complex plane and provide the explicit expression
of the Laplace transform of the time to ruin.

Let (2,7

probability space and {rk}kzo be a series of stop

Lemma 2. 1 7y P ) be the complete

times satisfying the condition z, = 0. If

{ty —7,1)i-; are independent and identically
distributed (i. 1. d), so are {B(z,) —B(z, 1) }7_1.
The Lemma has been proved by Ref. [8].

k
LetM,=0 ande:E T;fork € N , denote

=1
the occurrence time of the £th income event. Let

U(O) — u and U/,(/% 6 N+) ’
instantaneous surplus after the £th income event.

We have

denote the

3
U, =UM,) =u —cM, + > X, +6B(M,) =

=1

u—CET +GZ[B<M ) —BM, D]+

j=1 =
k
dx —u—cET +02 B(T, >+2X
=1 i=1
(16)
Hence, {U,};=c is a discrete time Markov chain
with stationary and independent increments. Also,

for all & > 0, the random variable sequence

oM, —sU,

{e * jren, has  stationary  independent

increments.
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Lemma 2. 2 If R(¢) is a stochastic process
with stationary and independent increments, the
sufficient and necessary condition for {e ®® .z =0}
being a martingale is: for allz = 0,

Ele®? | R(0) = u]=e™".

For further detail on martingale, see Ref. [9].
Assume  that the generalized  Erlang(n)
distribution with parameters,,4;,**,4, > 0 with
probability density function f(z) , the Laplace

form of f(z) can be expressed as

n

7 j— - —st £ . A7
f(»)-J()e f(zt)dz‘—j]:T]AjJrS

,Re(s) =0

an

where Re(s) is the real part of s. Hence, to find

s € C make {e™ "}, is a martingale, we
should have fors ,

E[e 0T, T 4aB(T ) ] — ] (18)

which means that

Jeﬁﬁf“’ﬁ#]"(z‘)dt . Jef“'yp(y)dy =1.

Thus we get
sto”

2

which is the generalized Lundberg’s equation for

~

f(@—sc—

)b =1 (19)

the generalized Erlang () dual risk process, in

which 7(s), 5 (s) are the Laplace form of f(s) and
p(s) , respectively.

Because a sequence of i. 1. d random vectors T,
have common generalized Erlang(n) distribution,
according to (17), the generalized Lundberg

equation can be written as

n 6 c (72 2 ~
HDJF/‘T._/TS_ZKS J=p(s) 20
=1 j / !

In order to simplify Eq. (20), letting

T 0 ¢ o,
r(é)_g[l_’_&- /1,-5 2)\}-5 1,
Eq. (20) becomes
r(s)=p(s) 2D

Now we obtained the generalized Lundberg
equation and then we give a lemma which indicated
that Eq. (20) has exactly n roots in the right part
of the complex plane.

Lemma 2. 3 When & > 0, the generalized

Lundberg Eq. (20) has exactly n roots p:(8),
02(8)5+s p,(0) in the right part of the complex
plane, forj =1,2,--,n, Res(p;) > 0.

For the proof please refer to Ref. [8].

To obtain the explicit expression of the
Laplace transform of the ruin time, we need to
refer to the lemma mentioned in Ref. [7].

Lemma 2. 4 Suppose that h(x) is an
arbitrary polynomial of degree 2n € N , namely,

hix)=h,+hx++hyzx™,
hos hys ***s hy, € €, h, 0.
Define

h<2>f(”) =hof ) +h,f (w) + -+
ou

hoof % (w), f € ¢ (—o0, +o0),
then for any: € N,§ € R,
o 16y — bu N h<j>(s) aj o0
h(au>(ue ) =¢ ; i 8uf(u ).

Then, we formally give the explicit expression

of the Laplace transform of the ruin time.
Theorem 2. 1
Lundberg Eq. (20) has m different roots in the

Suppose the generalized

right part of the complex plane: p;(6),02,(5) s+,
o (&), that are roots with multiplicityv; (i =1,2,
=+,m) respectively, For any polynomial of degree
vi — 1 € N. n, (w) =rio + riqu + = +
riwau’ (i, 7 0), the explicit expression of
Eq. (3) can be written as

m i

v.—1
Gs ) = >0 (D0 r,ut) e o (22)

j=1 k=0

Proof First of all, we prove that if p € C,
Res(p) > 0 is a root with multiplicity v of the
generalized Lundberg Eq. (20), then for any
polynomial 7, (u) of degreev — 1, x, (u) ¢ " (u) =
w,(u)e ™, is a solution of Eq. (3).

