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Abstract: A new one-prey multi-predator system with impulsive effect and incomplete trophic
transfer was proposed. This system used a different rate of trophic absorption of predators from
the rate of the conversion of consumed prey to predator in Ivlev-type functional responses. The
extinction and permanence of the system with impulsive perturbation on the predators at fixed
moments was investigated. And the conditions for asymptotically stable and permanence of the
system was given by using Floquet theory and comparison theorem. Finally, numerical
simulations demonstrated the obtained conclusions.
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0 Introduction

The predator-prey system is an important
domain theme in ecology. Using mathematical
simulations, we can analyze the systems and gain
control of some ecological phenomena. Lotkal
and Volterra® have given early examples of the
biological system models. And many scholars and
researchers have shown interests in the complexity
of the condition and application of the universality
of the with  different

functional responses.

predator-prey model

A classical predator-prey system can be the

form™ of

(i;xf(x)—yg(x,y),l
- QD)

dy -
& =mg(x,y)y —dy

where x(¢) and y(z) are prey and predator
densities , respectively, f(x) is the prey growth
rate in the absence of the predator, m >> 0 is the
rate of conversion of consumed prey to predator,
d >>0is the natural mortality rate of the predator,
and g(x,y) is the predator functional response.
One of the most widely used functional responses
is the Ivlev-type functional response which was
proposed by Ivlevt). We also consider the Ivlev-
type functional response:
g(x) =0 —expl—ax()}),

where a,f3 are positive parameters.

Many researchers have concentrated on the
predator-prey  system  with the Ivlev-type
functional response. In Refs. [5-7], the existence
of positive solutions for the predator-prey system
were studied. In Rel. [ 8], a delayed stage-
structured Ivlev functional response predator-prey
model with impulsive stocking on prey and
continuous harvesting on predators was analyzed,

and other time delayed models were investigated in

Refs. [9-11].

However, it is more real and scientific to
describe many natural phenomena or man-made
factors using impulsive differential equations. For
example, the births of some creatures are seasonal,
increasing dramatically in the breeding season,
while otherwise increasing quite gently. So the
changes of births need to be described more
accurately in an implusive way. There are more
impulse phenomena in the development and
utilization of biological resources. The dropping of
baits and harvesting of fish at fixed times can make
the numbers of fish increase or decrease rapidly. In
agriculture, pesticide is sprayed and natural
enemies are released at fixed times to kill pests in
pest management. It can be seen that impulsive
equations are used in many domains of applied
science.

Some investigations have been done on
impulsive differential equations in relation to:

impulsive birth"*'*', impulsive vaccination''*'',

]

chemotherapeutic  treatment'® and so on.

Especially in impulsive prey-predator systems,

many researchers have studied the existence of

[17-19]

periodic solution , the stability of impulsive

20221 and  dynamical behavior®?!,  And

system
most of the studies that have been done are about
one-prey two-predator impulsive systems with

responses 2%

various functional or one-prey
multi-predator impulsive systems with Holling
type function response?*, Only a few researches
are about the one-prey multi-predator impulsive

B2 In our

system with Ivlev function response
paper, we investigate the impact of the biological
control technique of using multi-predators to kill
pests on a system with Ivlev-type functional
response. The corresponding one prey multi-

predators system with impulsive effect takes the form
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% =x@)(a—bx(t)) — E (A—exp{—cix Py, (@),
d/ ! e [i?’lT;
dytf:q,<1—exp{—c,xu)})y,-(t)—d,-yxx), (2)
T =xT), )
[:nT9l :1729"'9777
yi(nT+) :y,(TlT) _|_p, ’

where x (¢) and y;(¢) are prey and predator densities, respectively, a is the intrinsic growth rate of the

prey, b is the coefficient of intraspecific competition, ¢, is the rate of the conversion of consumed prey to

predators, d; is the natural mortality rate of the predators, ¢, is the rate of conversion of consumed prey to

predators, x(nT") and y,(nT") , respectively, denote the numbers of prey and predator i after nth

release of predatori , and p; is the number of predators released each time. All parameters are positive

constants. The trophic transfer between prey and predator is assumed to be equal in most predator-prey

systems!®72*%] However, we should consider some losses, because trophic transfer between species ma
y y

diminish in a more complex food chain. Then it is more realistic to render the nonlinear trophic transfers

with trophic losses. So based on model (2), we propose the following one-prey multi-predator impulsive

system with a different rate of trophic absorption of predator s; from the rate of the conversion of consumed

prey to predator ¢; in the Ivlev-type functional responses.

dx
dr

dy;
de
xnTH) =xT),

y:(aTH) =y, T)+p,;,

Because of the trophic loss in the transfer we
assume 0 <s; <c¢; .

