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Abstract: The complete convergence theorems under sub-linear expectations was studied. As

applications, Marcinkiewicz type complete convergence for weighted sums of END random

variables under sub-linear expectation with the moment condition of E (| X |#)<<co, f=max(a.¥)

for some 0<<a<<2,y>>0 and a7 ¥ has been obtained. The corresponding result of predecessors to

END random variables under sub-linear expectations has been generalized and improved.
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0 Introduction

In probability and statistics, classical limit

theorems are established under the precondition of

additive probabilities and linear expectations.
However, in  practice, many  uncertainty
phenomena cannot be modeled using model
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certainty without the precondition. So Peng'™
introduced the concept of sub-linear expectation as
an extension of the original probability space and
constructed the general theoretical framework of
the sub-linear expectation space. Sub-linear
expectation has been widely used in many fields

such as finance, statistics and measures for
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handling risk measurement and it has many
different properties of linear expectation and some
interesting challenging questions that have
attracted more and more attention from scholars.
For instance, Zhang'" demonstrated and obtained
the exponential inequalities, Rosenthal’s inequalities.,
Kolmogorov’ s strong law of larger numbers and
Hartman-Wintner’ s law of iterated logarithm and
Wu and Jiang™ established strong law of large
numbers and Chover’s law of the iterated
logarithm.

For complete convergence. there have been
few reports under sub-linear expectations and the
aim of this article is to obtain Marcinkiewicz type
complete convergence for weighted sums of
extended negatively dependent random variables.
We first
negatively dependent in sub-linear expectation

space™!,

introduce the concept of extended

Definition 0. 1 A sequence of random
variables {X,; n =1} is said to be upper (resp.
lower) extended negatively dependent if there is

some dominating constant K =1 such that

E (]nTsMXf))é KT E(p. (X0, V=2,
i=1 i=1

whenever the non-negative functions ¢, (x) €
Cyry(R), ¢ =1, 2, +=-, are all non-decreasing
called

extended negatively dependent if they are both

(resp. all non-increasing ). They are
upper extended negatively dependent and lower
extended negatively dependent.

What’s more, let’s recall that the concept of
complete convergence was introduced by Hsu and
Robbin™. A sequence of random variables {U, ,

n=1} is said to converge completely to a constant

C,if

DIP U, —C >0 < <o forall c >0,

n=1

Since then, many valuable results have been
established, such as Refs.[10-14 ] and so on.
Cai't¥

weighted sums of NA random variables and got the

studied complete convergence for

main result as follows.

Theorem 0.1

of NA random variables with identical distribution

Let {X,; n=1} be a sequence

DV law =0 for 0<<a=<<2. Let T, = >,a,.X,,
i=1

i=1
n=1, b,=n"*(Inn)"". EX, =0 when 1<{a<<2.
We assume that for some h, Y>>0, Eexp(| X |")<<
oo, Then
Ve >0, D> n'P(max | T, |>eb,) < co.
—_ 1<j<n

Inspired by Ref.[11], we extend the results to

Marcinkiewicz type complete convergence for
weighted sums of extended negatively dependent
random variables under sub-linear expectations.
It’s worth noting that the concept of complete
convergence is no longer defined by probability but
by capacity under sub-linear expectations. A
sequence of random variables {X,; n=1} is said to
completely converge to X, if
2V(| X, —X |=¢e) <co, forany e > 0.

n=1

which is denoted by X,—>X as n—>0°°. Because of
the uncertainty and no additive of expectation and
capacity, the commonly used powerful tools and
methods of classical linear expectation no longer
apply in sub-linear expectation space. It leads to
the complete convergence that essentially different
from the classical probability space and the study
of complete convergence under sub-linear
expectations is more difficult.

Throughout this paper, let {X,; n= 1} be a

random variable sequence in (2, A, E). C will
signify a positive constant that may have different
values in different places. a,<<b, denote that for a
sulficiently large n, there exists C>>0 such that a, <<
Cb, and I ( =) denotes an indicator function. It
proves convenient to define logx = In (eV ),
where Inx denotes the natural logarithm.

Now, we state the main results of this article.

