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0 Introduction

The class of quadratic residue codes over finite
fields plays a significant role in algebraic coding
theory. They are cyclic codes of prime length
introduced to construct self-dual codes by adding
an overall parity-check. They have been studied
since the 1960’ s by Gleason, and in a series of
reports by Assmus and Mattson. They are
intimately related to Mathieu groups and Witt
designs. Their generalizations over rings have been
considered"-.

[, Bonnecaze A et al. studied quadratic

In
residue codes over Z,, and their associated
unimodular lattices. Gao ] et al. researched some
results on quadratic residue codes over the ring F

, toF, +v'F,+v'F, in "1, Kaya A et al. studied
quadratic residue codes over F,+ vF, and their

L Bl Liu Y et al. discussed

Gray images in -*, In
quadratic residue codes over the ring F,+ vF,+
v*F,. Pless V et al. defined the quadratic residue
codes over ring Z,., and its related properties are

1 In ™, Raka M and Kathuria

discussed in

discussed (1 — 2u«® )-constacyclic codes and
quadratic residue codes over F,[u J/{u’ — u).
Zhang T et al. studied the quadratic residue codes
over F ,+vF , in ",

Following the above trend, this paper is
devoted to studying quadratic residue codes over
the ring F, +uF,+ vF,+ uvF,+ v*F, + uv’F,,

where p is an odd prime. This ring is semi-local of

order p°.

1 Preliminary results

Throughout the paper, we let R denote the
commutative ring F, + uF, +oF, + uvF,+v*F,+
uv’F,, where u* =1, v =wv, and p is an odd
prime. R is a ring of characteristic p and of size
p'. Clearly, R=F,[u.v]/{u’—1,v" —v,uv—
vu ).

For any positive integer a, il there is an

integer b (0<b6<p) such that «b=1 (mod p), we

1
write b=a ' =—. It follows that v* —v=v(v+1)
a

(v—1). Let y,=v, y,—=v+1, y;=v—1and y,=
v —u
Vi

such that a,y, +b,y,=1, where R, =F,+uF,. Let

for i=1,2.3. Then there exist a; »0; €R,[v ],

ei:hl;/,-. Then we have R =¢,R @e,R@Pe,R =¢,
R, ®e:R,Pe;R,. Through a direct calculation, we
obtain R = (1 — 2 )R, @27 (v* —v)R, @
27 ' (v*+v)R,. Similarly, we have R, =2""(1—u)
F,®2'(1+uwF,. Thus we obtain R=(1—v")R, D
27 (v =R P27 (v + )R, =2"1"(1—u)(1—
vHF,D27'(14+uw) (1—v)F, D47 (1—u) (v* —
U)F,,C—EA:ﬂ(1—|—u)(vz—v)Fl,@471 (1—u) (" +v)
F,®47'(1+uw) (v +v)F,.Denote by 71579557+
74375 + 76 respectively the following elements of R :

m=2"0—uwd—2v"),

7. =27 (1L +u)(1—2v%),

7 =47 (1 —w) (v —v),

7 =410+ w (v —v),

7 =47 (1 —w) (v* +v),

7s =47 (1 +w)(v® +v).

Then we have following direct results from
the ring theory.

G) s M2s Mss s W5 W arc Nnon — zero
idempotents in R, and 5,9, =0, if i fori,; €
{1.2,3,4,5.6}.

GD g+ Ty T 79+ =1.

For convenience, we let R,=R[x]/(z?—1)
and f (x) will be abbreviated as f if there is no
confusion. If ¢ € R, such that ¢* =e¢, then e is
called an idempotent in R,,.

The following results play a crucial role in
studying cyclic codes.

Lemma 2.1
T fe oS oS b opsfs b opefs is an
idempotent in R, il and only il f, are idempotents
in F,[x]/{z?"—1) fori=1,2,3,4,5,6.

Proof Let g=2>°%, 7;f: be an idempotent in
R,. Then g —g° = (S, g f) = S g ft = 0,
n:f s which implies f7= f, fori=1,2,3,4,5, 6.