In this paper, we investigate the extinction,
permanence and complexity of system (3). In
Section 1, we introduce definitions and state
necessary lemmas. In Section 2, in the case of
incomplete trophic transfer, we prove that all
solutions of system (3) are still uniformly upper
bounded. Thus, we propose the conditions for the
extinction and permanence of system (3) with
comparison theorems. In Section 3, we show

numerical simulations to confirm theoretical
results obtained in Section 2. Finally, in Section 4

we conclude with a discussion of the studies.

1 Preliminaries

An effective method to discuss the stability of
the impulsive system is Liapunov function. Because

the solution of impulsive differential equation is

—=x)(a —bx(t)) — 2 (1exp{c,~x(t)})y,ﬂ(z‘),l
=1

/i#ﬂT;

=q, (1 —exp{—s:x@ Py, &) —d;y: (1), (3

t=nT,i=1,2,wm

piecewise continuous, so it is required that its
Liapunov function be also piecewise continuous.
For this purpose,class V is given.

LetR.=[0,90) , R""P={X € R""V.X =
0}, N be the set of all non-negative integers. The
map f=Cf1sf2s s f1) " is defined by the right
hand of system (3). Let V:R, X R""V >R,
then V is said to belong to class V if

D V is continuous in (nT, (n + DT] X
RV, and there exists V(nT",X) for each X €
R , n € N, such that

lim V&.Y)=VuT ,X);

@Y)>GT X0

@ V is locally Lipschitzian in X .

Definition 1.1 etV & V,, then for (z,X)
€ T, (n + DT] X RV,
derivative of V(¢,X) with respect to the impulsive

the upper right

differential system (3) is defined as
D"V, X) =
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) Vi+h,X+hf@,X) =V, X) periodical solution
lim sup .
h—ot h piexp(—d;(t —nT))

The solution of system (3) is a piecewise
continuous function X:R, — R"™™ , X&) is
continuous on (#T,(n+1T],n € N, and there
exists XTT) =I1limX ). The

1‘971'[‘+

smoothness

properties of f guarantee the global existence and
uniqueness of solutions of system (3) (see Ref.
[33] for details on fundamental properties of
impulsive systems).,

It is easy to prove the following lemma.

Lemma 1. 1 Let X(z) be a solution of
system (3) with X(0") =0, then X (z) == 0 for all
t =0 and further X(z) >0, ¢t = 01if X(07) > 0.

For convenience, we will state the result of

431 using our

the important comparison theorem
notation,
Suppose function g :R X R — R satisfies:
1>
T +DT]X R, , and there exists V(nT™",
X) for X € R{""Y , n» € N, such that

111’1’1 V(t ’Y) :V(77T+’X).

@Y)>GTT X0

Lemma 1.2 SupposeV € V,. Assume that

D'VGe. XD <g,V&,X)), t #=nT;

Ve, X)) < V@, X)), t =nT
where g : R. X R.— R satisfies (I) and ¢, :R.—R

Function g is continuous in

| w

is nondecreasing. Let r(z) be the maximal solution
of the scalar impulsive differential equation

%:g(t,u(t)), t #=nT;

ult™) =g (w@))s t =nT;
u(0") =u, =0
existing on[0,90) . Then V(0",X ) < u, implies
that V(¢, X () <<r(t) ,t >0, where X (¢) is any

solution of (3) existing on [0,°°) .

5

Finally, we give some basic properties about

the following subsystem of system (3):

dy;

dyt:—d,.y,m,msﬂ; 1
y[(t‘):y{(t)—’_pia t—nT;I (6)
yi(07) =yq

Clearly, the system (6) has a positive

yi ()= 1—exp(—d,T)

t € WTs(n+DT],

and
b
* Yy —
yi (T)H)T) I —exp(—d, T)"
Since the solution of system (6) is
v (1) =

p[
(0FY
(.09 1—exp(—d.T)
t € T, (n+DT].

Then we have the following results.