Theorem 0.2 Suppose that {X,, n=1} is a
sequence of upper END random variables, there
variable X and a constant

exist a random

C satislying
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EGW( X, H<CEGX|),
foralln =1, 0<h € C;.1,, (R)
Let 3= max(a, ¥) for some 0<C a<<2,7>0 and
a#7y. Assume that {a,; 1<<i<<n , n=1} is an

QY

array of real positive constants satisfying
limsup n™"' Zaf; < ©o 2
- pot

and further assume that

E[l X |f]< oo (3)

Then for 6, =n"“log"” n, we have

n

2 n TV (2an (X — ) > b)) < oo ()

n=1 i=1
where ¢; =0 if a<<1, and c¢; ZEX, if a>1.
Further, if {X,, n=1} is extended negatively
dependent, then
DV (2han (X =) <=, ) < oo (5)
i=1

n=1
where ¢;=0 if «<<1, and ¢, =eX, if a>1.
In particular, il {X,, n =1} is extended

negatively dependent and E X, = eX, for a >
1, then

2 nilV(‘ Z”:a,,,-(X,—c,-)‘>fb,,)<D©(6)
i=1

n=1

Remark 0.1 END random variables include
ND random variables in sub-linear expectation
space and extended independent random variables
are END random variables with K =1 by Ref.[4,
Definition 2.3 7, so for ND random variables and
extended independent random variables under sub-
linear expectations, Theorem 0.2 also holds.

Remark 0.2
Theorem 0.1 to the case of END and arrays ol

Theorem 0.2 not only generalizes

rowwise END random variables under sub-linear

expectations, but also partly improves the

corresponding results of Refs.[11,15].

1 Preliminaries

We use the framework and notions of Peng™*!.

Let (2, 9) be a given measurable space and let 7

be a linear space of real functions defined on (02,
) such that if X,, X,,+, X, €A then (X,
X,) €A for each o€ C,1;, (R,), where C,.1, (R,)

denotes the linear space of (local Lipschitz)
functions ¢ satisfying

| o(x) — ¢ (y) |<
cQ+l x|+l y " |lz2—y ]| ¥V 2.y €ER,,
for some ¢ >0, m € N depending on ¢. A is
considered as a space of random variables. In this

case we denote X € A,
Definition 1.1 A sub-linear expectation E on

His a function E ; #>R satisfying the following
properties: for all X,Y€ #, we have

(a) monotonicity: If X=>Y then EX =>EY;

(b) constant preserving: Ec=c;

(¢) sub-additivity: E (X +Y)<EX + EY;
whenever EX + EY is not of the form +co — oo
or —oo 4 ooy

(d) positive homogeneity: E (AX) =2 EX,
A=0.

Here @Z[—OO,OO]. The triple (2, #, E)is

called a sub-linear expectation space.
Given a sub-linear expectation E, let us
denote the conjugate expectation € of E by

eX i=—E(—X), VX € /£
From the definition. it is easily shown that for

all X.YEA
X <EX,EX+c)=EX +c,
EXX—Y) |<E |X—Y],
E(X—-Y)>=EX—EY.

FEX=eX , thenE(X + aY)=EX +« EY for
any a €R..

Next, we consider the capacities corresponding to
the sub-linear expectations. Let ¥ C%, A function
V . 4>[0,1] is called a capacity if

V() =0, V) =1,

V(A <V(B) [or VAS B, A.B € 4.

It is called sub-additive if V(A U B) <
V(A)+V(B) for all A,BE€ % with AUB € %.1In

the sub-linear space (2, #, E), we denote a pair

(V ,1) of capacities by
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V (A) :=inf {(E&; I(A) <&, &€ ),
1(A) :=1—V (A, YA € 7,
where V (A) is the complement set of A. By
definition of V and ¥, it is obvious that V is sub-

additive, and
<V, VA €7 VA =EUW)),
A) =e (I(A)), if ICA) € A,

Ef<v@ <Eg,ef <A <eg.
ffr<I(A)<g, fog&AN (7
This implies Markov inequality: VY X € A,

VX [z <EUX [/,
Ya>0,p >0,
fromI(| X = o)<<|X|*/x* € # By Rel.[ 16,
Proposition 16 ], we have Holder inequality
VX, YEHA, p,qg>>1 satislying p ' +q¢~ ' =1,

E(XYD<@EJ(X[D)*"EY D),
particularly, Jensen inequality : V X €,

EAX )" < (E X )" lor0<r<s.
Lemma 1,1 Pefvion2tdIf (X« n>1) is a
( resp. extended

sequence of lower )

upper

negatively dependent random variables and
functions f, (x). fy (x) . € C, 1y (R) are all
non-decreasing ( resp. all non-increasing ), then
{f.(X,); n=1} is also a sequence of upper (resp.
lower ) extended negatively dependent random
variables.

