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Abstract: A class of anticipated time-dependent backward stochastic evolution equation in a
Hilbert space was discussed. The existence and uniqueness of the evolution solution was proved.
As an application, the evolution solution for a class of anticipated backward stochastic partial
differential equations was derived. Some well-known results were generalized and extended.
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N *dY(t):f(t3 Y(Zf)y Z(f),Y(t+/l(t))1 L

U LU 2 +oONd —ZWOdW (@), ¢ € [0, T];

Since Pardoux and Peng''' established the Y@ =&), Zt) =9, t € [T, T—I—M]J

theory of nonlinear backward stochastic differential (D
equations (BSDEs), many interesting generalized where 2 (+): [0, T]—R "\{0} andv(+): [0, T]
forms have been introduced. Among them, Peng — R "\{0} are continuous functions satisfying that
and Yang' considered a kind of new BSDEs, called (al) there exists a constant M = 0 such that
anticipated BSDEs, with the following form: for eacht € [0,T] ,
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)< T+M, t+v@) <T+M;
(a2) there exists a constant 0 <C L. < 1 such
that for each ¢t € [0,T] and each nonnegative

integrable function g (+) ,

T T+M
J g(s—i—,u(s))dséLJ g(s)ds,

2

T TM
J g (s +vls))ds éLJ g (s)ds.

:

In Eq. (1), the generator f contains not only
the values of solutions of the present but also the
future. Peng and Yang'® proved the existence and
uniqueness of the solutions under Lipschitz
they gave a duality

differential

conditions. Furthermore,

relation between stochastic delay
equations and anticipated BSDEs, which is a useful
tool in the analysis of stochastic optimal control
problems, see e. g. Refs. [3-4]. The above works
on BSDEs and anticipated BSDEs have been in the
framework of finite dimension.

On the other hand, Hu and Peng" introduced
a kind of backward stochastic evolution equations
(BSEEs) in a Hilbert space H with the following
form:
dY(t) = [AY() +
G, YD, Y ]d—Z@)dW ), t € [0, T ¢
Y(T) = ¢ J

(2)

where A:D(A) C H — H is a linear operator
which generates a C,-semigroup {S(z)}c,<r on
H . They proved the existence and uniqueness of
the mild solution for Eq. (2). Since then, Dauer et
al. t*] have
controllability for the system (2) with a kind of
Mahmudov  and
McKibben'™ proved the existence and uniqueness
of the mild solution to Eq. (2) and obtained a

examined the approximate

non-Lipschitz  coefficients.

stochastic maximum principle for the optimal
control of stochastic systems governed by BSEE
(2). In addition, Al-Hussein"® considered a class
of time-dependent BSEE in a Hilbert space H of
the following form:
—dY () =[AWY () + l
fGa. Y@, Z)]dt —Z(H)dW ()t € [0, T ;¢
Y(@)=¢

3

where A(t), t = 0, are unbounded operators
which generate a evolution operator
U(t,r), 0<<r <t << T . The author proved the

existence and uniqueness of the evolution solution

strong

of Eq. (3) with non-Lipschitz coefficients.

To our best knowledge, there have been no
works reported on anticipated BSEEs. Originally,
we wanted to prove the existence and uniqueness of

the evolution solution for the following anticipated

BSEE.

—dY () = [AWOY @) +

@YD, ZWO.Ya~+p@)) . Z&+ov))) ]d L
Z(H)dW (),

YO=¢ew, Zw =y, € [T, T+M] J

4D
Due to technical difficulty, we can not as yet solve
the above general form. The difficulty lies in the
existence part. We can not define an efficient
Picard iteration. We will try our best to solve this
problem in our further study.

Motivated by the aforementioned works,
being left with nothing better than the second
choice, the present paper deals with a class of
anticipated BSEEs in a Hilbert space H with the

following form:

—dY () =[AWY () +

fa Y@, ZW) Y4 p())) ]de — 1
ZdW() .t € [0, TT; i
Y@) =&, Z) =y, t € [T, T+M]J

(5
where z(+): [0, T] — R "\{0} is a continuous
function satisfying the assumptions (al) and (a2).

As the first

fundamental step, we prove the existence and

step, which is also the
uniqueness of the evolution solutions to Eq. (5)
with the coefficient satisfying Lipschitz conditions.
Of course, our results could be extended to the
case of the coefficient satisfying some non-
Lipschitz conditions as appeared in Refs. [6-7]. We
expect to do more research works on anticipated
BSEE (4). Based on our obtained results, the
existence and uniqueness of the evolution solution

for a class of anticipated backward stochastic
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partial differential equation is derived.