)exp(—dl-l) +vi @,

Lemma 1.3 Let y;" (¢) be a positive periodic
solution of system (6), then each solution y;(z),
i=1, 2,-, m, of system (6) satisfies that
| v; (@) —y (@) | = 0ast —> o,

Then we can obtain the complete expression
for the prey-eradication periodic solution of system
(3

Ouyi @) ysy, (1)) =
< prexp(—d (¢t —nT))
T l—exp(—dT)
paexp(—d, (t —nT)) >
1—exp(—d,T)

oo
b b

2 Extinction and permanence

In this section, we study the conditions for
the extinction and permanence of system (3).
Definition 2. 1

permanent if there exist positive constants m, M

System (3) is said to be

and ¢, such that each positive solution (x(z),
y1 (), y,, () of the system (3) satisfies m <<
(O <M,m<<y, )M, forallt >1t,,i=1,
2, m .

According to the Floquet theory of impulsive
differential equations, we now study the stability
of the prey-eradication periodic solution,

Theorem 2.1 Let (x(£),y;(2),**,y,,(£)) be
any solution of system (3), then the solution (0,
yi (&), vy, (1)) is asymptotically stable if

P
T < ; -
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Proof The local stability of periodic solution
Oy @)ty (1))

considering the

may be determined by

behavior of small amplitude
perturbations of the solution. Define

u(t) =x(), v;i(t) =y; () — vy (),
i=1, 2,

where y,(¢) are the solutions of the system (3)

e, M,

and y,;' (¢) are the periodic solutions. (3) can be
expanded in a Taylor series after neglecting higher
order terms, the linearized equations can be

written as following:

Jdu_(a_ e ) ule), 1
de i=1

L i?’lT;

dv; s . _
1 =qis:ivi Dut) —dv; (@),

unT) =unT) v, nTH) =v,(nT).
Let @(I) == (u(t)9U1(t>7"'7"0m(l‘))T ’ then
@(t) must satisfy

do()
dt
a — Ec‘iyf 0 0 e 0 0
i=1
qi$1y1 —d 0 e 0 0
o 1* 1 o),
q252Y2 0 —d,; = 0 0
(I/nsmy; O O b O _dm

and @(0) = I is the identity matrix. The pulse

conditions of system (3) becomes

ulnT™) unT)

v, (nTH) 0 v (nT)

v,(nTT) | = v, (nT)

V(T ) o0 U (0T
Obviously, the stability of solution (0,

yi () sy y. () is determined by eigenvalues of
® , where

P O
0= . . o).

O 0 0 =« 1
If all eigenvalues of ® have absolute values less

than one, then the periodic solution (0, y{ (£),-,

v (t)) is locally stable. Since all eigenvalues of

® are

7 :exdeT(a — Zlc,yf )dt> ,
pi =exp(—d; T) <1, i=1,2,""ym.
It is easy to see that | x [<C1if and only if
oS,
-1 ad;
We complete the proof.

Now we show that all solutions to system (3)

are uniformly upper bounded.
Theorem 2.2 There exists a constant M >> 0
such that z (1) <M, v, (1) <M, i=1,2, -
oy, (1)) of

aom
for each solution (x(¢), y,(2),
system (3) with all ¢ large enough.

Proof  Suppose (x(£),y:(t),++,y,()) is
any solution of system (3). Define

VLX) —a )+ 32D

i=1 i

It is easy to see that V &€ V,,. And we can get
(a+XDx@)—blx@)?+

2 (exp(—c;x) —exp(—s;x )y, (&) +
i=1
e (7)

m Aid,
> v ()s t #nT;
i=1 qi

VXU =VE.X)+ D) Pi

i=1 i

Because of 0 <s; < ¢, » we can get
exp(—cx) —exp(—s,x) < 0.
So the right hand of the first equation in (7) is
bounded when 0 << A << min(d;,***+d,,) . Select
such A, and let K be the bound. Thus
JD‘ Vi, X)+2A2,V(, X) <K, t#nT;

\tvu,xw)) VX0 + 2 P =T

i=1 4

Then by Ref. [34, Lemma 2. 2], we can get

V(Z) <V(O+)6Xp(*k(>t) +A5(1 - eXp(*;{()t)) _'_
0

2 piN 1 —exp(—nd,T)
(; (7,) 1—exp(—2a,T)
So

exp(—A,(t —nT)).

eXp(A()T)

. K o P
limV (1) < =+ (E *) exp(A,T) — 1"

treo 0 i=1 qi
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Therefore V(z) is ultimately bounded by a
constant and there exists a constant M > 0 such
thatx (1) < M,y, (1) <M, i =1, 2,
»ym (1)) of (3) with
all ¢ large enough. This completes the proof.