Lemma 1.2 - Theerem3d - T ot (X, £==1} be a

sequence of upper extended negatively dependent

random variables in (2, #2 E) with EXk <0,
Then for any p= 2, there exists a constant C,=>1
such that for all +>>0 and 0<{0<1,

DEIX |

VS, =a)<Co0*K """+ +

IP

IZ
K eXp(_ 2B, (1 +a)) ’

where B, = E EX: .
k=1

2 Proof of main result

Proof of Theorem 0.2 Without loss of generality,

we can assume that EX,, =0 when a >1. We just
need to prove (4). Because of considering {— X, ,
n=>1} instead of {X,, n==1} in (4), we can obtain
(5). Noting that a,;,= 0, for all 1<<i<<n, n=1. It
follows by (2) that

n
Ea’?,; < Cn.
i=1

For upper extended negatively dependent
random variables {X,; n= 1}, in order to ensure
that the truncated random variables are also upper
extended negatively dependent, we need that
truncated functions belong to C,..;, and are non-
decreasing. Let

folx)=—cl(x <—0c)+
Iz <o)+ cIlax >0),
for any 1<ii<<n , n=1,

b,
Y, :=f, (X)) =— ’ I(a,X; <—0b,) +
b/l
XiI(|am'Xi |<b71)+ I(a,;X: >0,)
(2

where b, =n""log""n, and

T, := znja,,,(Y,. —EY).

=1

Then {Y;; 1<<i<<n, n= 1} is also a sequence of

extended negatively dependent random

upper
variables.

It is easily checked that for any ¢=>0,

(Eanixi >51),,)CQI (| X, |> /)7,\) U
i=1 =

Ay

" v N
(;a >cb )

which implies that

27’_1 v (En:am‘X, >« b,,) <
i=1
b

n=1
St V(I X, |>a”j+
i=1 ni

n=1

in_l V (T, > b, — | Za EY |):=1,+1,
i—1

n=1
(8
For 27"7<C4<C1, let g (&) be an even function
and g(x) € C,.1,;, (R) such that 0<{g (x)<C1 for
all z and g(2)=11if |2 |<pu, g(x)=0if |x2|>
1. Then
Iz < <go<I(x <D,
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Iz |>D<1l—g@)<I(x|>w (D

To prove (4), it suffices to demonstrate I, <<
oo and I,< oo, By (2), (3), (9) and Markov’s
inequality, we can show that

Zn 2V<|amx >0, <

n=1

E Sef-s(55)]<
DRI

n=1 7

Z%<O€ (10)

=1 N logﬁ/}/n

1<

where f=max(a,¥) for some 0<a<<2 and y>0.
Next, we will illustrate I, <<oo, We firstly
show that

16, D a, EY, | >0.asn—>cc (1)

i—1
For any » >0 , by the ¢, inequality, (1) and
9,

|Yl|y<<|X |I[|amX | bn:|+

b, \"
( j I apX, |> 6,0 <

A yi

. HA i Xi b\’ am'Xi
X, |rg| Bt 1—g| ==,
) ) (5

K ad m'X
E|Y,|"<E [| X |g(’”‘b”+

b\ A X
5 efif)<
A i b”