1 Preliminaries

Let T > 0 be fixed throughout this paper.
Assume that K,H are two separable Hilbert
spaces with inner product (<, *)x and (e, *)py
respectively. We denote their norms by || « [/«
and || « || ;. In case without confusion, we just
use (+, +) for the inner product and || « || for the
Let (2,7,
probability space. Let {e;};=; be an orthonormal

basis of K , {(W(): ¢t € [0,T]} be a cylindrical

K-valued Brownian motion, which can be written

norm, P ) be a complete filtered

formally as the infinite sum W () = E w; (t)e;

i=1
where {w;(z)}{Z, are mutually independent one-
dimensional standard Brownian motions. We
assume that the filtration is generated by the
cylindrical Brownian motion W(«) and augmented,
that is
F=c{W(s);s <t} VN0t <T,

where Vis the class of P -null sets. In the sequel,
let L*(K,H) denote the set of Hilbert-Schmidt
operators from K to H. For more details, one can
see Ref. [5] and the references therein.

In what follows, we need the following facts
on evolution operator defined on a separable
Hilbert space H , which appeared in Refs. [9-10].
Let {A(t)}yc,<r be a family of

closed linear operators satisfying the so-called

Lemma 1. 1

Acquistapace-Terreni conditions (ATC), that is
there exist constants Lo => 0, aqs@as " stz sY1:Y2»
Y Wlth0<)’z <(15 <29 i:1729"'9k SUCh that
TAGOA—AG) AW T—AG D || <
k
Lo Gt—s)m [ A7t

i=1
forsst ER , A € Sy\{0} , where
p(A()) DSy =

(AeC: lat 1<0) U0}, 0€ (Zon)
and there exists a constant L, == 0 such that

L
| QA—AG)H ] < —

W,AG Sy.

Then, there exists a unique evolution operator
{(U(t,5),0<s <<t <T) satisfying that

WD UG, )HUCGs,r) =Ut,r),

(D UGty =1forr <s<{t,

(iiD) (z,s) = U(z,s) is continuous forz > s,

(1iv) E;fi](t »s) =A@U(t,s) and

AW UG | < LoG—s)"

for0<<t—s <1, k=0,1.

Remark 1.1  Generally, {U(z,5),0 <{s <t <<
T} is called an evolution operator or a two-parameters
semigroup, and the family {A(#) }o<<r is called the
infinitesimal operator of {U(£,5),0<{s <t << T} .

Remark 1.2 IfA(z), t =0, is a second order
differential operator A, i.e. » A(z) =A fort = 0.
Then, A generates a Co-semigroup {e, t =0} ,
which is discussed in Refs. [ 5-7].

In what follows, we need the following space.
Fors, S € [0,T], let L2(s, S; H) denote the

space of Fs -measurable processes ¢:Q2 X [5,S] —
s
H such thatEJ | ¢ G || 2du << oo,

We give the following assumptions which will
be used in the proof of results.

(H1) Assume that f (s, ws y, 2.6):[0,T]X
QXHXL*(K;H)XL%(s, T+M; H) — H,
which is # & %(H) & %L*(K;H)) &
Z%(H)/%(H) measurable such that £(+,0,0,0) &€
L%C0, T; H).

(H2) There exists a constant C =0, such that
foralls € [0, T], y(s)ay'(s) € H ,2(s),2"(s)
€ L*(K:;H), £(+),&'(o) € Li(s, T+M; H),
re s, T+M],
| £ Cay(s)ez(s)EG) () —

Gy ()22 () E g’ G || <
ClllyG) — vl + =G — "I +
EsleG)—& 6.

Definition 1. 1

stochastic processes (Y,Z) = (Y (), Z(t))ocicrinm

A pair of %, -adapted

is called the evolution solution (or simply a
solution) to the anticipated BSEE (5) if (Y,Z) &
L%0, T+M; H) XL50, T+M; L*(K;H))
such that
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Y(@@) =U(T,0)&(T) +
T
J U(é 5[)][(57 Y(S)?Z(S)aY(S _'_,U(S)))dS -

T
J UG,t)Z(H)dW(s), 0 <t < T;

Y) =), Z@)=9).t € [T, T+M]
(6)

2  Existence and uniqueness of the
evolution solution

In this section, we aim to derive the existence

and uniqueness result for the solution of

anticipated BSEE (5),

theorem, we recall an existence, a uniqueness and

Before stating our main

an estimate of the solution for the following BSEE
appeared in Ref. [ 8].
—dY () =[AWY )+ f@)]dt — l
ZWdW ), t € [0, T3 (D
Y()=¢ J
In the sequel,we letk: = sup UG, | .

<t <<s<.T

Lemma 2, 1'%t f & € L2(Q, Fr, P
H) and f € L%2(0,T;H) , there exists a unique
pair (Y,Z) € L2(0.T;H) X L%(0,T;L*(K;H))
for 0 <<t << T such that

T
Y (@) :U(T,t)é—i—J UGs.t) f(s)ds —

|'uGozeaws (8)

Moreover, for 0 <z < T , it holds that
ENlYwI*<2’E [[&]*+

T
20°(T — 1) EJ | £CsH [ 2ds (9
and

B[z e <sE el +

T
Skz(T—t)EJ | £ | 2ds (10)

The following existence and uniqueness theorem
is the main result of this section.