Let

hio =11 @, +3+cx—%12),
j=1
using LLemma 2. 4, we have

2

? o o OF . -
m(’\~"+8“au_zam} ¢ (u) =

h(2)( i)- zh (2) wremr =
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v—1 2n () i

h(—p) o .
Doriet e ) “‘Tj“fl’ ~(u').
i=0 =0 J: ou’

Substituting the above back into Eq.
(20) yields

h(—s)—(]]Ax)ps) =0 (23)
j=1

Since p is a root of Eq. (20) with multiplicity
v, wWe may write
h(—)—([IADpG) =G —p) () 2o

=1

where 7(s) is an analytical function with 7(p) 7 0.
Then fOrj :1727"'9U -
of (24) yields

1, differentiation j times

DR =) = (114,) 57 () =
j=1

DjAFES

k=0

(s — )t “(s)} =0,

s=p

i. €, »
RO (—p) =17 (114,)p9 (o),
j=1 (25)

j:0719'°°
In addition, fori <Cv—1<n , wheni <j <<
i
d J
i hP (—p) 8J
=0 J!

n : —1)ipW J
<UAI) Z M%(ul):

H/\ )Z( )(—w D (pout,

j=0

0 —1

(u') =0. Hence, we have

(’)—

Thus’

S a ooy —

25 ) (wem =
n v—1 i .

(ITa,) 2rem 2] (Z) (—DIpD (pru
j=1 i=0

j=0 \J
(26)

Since

oo

(— 1759 (p) :JO

we have

yie®p(y)dy,

v—1

n v—1
E?"Jl(Q) (u’lefp”):(]_[/lj) Erief"” .
ou j=1 i=0

=0

Jw Ty p(y)dy =

HA )J ¢ (u+y)p(y)dy,

n 2
[H(Aj +5+c§t—22)} ¢ (u) =

(Ha )J ¢ (u+y)dP(y),
so¢g” (u)isa solutlon of Eq. (3). Then, ¢s (w) has

the solution of the following form:

e —2 (Er, ) et I (6 =0),
where p; is a root of Eq. (20) with multiplicity v; in
the right part of the complex plane.

When u — <o, we have ¢ (u) >0, hence r =
0. We may satisfy Eq. (27) as

gl}g(u)—Z(Zr],u e v 27
That is the result of thls section.

The following example provides the Laplace
transform of the ruin time for some special cases.

Example 2. 1  Suppose a Sparre-Anderson

dual model perturbed by diffusion with
exponentially distributed revenue with parameter
A =1, while the inter-innovation times are i. i. d
generalized Erlang(2) random variables with
parametersA; =4, A, =9. Now, let the expense
rate ¢ = 1. Then the generalized Lundberg’s
equation is

36

s+ 1

When 6 = 0,0.2 and 6> = 0. 25, 0.5, the

2 2
<4+a—s—%s2><9+a—s—%52>:

generalized Lundberg’s equation has 2 positive real
part roots (p1s p2) and its corresponding
coefficients are r;,, 750, respectively, We
calculate the values of p15 p25 p1.0 and p2.o for 6 =0,
0.2 and 6* =0. 25, 0.5. The results are given in

Tab. 1.
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Tab. 1 Positive real part roots and its corresponding coefficients

0 =0,6" =0.25

620902:0.5

6 =0.1,6"=0.25 6 =0.1,6>=0.5

01502 1. 7154, 5. 7581

1.2664, —0. 2664

r1.0972.0

1. 4002, 4. 6492

1.2316, —0. 2316

1. 9290, 5. 8361 1. 5809, 4. 7064

1. 2850, —0. 2850 1. 2495, —0.2495

Fig. 1 displays the graph of ¢s (u) for6=0,0. 2
and 62 =0. 25,0. 5. It’s not hard to find out that if
0 is fixed, ¢5 () increases aso” increases and if 6% is

fixed, ¢5 (u) decreases as ¢ increases.

1 . . .
0sl \**\:\/5:0.2,02:0.25
oslh N 0=0,07=0.25
% : TN 0=0.2,07=0.5
0.4 60,005
0.2} :
% 02 04 06 08 10 12 14 16 18 20

u

Fig. 1 Graphics of y; (u). =0, 0.2 and 6> =0, 25,0.5

3 Expected discounted dividends under a
model with a threshold strategy

In this section, we consider a diffusion
perturbed Sparre-Anderson dual risk model with
generalized  Erlang(n) inter-event times’
distribution and a threshold strategy 6. When the
surplus reaches a threshold 4, dividends at a
constant rate @ > 0. An expense rate without
dividend payments, ¢, is assumed to satisfy the
security loading condition of model (2) with ¢
Thus, the
dynamics of the surplus process {U, (¢),t =0} is
dUu, (1) =

—cidt +dS) +0dB(), 0 <<U, () < b;

—codt +dS ) +6dB(), U, (1) >b.

Define the time of ruinz, : =inf{r =>0.U, (1) =

replaced by c¢;. Let ¢; = a + ci.