= /riX bn "
E [| X |"g(““ H+( j V(| anX |> b))

bn ni
(12)
Case 1; 0<<a<:1
i X | pa, X |
Since g (WJ<I(W‘J<1), we have
)71 n

| Cln;X| | anixla i X
#b < #/a <1 and g(#ab)gl So,
n )ﬂ

by (2), (3), (9), (12) and Markov’s inequality,

we have

| b;l Eani EY,‘ |<
i=1

n

b;lzani E | Yi |<<
i=1

by DanE | Y |<

i=1

\ 2 i X
i=1 n

SV anX [ =) <
i=1
S & ”X ni
o3 |l Ly (e X) ]
i=1 n n
N A -
CY BN X |1]<
=1 n

n

cH e "'E[IXI 1<

i=1 b;.l
7 E[lX |"]<
bll
—— >0, asn > ©° (13)
log*" n
Case 2; 1<<a<:2
711X «!
Noting that %>1 , since
(pb,)°

. X . X
1—g(ab jgu'“b |>,1).

n

Then by EX, =0, (1)~ (3), (9 and Markov’s

inequality. we have

| bilzam EY; |:b;12am‘ | EX; _EY,' |<

i=1 i=1

bili:a,,iﬁ[l X, —Y, |:|:
byt Za,,, E [ ‘ (X + ) [X,- < b :|Jr
A i A ,;

(Xi—fmj [X> ]]<<

n . ”X
b,,lEa,,[E[|X|[1—g[“;) jj]<
i=1 n

Co . E[a IXIIXI‘“]

1
i—1 by~

n

o/

as,
= bt
C
log*"n
Combining (13) with (14), (11) holds.
Then, for every ¢>>0 and for all n large enough,

ELIX |"]<

-0, n—>0° 14)

we can get that

67 Dla  BY, | < /2

i=1

which implies that

< D'V I(T, > b,/2) (15)

n=1

Since (Y, — EY,, i<n, n=>1} is also upper
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extended negatively dependent with E(Y.— EY.]
=0 . Choosing p such that p >max(a, 7, 2) and
0=1in Lemma 1.2 for {Y,; 1<<i<<n, n= 1}, we
obtain for every ¢=>0,

L, <D ' V(T, >d,/2)<

n=1

Enﬂb;ﬁzam ELIY,—EY, [7]+

n=1 i=1

- Eb
E n_'exp " R R t—

et 17a% ELY, —EY)?]
i=1

121 +122 (16)
Firstly, we show I,,<<oo, If p =max(2,a,7),
note that $=max(a, 7). Then by (1)~ (3),(9),

(12) and Markov’s inequality, we have

In= >0, >al, EL| Y, —RY, |"] <

n=1 i=1

Zn L b ”Za,,, E[LlY: I’]<

n=1

Z}ni1 b,? Za,‘,’,E [| X |7g (pdej}_'_

n=1

anl ZV(| anX | > pb,) <

n=1 =

o | pa X 1”7 (pa. X
Zn bt [ #b gl +
i=1 n

n=1 b n

S DB x ] <

B
n=1 ,l/n

LIX | (pay X
D i
i=1

B
n=1 b 'n [) n

DICHPEL X IP1<

n=1

CZn‘lZ“'“ ECIX |71+

B
n=1 i=1 bn

S
Z[?/o( logﬂ/v

I

ELlX 1)<
Z e an

T n log
If >y, we have ﬁ—a and

1
I, K < oo,
1 n log®”
And if <7, then f=7, I,, < 2 7<O©.
n=1 “log n

Secondly, we will prove I, <o, Note that
21ny

lim
ey

=0 for all § >0, we can have for any

0>>0, there exist a constant y, = 1 such that for
all y= yo»
2lny

0

Y

<1

which implies that

exp(2lny) =y*,
1 1
exp(y”)

exp(y?) =
v = Yo=> z [N = Yo.
Then, let y=logx ., we have

1 j 1
b el L doge =
Jl x exp(loggar)djr ¢ | exp(loggx)d( og)

oo 1 30 1 S|
o exp(y?) Y=, exp(y?") v yo y° v

So, for any 6>>0,

oo 1 - 1
_—d co&= _ s}
JJ x exp(log’x) S ”Z; n exp(log’n) =

(18)
fa<<y<2or y<<a<<2, by (1)~(3),(9),
(12) and Markov’s inequality, we have

b D e EL(Y, —EY )] < b2 D)k EY? <

i=1 i=1

Q = ni X
bt akE [Xg("“,) }+
i=1

n

DIV auX | =) <
i=1

7 ‘3 ﬁ ﬂ
~ [pfal | X7 (pa,q X
CZ £ [ b Q( b *

(,2“'“ Bl X 1<—-——S a9

bl n? ' log""n

So, by (18) and (19), we have

b,
I, = En_lexp T . R <
o [ 41>0aL EL(Y, — EYQZ]J

i=1

1
n=1 N EXp( n B/a—1 IOg'B'”Vn )
1
S
n=1 neXp(logﬂ/}’n)
If a<<2<y or a<{2<(7, then f§=7v. By (2),