Conversely, il f,; are idempotents in F,[x ]/

With the notation as above, 7 f1
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(x'—1), then (Xi_, 9. f )" =20 gifi= 20,
nifis somfi g fo g fo T fut sty fs
is an idempotent in R,.

Let S be a commutative ring with identity.
Then we have the following propositions by similar
methods in Ref.[5].

Proposition 2.1  Let C be a cyclic code of
length n over S generated by the idempotent &(x)
in S[x]/(x"—1). Then its dual C" is generated
by the idempotent 1—&(x "),

Proposition 2.2 ILet C and D be cyclic codes
of length n over S generated by the idempotents
&, inS[x]/{x"—1). Then C\D and C+D are
generated by the idempotents £,&, and &, + &, —
£:&,, respectively.

Let M be a 6 X 6 matrix
satisfying MM® = A1, ., where M’ is the transpose

Proposition 2.3

matrix of M, I, the identity matrix and A € F,.
The Gray map associated with M from R to F § is
defined as @y (ay Faru +aszo + a,uv + as0* +
asuv’)=C(a,—a,sa, Ta;,a;—a; —as;+ta,ta;—
agra,ta,—as—a, tastas,a, —a,tas—a,+
as—agsa, ta,tas+ta,tas+as)M for any a, +
a,utasvtauvtasv® +asuv’ € R, where a;,
ass ass ass ass as € F ,. Then this map is

naturally extended to R".
3 Cyclic codes over F,+ulF,+vF,+
uvlf, +v:F, ‘+uv’F,

In order to study the quadratic residue codes
over R, we first introduce, in this section, the
structure of cyclic code over R.

Let C be a linear code of length n over R.
We define

Cir={x, EF}:qxy.x5.2,.75:25 €
F 7, such that g2y + 9222 + 95205 +
nix, t x5 Hgsas € Chs
C,={xy €F} . dx1.x5,2, 25,24 €
F ', such that 121 + poas + 93205 +
N, T sas Hsas € Chs
Co={ax; €EF . ,x0,2,-75.75 €
F 7 such that g2y + 222 + 9525 +
nix, tpsxs Hpsas € Chs

Ci={x, €F .3 .202.25.2;5.24 €
F ;, such that g2y + 9.2, + 9525 +
nxy+psxs tpexs € Chs
Cs={x; € F}.:3x.a5,25.2,,25 €
F 4 such that g2y + 9.2, + 9525 +
nxy + x5 + s € Chs
Co={xs €EF .32 20,252,735 €
F 7, such that g2y + 9.2, + 9525 +
iyt ysas Hygsas € Ch.

It is easy to verify that C;(:=1,2,3,4,5,6)
are linear codes of length n over F,,C=9,C, ®
7:C, D, C, D9, C.D9;C:DpsCy and [Cl=|C, |
[C. [ 1Cy I IC TG TIC ]

Then we have the following theorems and we
give the proofs for completeness.

Theorem 3.1 LetC:mCl@r}zCz@r]ng@
7]4C4@7]5C5@1]6C6 be a cyclic code of length n
over R. Then we have

(1) C is cyclic over R if and only il C, (i =1,
2,3,4,5,6) are cyclic over F,.

(D U C,=(g,(x)), g:.(x)EF,[x]/(a"—
1, g; (@) (x"—1), then C=ngi (@), g (),
7385 () uga (x)s 7585 (x)s psgs (x)) and
| € |=prSiostate:,

Proof (i) Let s=C(sqs5;5°*s5,—1) € C such
that s, =qa;, T 7.0, T psc; Tud: T yse 96 f s
where a;s biy cis dis eis [ E€EF,, i=0,1,--,
n—1, and a = C(aysa,s-
Du—1)s ¢ = (cogscysrscym)s d=0C0dosdys s
vl ) = (Fos frs s
fu-1). Thena€C,, bEC,, c€EC;,dEC,, ¢e€
Cs, and f€C;. Since C is cyclic, (s,—1 5508515
soe) =(pia,— 920, F e tpd, i Fpse,
96 Sam1s practybotyscoTpido T ysect s fos
s ma,— b, t e, Tud, e T se, 0+
s fu2)=ma,saos = sa,—2) T 9 (b, 15bos,
bu—2) T 55 Ccomrvcosmsc,—) T (dymyadys s
dy )t s Ceirensrse, )9 Cfurs foss
[ €C=79C D9C, D9, C, D C,Dp:C; D
75Cs il and only il (a,—1says s a,—2) € Cy,
(D1 5b5 s 3b,—2)ECsy (crumiscosrsc,—2) €Cy,
(d,—1sdossd,—2) €EC,, (e,_1se9sse,—3) E
Css (fusisfoss fu2)€Cs,s e, C;(1=1,2,3,