0} . Let D(2) denote the total dividend payments
from time O to time ¢ . Assume d == 0 is an interest
force for the calculation of the present value of
dividends, then the present value of total dividends

until ruin is defined as
D,,=(;—c, )J% eI (U, (t) > b)dt.
0

The expected total dividends paid until ruin are
V(us;b) =E[D,, | U, (0) =u].

Write V(u3;b) = Vi (us3b) for U,(t) << b and
Vui;b) =V, (us;b) for Ult) = b. We derive
integro-differential equations for V,(u;b) and
V,(u;b) in the following part.

Firstly, we give the definition of stopping
time and strong Markov property (for further
time and

detail on strong Markov

stopping
property, see Ref. [10].

Definition 3.1 Let (2,%,P ) be a probability
space, and let {7, },~, be a o-filtration. A non-
negative random variable T is called a stopping
time (with respect to the o-filtration % ) if
{(T<t}y € {7} forallt =0.

Definition 3. 2 Suppose the Markov process
{X(t),t>=0} and state space S={0,1,2,+} , 0<C
01 << pr <<+ << p,(n =1) are stopping times with
respect to X (z) . The process {X(z),t = 0} with
respect to {p; s0 <<k <<n}(n = 1) satisfies strong
Markov property, if

P{X o, +1t)=j | X(0) =iy,
Xop) =ipss X(,) =1,} =
P{X o, +1t)=j | X(,)=i,}
forallj,i, € S(O<<E<n).

Strong Markov property has a variety of
equivalent forms, one of which is
(E[f(X) | Z]=E[f(X) | X,JO<s <.
This will be used in the proof of Theorem 3. 1.

Theorem 3. 1
integro-differential equations.

When 0 <<u <b ,

n a
[H (A +ote =

j=1

V(u;b) satisfies the following

o? o
Zauzﬂvl(u;b)—
n b—u
(114,) UO Vi G+ y350)dP (y)+
j=1

| vatut ysm2dp o] (28)
Whenwu >0,

[H (%, +a+c2;(§§;” '

j=1
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[w(u;b) e g“} _

n

()] [Vm +ysb) — & 3“} dP(y)
=1

29
and boundary conditions
V.(0;6) =0,
Vib;0) =V, (b +30),

. C2 —C1
Elsz(u;b): s
o' Vy(usb) B
ou' u=b+
(2)i8ivl(g;b) e Cl(_é)'
Cy ou' u=b 0 Cs
Proof Similar to the proof of Theorem 1. 1,

let S;, = EWj , in which W, are assumed
j=i

independent exponential random variables with

parametersA; . If T, éSi and T éSl(i =2),

{N,;(#), t =0} (see Eq. (5)) becomes a delayed

renewal process, and fori =1,2,+*, n , we define
U.., (¢) as follows
dU,., (1) =
—cyde +dS; @) +0dB@), 0<<U,, (1) < b;
—codt +dS; (t) +6dB(), U, (1) >0

N; (0

where S; (z) = E X;. Fori =1,2,+s n, we
=1

denote by
ViiCusb) =E[D,, | U;,(0) =ul],u <b;
Vio(usb) =E[D,, | U, ,(0)=ul, ub.
It is clear that V;(u;b) can be obtained from
V..j(us;b) by letting i =1, wherej =1,2.
Leth,=u—c,t+oB, » we havedh, =—c,;dt +
6dB(2) and (dh,)? =c%dt, .
Forj=1,sn—1and0<u<bh , letc, t >0
be such that ¢ <<« <C 6. Considering W; , define
o/ =T, AN\W;and T, =inf{s >0:h, & (6D} Nt.
It is clear that P(z/ << o0) =1,Vs € (0,7/).
According to the strong Markov property, we have

V. (usb) =E[D,, |U;,(0) =u]l=E{E[D,, | %] |U;,(0) =u} =
E{E[e™ Dy v | U (@D U (0) =u) =
ELIW, > eV, (U, ,(T);0) | U, (0) =ul+
ELIW,; <<0)ew; Vi (Ui (Tiv 236D | U (0 =u e =K, (1) + K5 (1) (30)

By Ito integral formula, we have
de.l(hT; ;()) —
2
l:* C1V;$1(h'1“/ 50) +%V/]/1(h11 ,b)} dT +
oV (e s6)dB(T)) 40 (dT)).

