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0 Introduction

A recent study presented by Boucher et al.
introduced a noncommutative ring F,[x.0]. called
skew polynomial ring, where F, is a finite field
with g elements and ¢ is a field automorphism of
F,. Boucher et al.""™' considered the structure of
cyclic codes closed under a skew cyclic shift over
F,[x.0]. namely, skew cyclic codes. where the
generator polynomials of skew cyclic codes come
from the ring F,[x.0]. Further. they gave some
examples of skew cyclic codes. the Hamming
distances of which are larger than the best known
linear codes with the same parameters. Based on
that, a lot of researchers focused on skew cyclic
codes. Recently, Cao™ investigated the relation
between quasi cyclic codes and skew polynomial

and  Ulmer™

polynomial in

rings. Boucher introduced the

factorization of skew skew

polynomial rings. These results allowed them to
study the skew self-dual cyclic codes with
length 2°.

Later on. Abualrub et al.”" delined skew
quasi cyclic codes over these classes of rings .
Jitman et al.”! defined skew constacyclic codes by
defining the skew polynomial ring with coefficients
from finite chain rings. especially the ring F,. +
uF ,, where u* = 0. Abualrub et al.”"’ considered
skew cyclic codes over the non chain ring F, +v F,
with v* =v by defining the automorphism 0, :v —

v+ 1.However, Gao'® generalized this result over
F,+vF,.

structural properties of skew cyclic codes through

Gursoy et al.”®! investigated the
the decomposition method over F,+ vF,, where
v'=wv and ¢ = p™. In Ref.[10], the authors studied
the structural properties of skew cyclic codes over the
ring F,+ vF, with v* = 1 by considering the
automorphism @, : v — — v. They proved that skew
cyclic codes over F; +vkF; are equivalent to either cyclic
codes or quasi cyclic codes. A lot of work has been
done in this direction such as Refs[11-12].

In this paper, we study skew cyclic codes

defined by the
coeflicients over the ring R=F ,+ uF 6+ oF,6 +

uvF,+v'F,+ uv’F,. In our work, we consider

skew polynomial ring with

the automorphisms R—~>R, a, Ta,ut+asv+auv
+asvt +agun? > oal Tabutal'v+aluo +

;
at

v® +a? uv®. The skew polynomial ring in our
case is denoted by R[ x,0; ], where the addition is
addition and  the

the usual  polynomial

multiplication is defined by the rule xa =6, (a)x,

(a €R).

1 Preliminary

Throughout this paper let R be the
commutative ring F, + uF, +vF,+ woF,+v'F,+
wv’F,={a, +a,u+asv+auv+asv* +asuv®,
where «; €F,,1<<j<<6} with «”=1,v"=v and
uv=vu. And R, denotes the non-chain ring F,+
uF, with u* = 1. Then R=R, +vR, + v*R, can
also be thought of as the quotient ring F,[u,v]/
(u?—1,v° —wv,uv—wou). It is easily checked that
R is a Frobenius ring but not local. The definition
of the Gray map from R to R?{ is defined as ¢(a +
bvt+cv’)=C(asatbt+c.a—b+tc), where a,b,
¢ €R,. The Gray map ¢, from R, to F, is given by
¢1(atbu)="C(a,b), where a,b € F,. So we have
the following definition.

Definition 1.1  The definition of the Gray
map from R to F. is given by ®( a, t+a,u—~tasv+
auvtasvt+asuv) =C(a,arsa, *+a;+ass.a, +
a,tass ar—as;+ as.a, —a, T as), where a; €
F,. j=1.2.3.4,5.6.

This map @ can be extended to R" in an
obvious way. The Hamming distance dy (x,y)
between two vectors x and y over F, is the
Hamming weight of the vector x+ — y, that is,
du(x,y)=wy(x—y) . The Lee weight w, (x) of
“vx,-1) €R" is defined as w, (x) =
wy (@(x)). For any x,y € R", the Lee distance

1‘:(1'09119”

between x and y is given by d, (x,y)=w, (x —y) .
A linear code C of length n over R is an R-
submodule of R". It is easy to verify that the Gray

image of a linear code over R is a g-ary linear code.
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According to the deflinition of Lee distance, we
have the following lemma.