Theorem 2. 3

s 1M » fOI'

each solution (x () ,y;(z),*

System (3) is permanent if

Proof ILet X () be any solution of (3) with
X(0") > 0. From Theorem 2. 2, we know that
x@)<M .,y (HO<M, i=1,2,"
large enough. So supposex () <<M , y; (1) <M ,

, m » with allz

andM>%,z‘>O.

dy; () -

From system (3), we know that o

—d;y;(t). So we consider the following system
du;
“ :—d,-uz-(t)» I3 i?’ZT;
de

w, D) =u; )+ p;s t =nT;
L,-(O*)—yo; = 0.

From Lemmas 1. 2 and 1. 3, we can easily
obtain y; (1) = u,;(t) andu,; (t) > u; (t) . So there
existse; > 0, when ¢ is large enough, y;(z) =
w; (1) >u; (1) —e; . Let

cexp(—d; T
m; _lp—e)if(—d,-T)) —e; >0,¢e;, >0,

1=1, 2,y m,

we can get y, (1) > m; for all ¢ large enough. We
shall find an m’, > 0 such that x () = m’, for ¢
large enough. We will prove this in the following

two steps.

Step 1 Since T > 2 ;51 , we can select
In Cﬁd In 761_]"61,
0 <<m, <min(%, ¢ L o “) and
S Sm

>0, i=1, 2,
0, =q;, (1 —exp(—smy)) <d,,

Ee T}

, m » small enough such that

m

CP,
2 (d,—8)

i=1

0 =exp [(a —bm,)T —

m

exp[aT i ,Pli(z b

di \H Wdi—o) o d

i Cz‘pi)i

bm T — e/ T| > 1.
i=1
We will prove there exists ¢, € (0,°9°) such
that x (¢,) = m,. Otherwise,
dy; (£
dt

Consider the following system

d;’t" —(—d, 160, (1) ¢ ;tnT;[

v, () =0, W)+ pis t =nT; J// )

‘UI'(O+) :yl(o+) > 0
We can obtain y;(t) << v;(z) and wv,(z) —

< (—d; +0)y; () (8

v (¢) » where
o prexp((—d; 48 —nT))
v = e (—d, £ T
t € T, (n+DT].

So there exists T; >0, whent =T, ,

v, (1) <0, (8) <o (1) +¢ (10)
and
dx m ) ,
E}I(t)(a*bmofz(vf(t)—i—e,v)) (1D
i=1

for all t > max(T,,T,,+,T,) . Select constant
N; € Z"to make N,T =T, .
T, +1DT]sn=max(N,sN,,--

can obtain the following result:

Integrating (12) on
] N,,, ) s We

n+DT
x(n+DT) = x(nT)exp(J ‘ [a —bm, —

D () Fed]d) =xTis  (13)
i=1
Then, 2 (i +kE)T) =2 nT)e* > 4o whenk —

+ oo, which is a contradiction. Hence there exists
t, € (0,20) such that 2 (¢,) = m.,.

Step2 Ifx(z) = m, for allt > t,, then our
aim is achieved. Otherwise, if x (z) <'m, for some

=inf{x (@) <<m,}.

t/t

L > 1y, lett” Then t* is an

impulsive point or a non-impulsive point.

(I) If t* is an impulsive point. Let t* =
noT s nyo € N. Then we choose e, > 0, small
enough, which implies t, =¢* — ey, £, is a non-
impulsive point, such that x(zy) = m,.

(I Ie”
have x (¢t) =m, fort € [t1,t") andx (¢ ™) =m,,

6 (an

is a non-impulsive point, then we

since x (z) is continuous. Suppose t*
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(ni +DT), ny, € N. Choose ny, n; € N . . .
wuch that 3 Numerical simulations
In( e’ ) In this sections we show numerical
T > M+ p; ’ simulations to confirm the theoretical results we
—di+0 obtained in Section 2. Using MATLAB, we
explo (ny +DTe™ =1, performed numerical simulations form =2, a =6,
whereo) =a —bmg —mM << 0, n; =max{nas=s  j—9, ¢ =059, c,=0.4, 5,=0.5, 5,=0. 38, d, =
1o} . Let T'=n,T-+n;T , then there existsz, €