Changing the above equation to the form of

integral, we obtain
T,

Vj.l(hT; ;b) :Vj,l(u;b) _Clj‘ V;,l (hT; ;b)dT; +
0

1 T,
*sz j,l(h]‘ ;b)dT; +
2 0o ‘

T
GJ Vilheo s6)dB(T) +o(To).
0
For imP (T, =¢t)=1, imP (T, <t)=0, a.s. and
t—>0 t—>0

t—=>0,e™ =1—2Ar+o0().
Dividing the two sides of Eq. (30) by ¢ and
letting £ — 0, we first deal with K, (z) .
Ki()=PW; >1) -

E[e™V, U, (T)3:b) | U;, (0) =ul=
ef"ffE[efsT‘/ j,l(U_/,/,(T‘,);b) ‘ U_j,[,(o) :u].
Calculating K, (¢) by Ito integral formula,

we have
i K](t)_Vj_](u;b) _i 82Vj-,1(u;/7)_
e t T2 ou’

aV]',1 (u ,[’1)

(Aj +3)Vj,1(u;b) — (1
ou

3D

Now we will deal with K;(z) in the same way

as K, (1),
Ko =2, B[V, 0w —es +aB) -
ICT =) | U, (0) —ulds +
J;Aj e W ELe TV gy U (T3 b)

I(T(\ < S) ‘ U]',/,(O) :u]ds.
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By Ito integral formula, we have forj =1,---,
n—1
. K@)
lim

t—>0
Using Eqgs. (20)~(32), we know
an,l (u ;])) o
ou

:/1_,' Vivl.l(u;b) (32)

(8+A]) Vj,l(u;b) +Cl
i aZVj,l(u ;b)
2 ou*

I. €. » forj :17'"971 —1
Viga(usb) =

‘*AjVZ+L1(u;b) =0.

a 2 82

8+“é**%a7+h

u u " l

- “ ViiGusb)  (33)
J
Hence
Vk,l(u;b):

o o o°
O T g TR iy,
j=1 Aj

k=2,"n

(34
When j =n , by the same approach we have
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o o o
o+, N
0+ )+“au 2 ou’

/1” V,,,](Lt;b)_

b—u
jo Vitu—+y;0)p(y)dy —

J Volu—+yvy;0)p(y)dy =0.

b—u
Hence
82
ou’

9
ou
2

J

o
2

n (6+A])+C1

Vl(u;b) -

j=1

[" Vit ysbrp Gy
| Vit ysn)pody =o.

We can derive from Eq. (28) for V,(u;b) on
0<<u<b.

Now we turn to the caseu >0 . Forj=1,---,
n — 1, considering W; , let ¢, ¢ > 0 be satisfied
such that b +¢<Zu . Definer! =T AW, and T, =
inf{s > 0:h, & (G, &)} At. Clearly P(z/ <{o0o)=
1.U;, () >b,¥s € (0, ¢/),.

Forj=1,,n—1,

Vj,z(u;b) :E I:I(W] > t)(aT‘, + ef‘w/ j2 (Uj,/,(T;);[))) | Uj,/,(o) :u] +
ID [I(Wj < l‘/)(O(T(Wj +€78T“VJ j}1-2(Uj\l./1(ij);[7)) ‘ Uj,/,(O) :u] : :Ll(f) +Lg([) (35)

For lim P(T, =¢) =1, lim P(T, <t) =0,

t—>0 =0

a. s. » using the Ito formula we have come to

Ll(l‘) *V,’,z(u;b) 7& 82V/,2(u;b) .

fim . 2 o
oV (usb)
cr ST G OV (ush) +as
ou
and
L)
lim Ztt =2, Vi Cush) (36)

i.e, forj =1,2,n—1,

V,'vl,z(u;b)*g —
o o o
e T e Y (V) Cs) —%)
Aj
(37
Hence

Vk,z(u;b)*%:
o o' oF
0ty T el T (vm;w—%),
j=1 Aj
k*Zv' 9n_1
(38)
Forj =n , we have
a 2 82
<3+A,,>+c2a—u—%au2
a
Y (V,,,g(u;b)*g)—

j:m(u oysh) —gjdmy).

Therefore
o 1 ,0%],
DI(A”L%L”au 2° aﬁ”

[Vzu;b)”“} =
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%49 %

SIEBIN [Vz(u +yib) — ;ﬂ dP(y)
=1

(39
forallu >10.
Next, we show the boundary conditions.
Clearly V,(03;6) =0 and for all y , we have
lim V,(u;b) =lim V,(u + y;b).

Plugging the equation into Eq. (29), we arrive
cy—cy

0
Now we borrow the idea from Ref. [ 11 ],

EltVz(Oo;b> —

define a new process
—(er+e)dt +dSG@) +«dN. (1)
O<U(_/,([)<b;
dU(,/,(t) A
\ (cy +c)dr +dS ) +¢dN. (1),
U(_/,(Z) >I);

where N, (z) is a Poisson process with parameter

2

c o
Ao s A, = andc,=—
2 ¢

¢

o

. It is easy to prove that the

process {(N,(t) —c.t,t = 0} converges weakly to
{cB(t),t = 0} , therefore, the surplus {U.. ,(2),
t = 0} converges weakly to {U (), t = 0}.
According to Ref. [ 7, Theorem 6. 1], we can

obtain the boundary conditions.
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