'961,,—1)9 [):(/)09[)19"'9

d,,—l)a e — (6()961’
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4,5,6) are cyclic over F,.

(iD I c€C=nC DnC.D9C;DpC, D
7:C;@9sCss then c =20 pg.fis fL€EF,[x],
i=1,2,3,4.5,6, s0 C={n1g1+7:82+"""+ 9585 ).
s 6862 &C. Let
F=20 0 igisi € (g pagas -
s;€R[x]. i=1,2.3,4,5,6, then f= 20, ng,
Gpa; + 920, + pse; + pud; + pse; + 95f) =
e megs ) &C.

Hence, C={pg1(x) 9282 (x5 p3g85(x) s g (),

Next, we prove (7181 92825 **

/P Y where
2?:1771-5;',57 E C9 I.e. <7]1g1 s 282
7525 () s 7sgs(a)) and | C | = por Bioideter

Theorem 3.2
n over R. Then the following holds.

Let C be a cyclic code of length

(1) There exists a unique polynomial g (x) €
R[] such that C=<(g(x)), where g(z)=2"%,
nigi(x) and g (2) |x"—1.

() U g, ()h,(x)=z2"—1fori=1.2,3,4.5,
6 and lL(l‘)ZZLn;,»hi (x), then
—1.

g(x)h(x)=x"

Proof Assume g = 2!-,7,g,, then (g)=C
=181 W28z Ns8as aLis Ps&ss Ps&s. On the
other hand, since 7,7, =0(i7#j), we get 9,8, =
7:2 and thus C&=(g). Hence C= (g (x)). Let g;
(Oh, ()=z2"—1, i=1,2,3,4,5,6, h(x)=27,
nh; (x). Then g (x)h (x) = I 7, (2" — 1),
hence g (x)|x" —1. This proof is completed.

In light of Theorems 3.2,

following propositions and they can be similarly

we have the

proved.

Proposition 3.1 Let C be a cyclic code of
length n over R with gecd (n,p)=1 and C,=<(f,)
with f; (¢ =1,2,3,4,5,6) being idempotents.
Then there exits a unique idempotent e € C with e
=2 7:f such that

(1) C=<(e).

(i) Ct={1—e(x ).

Let C be a cyclic code of
length 1 over R and let C be its dual. Then

(i) CH=npCt @D .C+ Dy,C+ Dy, Cr D
7:Cs D7 Ci.

GD Ch=Cpihi s pohd spshy sqihi s pshi s

775h$>, where A is the reciprocal polynomial of

Proposition 3.2

/'L,'a 7::192939495’6.
(i) | CF | = p Dil-rdests

4 Quadratic residue codes over I, +u I,

+viF, tuviE, +v:IE, +uv’l,
In this section, quadratic residue codes over R
are defined in terms of their idempotent

generators. Let ¢ be an odd prime such that g=-=+1
(mod 4). Let Q, and N, be the sets of quadratic
residues and non—residues modulo ¢, respectively.

Let ri () =11, cq, (x—a"). r,(x)=1l,,ey,
(x—a’), where a is a primitive gth root of unity
in some extension field of F,.

We denote h ()= 2,cq,x'+ hy(x)=2cn,
ziand h(z)=1+h, () +h,()=1+x+ x>+
+x ' =r (x)r,(x). Consider the cyclic codes of
length ¢ defined by

Q=<ri(x)), N=<y(x)),

Q={(x—Dnr,(x),

N=((x—Dry(x)).
Lemma 4.1 If p>>2 and ¢==+1(mod 4), then
idempotent generators of Q, N, 6, N over F, are

given by

E, () :%u +%> —I—%(%—%)hl n
%<%+%>hz,

E, (o) =%<1 +é) +%<5 —%)hz +
%%Jr%)h“

F,(o) =%<1—%> —%<$+%>hl -
%(%—%)hg,

F, (o) :%u —é) —%(é—ﬁ—%)hz -

g

respectively, where 0 denotes Gaussian sum and

1 1 1
?(;—*)hl ’

X (i) denotes Legendre symbol, that is
- 1,7 € Qs
f=>X(i)a  XG)=1—1,i € N,;
o 0. p|i.