Theorem 2.1 Assume the assumptions (H1)
~(H2) hold, and y satisfies (al) and(a2). Then,
for any given terminal conditions €(+) & L%(T,
T+M; H) and () € LAT, T + M;
L?(K;H)) , the anticipated BSEE (5) has a

unique solution.

Proof Uniqueness. Let (Y;, Z,) € LZ%(0,
T+M; H) XL%0, TH+M; L*(K;H)), i =1,
2, be two solutions of anticipated BSEE (5).
Define Y=Y, —Y,, Z=Z2, — Z, and

FO=FGa Y () Z1() Y, (s +pls))) —
Sy Yo(s)y Zy(s) Yo (s +pu(s))),

we then have
- T . T .
Y () :J UGs,t) f(s)ds —J UG ,t)Z(s)dW (s) »1

t €10, T]; (
Y1) =0, Z()=0,1 € [T, T+M] J
(1D

From Lemma 2. 1 and (H2), we have
—~ T —
E Y@ 1< T —E| | fe) ] 2ds <
T — —~
GkZCJZ(T—t)EJ Yy 12411 2 [ 5)ds +
T —~
66 CHT — D E | E% VG +u(o) | 2ds <
T —~ PN
6k2c2<T—z>EJ Y 2+ 1 Z¢s) | Hds +
T —~
6k2C2(T—t>LEJ | YCs) || 2ds =
T ~
6k2c2<T—t><1+L>EJ 1Y) |l 2ds +
b T -~ b
6/e2CZ(T—z‘)EJ | Z(s) | 2ds (12)
and
T i~ b
B[N 126 1ma <
T N b
SkZ(T—t)EJ | £ [ 2ds <
b T o~ b
208°CHT — A+ D] E Y0 | 7ds +

T —~
24/62C2(T—t)J E || ZCs) | 2ds (13)

1
Wy for ¢ - [T*?],

Now, letting y =
T]. we get
T ~ T ~
EJ | ZCH | 2ds < Q+1L) J E |YC) || 2ds

and

~ T ~
Elve lr< e[ v ).

The Gronwall inequality implies that
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ElYw|?=0,E | Zw) | ?=0, Existence. Letting Y°(t) = 0 for ¢t €
Le., Y1/ (1))=Y, t)and Z,(t) =Z,(t) P -a. s. for [0, T +M], in virtue of Ref. [ 8, Theorem 3. 1],
t € [T—7,T+M]. With the same procedure, we define recursively (Y"™, Z*™) € L2(0, T +
we can show the uniqueness for ¢t € [T — 27, M; H) XL%0, T+M; L*(K;H)) as the unique
T —n]. Thus, the uniqueness is proved. solution to the following BSEE:

T
Y (1) =U(T,)ECT) +J UG st) f(ss Y'(s)y 27D Y" G+ p(s)))ds 1

T -
UGz awe . o< < T J (14

Y”+1(t):€(t)7 Z”+1(Z):7](t)9 t 6 [T, T+M]
For0<{¢t << T, we have

T
JY”H @) —=Y" () :J UG.OLfGa Y (s)y 27 () Y (s +p(5))) —

<

T
FGy Y )y Zm(s) Y (s 4 p(5))) Ids —J UG, (Z" () —Z"(s)dW (s) ;

Y™ (@)=Y (t)=0, 2" @)—2")=0,t € [T, T+M].

From Lemma 2.1 and (H2), we have
E Y™ () —Y ) || 2 <20 (T — 1) EJI IF G Y (s)s 27 () Y (s A+ p(5))) —
FGa Y™ )y 27 Y s+ p (o)) Tds || 2ds <
6£C*(T —1t) EJ:[( 1Y () =Y ) 124 || 27 (Gs) —Z7 () | D)ds +

6k2c2<T—t>EfE SCIY G4 p() =Y G4 p () |12 ]ds <
6£°C*(T —1) Ef( 1Y () =Y ) 124 (| Z77 () —Z7 () | DHds +
62 LT =0 B | v =y () | s =
6k2c2<T—z><1+L>Ef [ Y"(s) =Y () [ 2ds +6k*C*(T — 1) ZEJT | Z70 () — 2" () || 2ds

(15

and

T
El Nz —z0o s <
T
8k2(T —1) EJ [ Lf G Y () s 27 ()Y (s 4 (D)) — f(sa YL (s) s Z7() Y 1 (s +p(s))) 1ds || 2ds <

T T
206 CH T — DA+ L E | 1Y) =Y () | 2ds + 246°CH (T =) E | | 27 () — 2750 | s

(16)
LetVZﬁ. Fort € [T —9,T], we get
gl Iz —z@ < R E] Ty -y )t an
3(1+4L)

T
E Yy ") —Y' @) |2 G EJ Y"(s)—Y" 1 (s) || 2ds 18)
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T
Letw' (1) =] E Y7 () — Y"1 () |1 %ds » it
follows from (18) that

du™ () 3(1+1L)
< n y n+1 =0,
& < T @), u™(T)=0
LetC, = 73(1 L) . Integration shows that

16
.
w () < Clj u" (s)ds.