Lemma 1.1 The Gray map @ is a distance-

preserving map {rom (R", Lee distance) to (F",
Hamming distance) and this map is also F,-linear.

Proof It is clear that ®(x —y) =0 (2) —D(y)
for v,y € R". Thus, d, (x,y) =w, (x —y) =
wy (@(x—y))=wy(P(x)— P(y) )=dy( P(2),
d(y)). Letx,yER". k1.ky; €F,. then from the
definition of Gray map, we have @ (k,x +k,y) =
bk, ®@(x)+k,®(y). This means that @ is F,-linear.

Similar to Lemma 3.2 in Ref. [11] and
combining Lemma 1.1, we have the following
lemma.

Lemma 1.2 ILet C be a linear code of length n
over R with rank £ and minimum Lee distance d ,
then ®(C) is a [6n, k&, d] linear code over F,.

Proof From Lemma 1.1, we see that @(C)
is an F -linear code. What is more, we can easily
obtain that @ (C) has dimension %/ and length 6n
since @ is a bijective map from R” to Fy". Note that
the Gray map @ is a distance-preserving map. So
@ (C) has the same minimum distance d. Let C be
a linear code over R. The dual C+ of C consists of
all vectors of R” which are orthogonal to every
codeword in C. A code C is said to be sell-dual
(resp. self-orthogonal) if C=C" (resp. CESC*).
Letx=C(xosaxys s x,—1) and y = (ygay;s s

v,—1) be any two vectors over R”, we define the
n—1

usual Euclidean inner product by x « y = El‘,y,-.

i=0
An important connection that we want to
investigate is the relation between the dual and the
Gray image of a code. The following theorem
resolves this issue.

Theorem 1.1 Let C be a linear code of length
n over R. If C* is its dual, then ®(C)=&(C) .
Moreover, if C is self-dual, so is ®(C) over F,.

Proof Let c=C(coscis°*5c,—1)EC, where c;
=catenutcesvteiuvteso’ tesuo’. Take ¢f
=(c'gsc1ane’ ) ECE. where ¢/, =c¢" 1+ hu
¢ ot wuvtc v+ suv?. Then we have ¢

=A,+Aut+Av+tAuvt+Asv*+Asuo® and ¢

=B, +B.,u+B;v+B,uv+B;v®+ Bsuv®, where
A;=C(coacyjssc,om;) and B, = (c'yjac’yjs s
¢vor) for j=1,2,
then we have
A B +A;B,=0. A B, +A.,B, =0,
A B, +A;B,+A;B, +A;B; +A,B, +
A.Bs +A;B; +AsB, =0,
A B,+A:B;+A;B, +A;Bs +A,B, +
A,B; +A;B, +AsB,; =0,
A B; +A,B; +A;B; +A,B, +A:;B, +
AsBs +AsB, +AsBs; =0,
A By +A.B; +A;B, +A,B, +A;B, +
AsBs +AsB, +A;B; =0.

Note that ®( ¢) + @( ¢’ ) =0, which implies
O(C ) SP(C) . Since [CICH| =] ]
|&(C)~ | =¢* and |@(C-)|=1Ct| ., then we get
|®(CH) = [@(C) |. Hence ®(CH=D(C). If C
is self-dual, then @(C)=@(C+)=P(C)~.

<+, 6. Since ¢ * ¢'=0in R,

2 Linear codes over R

By the Chinese Remainder Theorem, we have
R=0—-v ) R® Q2 'v+27"'v")RD
(=27'v+27"v)R =
(1—9DR, P 2'v+2"9"HR, @D
(—27'v +27"9DR,,
and R, = 27" +w)F,®27'(1—u)F,. Hence R=
277+ w) (1—oHF,®27' A —w) (1= F,®
17" A+ w) (ot o) F,@ 47 (1 —w) (v +0)F,@
17 A+ (—v+0v)HF,@47 ' A—uw)(—v+0")F,.
For the sake of convenience, we denote the
clements in R by 715 726 75s 7us 75s s
respectively, ie.. 7, =27 (1+u) (1 —2"), 9, =
27 d—w)A—0"), ps=4"U+uw) (v+v*), .=
17 d=w (o+2"), ps=14"U+u)(—v+2v°),
75 =4 '(1—u)(—v+v°). Note that y, (; =1,2,

3,4,5.6) are mutually orthogonal idempotents

over R and 2637], = 1. Let C be a linear code of

length n ove;:;{. For 1<C i<C6, define

Cio=x, €F)| Az, € Fioj={1.2..6)\{i}.
s.t. imit, € Cj.