(i, =T, (a; + DT + T'] such that x(z,) =
mo. Otherwise x (2) <my,t € (0, + DT, (ny +
DT + T"]. Considering (9) with v; ((n; +1DTH)
=y;((n;, +DT"), we have

b
. == . + - *
v; (1) (vl((nlﬁLl)T ) lfexp(*d/JF&')T)

exp((—d; +06)& — G, +DT)) +o @),
fort € T sn+DT]sn, F1<n<n,+1+n,+
Then we can get
v, () — v (1) |<
(M~ pexp((—d,; +0)n,T) e, (14)
and v, (1) < v, (1) < v/ (1) + e’ fort € ((n; +
n,+ DT, (ny + DT +T"] . which implies (11)
holds onz € ((ny +n, +DT, (i, + DT +T'].
From the first step, we have
2y +1+n, +n)T) =2y +1+n)T)e™.
From the system (3), we can get

% = 2 (t)a—bmy—mM) =c,x(t) (15)

Integrating (15) on[t* s(n1+14n,)T ], we
can get
a2y +1+n)T) =moexplo; (ny, +1)T).
Thus
(G +14+n,+n)T) =
moexp(o,(n, +1T)s" > m,

which is a contradiction.

(16)

Letz =inf{x(t) =m,)} » then x(z) =m, and

(15) holds for ¢ € [¢" 1) .
[t~ ,1)» we have
() = x( Dexplo, (t —t")) =
moexp(or (ns +ns +DT) o m'o.

Integrating (15) on

For¢ > t, the same arguments can be continued
since x (¢) =m,. Hence x(t) =m’, for allt >1¢,.
The proof is completed.

0.1,d,=0.3, g, =0.7, g, =0. 67 and different
values of p1s p2s Ty 205 Yo1s Yoz. When p, =1,

c1P CoPo
ad T ad ;

Theorem 2. 1, there should exist an asymptotically

p2 =4, we have = 1. 8722 and by

stable pest-eradication periodic solution when the
impulsive period T is smaller than a threshold
N Cib

In Figs. 1 and 2, the phase portrait and time
series of x» y1» y, for system (3) with different T
and initial value are shown. From Fig. 1 we see that
when we choose T =1. 8 and the initial values (xy »
yors Yoz) = (0.5, 3, 1), the solution (0,y, (z),
e,y () is asymptotically stable. This confirms
Theorem 2. 1. However, when T is larger than the
threshold,

When we choose T =4 and the initial values (x,

system (3) should be permanent.
Yors ¥oz) =(1, 4, 1), we can see from Fig. 2 that
system (3) is permanent. This confirms Theorem
2. 3.

let us rewrite the condition of
;P

d;

the birth rate a of pests, the death rates d; of

Moreover,

. Then when we fix

Theorem 2.1 asa <%2
i=1

natural enemies and the conversion ratec; » we can
eradicate the pest by choosing a suitable impulsive

period T and appropriate impulse and by releasing

1 m l 1 .
the number of predator p; such that TZ Cdé is

i=1
larger thana .
In the following, we show the numerical

simulations we performed for the effect of
impulsive perturbations of natural enemies on
When system (3)

impulsive effects, then (3) becomes

system (3). is free from
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Fig. 1 The numerical simulations of Theorem 2. 1 when p, =1, p,=4., T=1.8, x¢=0.5, yu =3, ypn=1
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Fig.2 The numerical simulation of Theorem 2.3 when p, =1, p,=4, T=4, x¢=1, yu =4, ypo=1

%:I(t)(a —bx (1)) —

E (I —exp{—cx@ ) y: (),

i=1
dy;
dt

i:1729"'9m

=q, 0 —expl—sx@ Dy ) —d;y: (),

an

For the same values of m, a, b, ¢1s c2y 515
sos dis dss q1s go and (2o, Yor» yoz) chosen
above, we show that system (17) has a stable
equilibrium (x*, 3, 0). This indicates that
predator y, is extinct (see Fig. 3).

When we choose a suitable impulsive period T
and release the number of predator p; ., for example
pr=0, p,=1.5, T =2, we see that system (3) is
permanent (see Fig. 4).

By choosing p, =7, we see that the population

y; is extinct, and populations x and y, are

permanent (see Fig. 5).

By choosing p, =12, we show the populations
x and y, are extinct, but y; is permanent (see Fig.
6).