Iterating the above inequality, we have

n

1

n!

w1 (0) < u' (0).

This implies that {Y"} is a Cauchy sequence in
LT —9, T+M;H). Then by (17), {Z"} is a
Cauchy sequence inL% (T —y, T+M; L*(K;H)) . Let

Y: :nlirEY” . 2 ZNIEEZ .

By virtue of Lipschitz assumption of f , one
can easily check that for any+ € [T*ﬂ ,T+M],
P-a.s.,

T
EJ UG £y Y'(s)y 2770 ()Y (s + p(s))) —
FGa Yy ZG)Y G+ p(sH))) || 2ds — 0,

n —> OO,

Now, letting n — = in (14) yields that
T
Y@ =UT,t)6(T) —|—J UGsst) e
SGy YY) Z(G)s Y +p(s))ds —

JTU(s,t)Z(s)dW(s), 0<t<T;

Y@) =), Z(t)=9),t € [T, T+M],

as desired, which means that (Y,Z) solves the
anticipated BSEE (5) fort € [T—U,T+M] . For
t € [T— 29, T — 77] , we can show the existence
with the above procedure. Because 7 is fixed, we
can establish the existence of solutions for BSEE
(5) as above for ¢t € [0,T + M. The proof is

complete.

2 An example

In this section, an example is provided to
illustrate the theory obtained.
Example 2, 1  Letting D = [0,7], we

consider the following anticipated backward

stochastic partial differential equations of the

form:
82
—dv(t,8) = L)va(l‘yé) —Q—b(t’f)v(z‘,S)J dt +

FG.5vt,8),2(,8) v +M,8)dt —
2(t,)dW (), 0 << <.t € [0,T];
v(t,0) =v(t,x)=0,¢ € [0,T];
v(t,8) =¢.8), 2(t) =9.,8),

te [T, T+M], 0<<&e<n

19
where W(z) denotes a standard cylindrical Wiener
process defined on a complete probability space
Q.7P),¢ € LAT, T+M;R), p € LT,
T+M; L*(R;L* (D)), v:[0, T +M] XD —
R, =z: [0, T + M] X D — L*R;
L*(D)) F(s:&5 vy 2,m):[0, TIXDXRXL*(R ;
L*(D)) X L%, T+M; L*(R ;L*(D))) >R.

To rewrite (19) into the abstract form of (5),
we consider the space U = L*(D) and define the
operator A : D(A) CU—>U by Az =2" with domain
DA) = {z € U, =z, 2
continuous 2 € U, z(0) =z (x) =0}.

being absolutely

Then, A is the infinitesimal generator of an
analytic semigroup {S(z)},~ on U. A has a
discrete spectrum with eigenvalues —n*, n € N ,
and the corresponding normalized eigenfunctions is

given by z, (§) = E exp(— n?t)sin(n€). Moreover,

n=1

{2,» n € N } is an orthonormal basis of U .
Now, we define an operator A(z):D(A) C H
— H by
AWz (&) =Ax (&) +0(t:.6x ().

Letb(+) be continuous and b(¢,&) <— y(y > 0)
for everyt € R . Then, the system

0 () =AWvt), t =53

v(s)=x €U }

has an associated evolution family given by
UG .9)2® =[G —expl] be.ode) 1.

From the above expression, it follows that U(z,s)
is exponentially stable, and for everyt,s € J with
t >
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|UG ) || <exp(— A+ —s5)).

Letting H = L*(D),K =R, Y@&)(+)
=v(t, ), Z(t)(+) =2(t, ») , and defining a map
fGsywys ys 2:6):[0, TIXOQXH XLYK;H) X
L%, T+M;H)— H by

f@, Y@, Z@), Y& +M))(&) =

F(:6,0(t:8):2(,8) vt +M,8)).
Then, we can rewrite (19) as the form of (5).
Furthermore, if we impose the conditions on F', ¢
and n are similar to (H1) and (H2). Then, by
Theorem 2. 1, we can conclude that the system
(19) has a unique evolution solution (Y,Z) &
L0, T+M; L*(Q,L*(D))) X L0, T 4+ M;
L*(R ,L*(Q.L*(D))).
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