Then C, (;:12 1,2,

<+, 6) are all linear codes of
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length n over F,. Moreover, the code C of length
n over R can be uniquely expressed as

C=nC @ 9C,DnpC;DnC, O nC:s D psCs

o)

Let C, expressed as Eq.(1), be a linear code

of length n with generator matrix G over R. Then,

since C is an F,-module, the generator matrix G

can be written as

7]1G1
G: Y].ZG2 )
7]6G6
where G,, G,,G;., G,,G5 and G4 are the generator
matrices of C,, C,, Cy;, C,, C; and Cs,

respectively., Now, as an F,-module, the gray
image of C under the Gray map @ which is a
module isomorphism, is an F,-subspace generated
by @ (G). So we can easily obtain the following
corollary.

Corollary 2.1  Let C, expressed as (1), be a
linear code of length n over R, then d y (®(C)) =
min{d g (C)s du(Cy) sy duy(Ce)}.

We will show that the dual code C of a code
C over R is completely characterized by its
associated codes C; for j =1,2,3.4,5,6.

Theorem 2.1 Let C, expressed as Eq.(1), be
a linear code of length n over R, then

Cr=9.Ct+ @ .C+ D 9:C+ D
7.Ci @ 9:C @ e Cif

Moreover, C is self-dual if and only if C; (j =1,2,
=+,6) are all self-dual over F,.

Example 2.1 Let C be a linear code of length
6 generated by the matrix G over R=F;+uF;+

oF: +uvF. +v*F. +uv®F,, where

7]1G1

.Gy

G:77._ 1)

7]6G6

and

1 2 0 0 0 O
G,=|0 0 1 2 0 0],
0O 0 0 0 1 2

Skew Cyclic Codes over F,[u,v]/(u”—1, v —v, uv—ovu) 865
1 0 0 2 0 O
G,=|0 1 0 0 2 O],
00 1 0 0 3
1 0 0 1 2 2
G;,=|0 1 0 2 1 3},
0 01 2 3 1
1 3 0 0 0 O
G,=|0 0 1 3 0 O],
00 0 0 1 3
1 0 0 1 3 3
Gs=|0 1 0 3 1 3},
0 01 3 3 1
1 0 2 0 0
Gy =10 0 0 3 0].
001 0 0 3

Then C is a self-dual code over R. Moreover, by
Theorem 1.1, @ (C) is a self-dual code over F;
with parameters [ 36,18,2].

3 Skew cyclic codes over R

In the present section, we investigate the
structural properties of skew cyclic codes over R
with automorphism ;. In the commutative case, if
(n,q)=1, then every cyclic code of length n over
F, has a unique idempotent generator. However,
the skew polynomial ring F,[x,0,] does not need
to be a unique factorization ring. Note that if (n,
t;)=1, then the factorization of 2" —1 in F,[x,
0,] is unique, where ¢; denotes the order of the
automorphism 6, (see Ref.[9]). Now, we give the
concept of skew cyclic codes over R.

Definition 3.1 Let R be a ring and 0, be an
automorphism of R. A linear code C of length n
over R is a skew cyclic code with the property that

c=(cosCissc,m) € C=>
o(c) =0(@0;(c,1)+0,(cy)y+,0,(c,2)) € C,
where o (¢) is a skew cyclic shift of c.

The skew polynomial representation of a code
C is defined to be {co+cia+ 4 c,ra" " (cos
iyt sc,—1) €C). For the sake of convenience, it
will be regarded as C itsell. The necessary and
sufficient conditions for a linear code to be a skew

cyclic code are given as follows.
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Lemma 3.1"% A linear code of length n over

F skew cyclic code with
automorphism 0 if and only il it is a lelt F,[x,0]-
submodule of F,[x.,0]/(x"—1). Moreover, if C is
a left submodule of F,[x,0]/(x"—1), then C is
generated by a monic polynomial g (x) which is a
right divisor of 2" —1 in F,[x,0].

We will show that a skew cyclic code over R is

g 18 a respect to

completely characterized by its associated codes C;
for j=1,2.3.4.5.6, and vice versa.