In the following, we investigate the dynamical
behavior of system (3). We consider the following
set of parameters for our analysis: m =2, a =4. 9,
b=0.31, ¢; =0.26, ¢y =0.25, 57 =0.23, s, =
0.22, dy=0.25, dy =0. 24, g, =0. 38, g, =0. 36,

p1=1, p; =4. Then we can get Qb -+ ELE
adl adz

1. 0626. We have got bifurcation diagrams (see

Fig. 7) of system (3) as T increases from 1. 0626 to
8. 5 with initial values (xo,yosy02) =(1,1,1) . As
T increases, the resulting bifurcation diagrams
clearly show that system (3) has rich dynamic
behaviors.

From Fig. 7, we can observe that when
1.0626 << T <C 1.201, the T-period solution of
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(a) and (b) are the phase portrait and time series of x, y,, y, for system (17)

when xy =1, yo =4, yp» =1, which is free from impulse, respectively
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Fig. 4 The effects of the impulsive perturbations on the system (3), where p, =0, p,=1.5, T=2, xo=1, yn =4, yp=1
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Fig. 5 The effects of the impulsive perturbations on the system (3), where p, =0, p,=7. T=2, xo=1., yn =4, ynp=1

system (3) is still stable (see Fig. 8(a)). When the
parameter T is increased beyond T == 1. 201, the
dynamic behavior of system (3) is complicated and
shows chaos (see Fig. 8(b)). In particular, when T
slightly increases beyond T == 2. 860, the chaos

suddenly disappears and suddenly appears again

(when T slightly increases beyond T &= 2. 963) (see
Fig. 9). This phenomenon is called crisis. Then the
solution of system (3) is periodic again for
3.596 << T <C3.973 (see Fig. 10). When 3. 974 <
T <C7.74 chaotic bands with period windows can

be seen (see Fig. 11) and chaos is observed in some
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Fig. 6 The effects of the impulsive perturbations on the system (3), where p, =0, p, =12, T=2, x¢=1, yu =4, ynn=1
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(a) prey population = » (b) predator population y; and (¢) predator population y, are plotted for T over [1. 0626, 8. 5].
Fig. 7 Bifurcation diagrams of system (3) showing the effect of T when m=2, a=4.9, b=0.31, ¢, =0.26, ¢,=0. 25,
51=0.23, 5,=0.22, d,=0.25, d,=0. 24, q: =0. 38, q2=0. 36. P =1, pz=4y (x9 sYor ,yoz)=(1,1,l)

(a)phase portrait of T-period solution for T=1. 063 (b)phase portrait of the solution enters chaos for T=1. 25
Fig. 8 Dynamical behavior of system (3)
regions (see Fig. 11(a),(b), (d), ({)). After these .
. . 4 Conclusion
chaotic areas, when the parameter T is increased
beyond T == 7. 93, the T-period solution gradually In this paper, we have proposed a one-prey
appears again (see Fig. 12). multi-predator system model (3) with Ivlev
functional response and impulsive effect. In our

model, the rate of the trophic absorption of the
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(a) T=2.20 (b) T=2.862 (c) T=2.965
From (a) to (b) there is a crisis during which the chaos suddenly disappears, and from (b) to (c) there is a crisis during which the chaos suddenly appears

Fig. 9. Dynamical behavior of system (3). Crises are shown with different T
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(a) T=3.597 (b) T=3.88
Fig. 10 Phase portraits of system (3) with initial values (xy .y -y02)=(1,1,1), the solution being periodic
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Fig. 11 Dynamical behavior of system (3). Chaotic bands with period windows can be seen
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(a) phase portrait of 4T-periodic solution for T=7. 82
Fig. 12 Dynamical behavior of system (3).

predator is smaller than that of the conversion of
consumed prey to predator in the Ivlev-type
functional responses. We have investigated the
extinction, permanence and complexity of system
(3). The conditions for the extinction and
permanence of system (3) have been given. We
have found that if the impulsive period T is less
P . . . .
than 2 . the pest-eradication periodic solution
i=1 ad;
(0,31 »+**sy, ) is asymptotically stable; if T is
N Py
larger than 2
i=1 ad

Our numerical simulations have demonstrated the

, system (3) is permanent.

above conclusions. We also find that when we fix
the other parameters, we can eradicate a pest by
choosing an appropriate impulsive period T and

impulsively releasing the number of predator p;,

such that %2 C;{Pi is larger than a. All these
i=1 U

results show that the multi-predator impulsive
control strategy is more effective than the classical
one and makes the behavior dynamics of the
system more complex. For future studies, we
would like to consider adding time delays to the
existing system (3), and to research the stability

and dynamics of that system.
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