the Holder inequality and the Jessen inequality,

<

oo

©o 200

we have

Slas < (Daz) (1) <
i=1 i=1 i=1

and

EL XDV < EL X "D for0<a<7y
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So, by (1),(3),(9),(12) and Markov’s
inequality,

b D aL EL(Y, —EY)] <

i=

bt D ak EY, <

i=1
Noan &l o, (rasX
- E o | Y——
;b"z [X O( b” j}+

DV anX |>p,) <
i=1

~ N oAy * #am‘X
C X |‘gl——
- b [| |é( b j}_‘_
Q am'y =
255 ENX <
i=1 n
C . Cn
CC RO X1 SO BIIX 7]
og“’"n

C C
log*"n ’ n” " log n
By (18) and (21), we have

. bl
122227171exp_ " R . <
= [ 4ZaiiE[(YI—EYi)2]]

i=1

717 a—1 log1+a'7n
Zn exp|— —— <
n

2D

= n"“ 'ogn + log
1
= nexp(log”"n)
Together with (10), (11) and (16), (18)
holds. This completes the proof of Theorem 0.2.
Suppose that 0 <B<<2 and
{X,, n=1} is a sequence of upper END random

(22)

Corollary 2.1

variables, there exist a random variable X and a
constant C satisfying (1). Assume {a,; 1<<i<n ,
n=1} is an array of real positive constants such

that (2) holds, and further assume that
E[l X [F]<e (23)
(nlog'™® n)"#,6>>0, we have

Z n—lv(Zam(x

n=1

Then for b, =

c;) >eb,,)<®©(24)

where ¢, =0 if B<1, and ¢,
Further, if {X
dependent, then

E n 'V (Za,,,( X,

n=1

=EX, if p>1.
.» n=1} is extended negatively

g,)<—eb,7)<(>0

(25

where ¢; =0 if B<<1, and ¢, =X, if B>>1.
In particular, if {X,. n =1} is extended

negatively dependent and EX, =¢X, for =1, then

i n 'V (‘ ia,,i(X,v —
i=1

)| > b)) <eo
n=1
(26)
Proof We use the same notations as those in
Theorem 0.2 and the proof is similar to that of

Theorem 0.2. Without loss of generality, we can

assume that EX,, =0 when f>1. To prove (24), it
suffices to demonstrate I, < c° and I, < <o, Note
that b, =n"“log"” n in Theorem 0.2, if f=a=7Y,
we can not get I,<Co° and I, <{oo, Therefore, we
can modify and improve the condition of b, =
n)'8,6>0 and we just
need to prove I,<Coe and I, <<c<o,

By (2), (23), (9) and Markov’s inequality,

we can show that

Zn‘lZ V(| a, X, |>06,) <

n=1
o (' a/ziX |) _
e )17

2;&21@[1

> ’IEVH anX | = b)) <

n=1

B N
S ELX )<

l/a

log"” n to b, = (nlog"”

2%<oo 27

where 0<8<<2. And by (1),(2),(9).(12),(23)
and Markov’s inequality, we have

Iyl—Zn—lb PZaﬁz E[lY,—EY, |”]<

n=1

En Lbyt Zan,E[IY "] <

n=1

2 -1 /),,PZa{;E [| X |%(““;’X”+

n=1 i=1 n

Zn_IZVH anX | ub,) <

n=1 =

N — — = arrr | X |ﬁ A pi X
St wzﬁ[*‘ AL (e X) ]
i=1 n

n=1 bn

DICHLPELX 1<

n=1
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- .o
czwz%m X 1F]<
n=1 i=1 n
N C
Dl < oo (28)

nlog™n

n=1

This completes the proof of Corollary (2.1).
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