Theorem 3.1
length #n and C=7,C, @7, C,D9.C.D9,C,Dy;C;
@176C5 , where C,, C,. C;, C,, C; and C; are all

linear codes of length n over F,, then C is a skew

Let C be a linear code over R of

cyclic code with respect to the automorphism 0, if
and only if C,, C,, Cy;, C,, Cs and C; are skew

cyclic codes over F , with respect to the
automorphism 0;.
Proof For simplicity, the vector (z', z?,
s (2l 2y, %), ~0vEN\Z) denotes the
codeword of a code of length n.

Let (x},x%,, 22)€C, for j=1,2,3,4,5,6.

6
Assume that ' = Zr),;cji fori=1,2,+,n, then
=1

the vector x =(a2', 2%, 2")EC. If C is a skew
cyclic code, then (0, (x") .0, (x'),+++,0, (z""")) €C.
Note that 6(z) = (4, (x"),0; (x'),+++,0,(x"")) =

6

27]]-((1:}')"' ()P e () L So (8, (2 s
i=1
0, Cxj)seeey 0, (" 7)) = ()P s ()P, ey
(x;"7")*") € C;, which implies that C; are all
skew cyclic codes over F, for j =1,2,3,4,5,6.

On the other hand, suppose that C; are all
skew cyclic codes over F, for j=1,2,3,4,5,6, and

6
y=(y" ", y")EC, wherey' = Zmyj’ fori=
i—1
1.2,+,m, then (yi,y5,, ¥y EC, for j=1,2,-+,
6. Note that (0, (y7).0; Cyi), -, 0, (y;" ') =
((y_’;)ﬁl 9(3/_})/)‘ 9"'9(:)/_7”_1)/)’ )6(:7 forj=192»"',6.
Thus o(y) = 0, (y"),0,(y"), =,0.(y")) =

6
277]((3/’,’)”', ()P ey (3,7 € 9C @
j=1
7:C. D 9;C; D9 C D 9;Cs D 9s Co =C. Therefore

C is a skew cyclic code over R.

In view of the previous theorem., the following
corollary can be easily obtained.

Corollary 3.1 If C is a skew cyclic code over
R, then the dual code C* is also skew cyclic.

Proof By Theorem 2.1, we have C' =
71Cr@ 9.Cr @ 9:Cy @ 7.C @ 7:C @ s Ci
According to Corollary 18 in Ref.[27], we know
that the dual code of every skew cyclic code over
F, is also skew cyclic. Hence the dual code C* is a
skew cyclic code from Theorem 3.1.

Next, we give the definition of skew quasi
cyclic codes over R.

Definition 3.2 Let C be a linear code of
length n over F, and (¢'[c¢”|++|¢') be a codeword
in C divided into [ equal parts of length s where n
=sl. If (6(c")]a(c®)|]a(c'))€C, then the
linear code C which is permutation equivalent to C
is called a skew quasi cyclic code of index [ or skew
[-quasi cyclic code.

Based on the definition of skew quasi cyclic
codes, we have the following corollary.

Corollary 3.2 If C is a skew cyclic code of
length n over R, then ® (C) is a skew 6-quasi
cyclic code of length 6n over F,.

Proof The result follows from the Definition
3.2 and the definition of Gray map .

We are now ready to consider the generator
polynomial of a skew cyclic code of length =
over R.

Theorem 3.2 Let C=75,C,®9.C, Dy C,D
774C4@775C5@776 C; be a skew cyclic code of length
n over R and assume that C; ={(g; (x)) for j =1,
2.3,4,5,6, then C=<(p g1 (x) 9282 () ams85 (),
7.8 Cx)s 585 (x)s g5 () ) and | C [=

6n— deg(gj ()
gt 2 e o
Proof

denote the ideal <(pig1 (x)s 9282 Cx )y psgs ()

For the sake of convenience, we

7ug1(x)s 585 () megs (x) ) by I. In the
following, we prove C=1. Since C, =<(g,; (x)),
|C; | =g o j=1,2.3,4,5,6, and C=7,C,; P
7:C. @ 9,C; @ 9,C, @ 9;C; @D Cs5 then C =

[
[ 200k g ) |k () € F L2071 < j < 6}
i=1