606 TR FRAKFF R

$ 47 &

For convenience, we let e, = E,(x), e, =
E.(x),e,=F,(x), e,=F,(x).

Lemma 4,2 Let p be an odd prime and let
7, Ci=1,2,++,6) be as in Preliminary results.
Then gre; T 9.¢; T yser +nue, +pse, ty5e, s prie; +
n.e; T ns€ T nie, Tyse,, 7€, are idempotents in
the ring R,=R[x]/{(x?—1), where e, ¢;. e,
e;» e,»e,arenotall equal ande;, e;,e,,¢,,e,,
e, are not all equal for i, j, bk, L, m, n€{1,2}.

According to Lemma 4.1, by direct
calculation, we get the following lemma.

Lemma 4.3 With the above notation, ¢, e,
=1+lh , e +Ez=l—ih, e, —e, Zih , ey €,
q q q

:l]“ ee,=—h and e,e,=0.
We now define quadratic residue codes over R.
Definition 4.1 Let ¢ be an odd prime such
that p is a quadratic residue modulo ¢. The
following sixty-two codes are deflined as quadratic
residue codes over R of length g.
(i) Fori=1,2,3.,4.5,6,
Q=1 —77[)61 Jr77,62>» Qiss =
(piev + (1 —7ydes) s
S;={1—9ye, + e,
Siva =&, + (1 —n)ey).
(i) For 15 <5, i</ <6 and k= 2 (6—0)+
joie E=T7,8,,21,
Q. ={(g;+9)es + A —1np —n;)ez
Quint =L =, — e+ (g + 7)€
Sy =g +9)e, + A —95: —9q;)e.),
Sirn = —9;, —g,)e, + (g + 9,0,
(iii) For 2<i<{5, i<{j <6 and l:é:l(é'—t)—F
j 10, ie. {=22,23,++,31,

Q=g+ +nler + A= —p —7ne))s
Qrisi =X —np—p —y)es +p+ 9 +9)e2,
S, =y +y+yder + A —n —y —9p)ex),
Sia =(A =9 — 5, —g)e + (g + 9 + 9,022

By Definition 4.1, we can obtain the following
theorems.
Theorem 4.1 If ==+ 1(mod 4), with the

notation as in Definition 4.1, then the f[ollowing

assertions hold for the quadratic residue codes
over R.
(i) @, is equivalent to Q, ;5 and S, is

equivalent to S,,+5 for m=1,2,---,31.

1
(D) Q, NQ,n = <;h Y, Q, Q.5 =R, for
m=1,2,++,31. Moreover, we have S,, 1S, s =

1
{0}y and S,,+S, 51 =¢1——h), m=1,2,+,31,
q

(i) S; ﬂ<é/1,>:{0}955+<$h>=Q, for i =

1,2,3.4,+--,62.

Gv) |Q,|=p* "V, |S;|=p* P fori=1,2,
3s4,000,62.

Proof (i) Foranya€F,", n€ N, let u,
be the multiplier map u, : F,—F, given by u, (a)
= na (mod p) and act on polynomials as u,
(2. fx’) =2 fix?. Then w, (hy) =h, and
u,(hy)=h,. Therefore u, (e,) =es, u,(e;) =e;,
u, (@) =es u,(e;)=e;, sou, ((1—=9)e +ye;)
=—9e.tyers u, (g, +5)er +(L—9,—79;)
e)=(p;Typ)e:+ A= —75)ers u, (g +7+
p)ei+—g —9—9)e) =G +q. 9,0+
(A=g =9 —9)ers u, ((I1—y)e, +ye,) =1~
pe,tyes u, (g, +9)e, + (1 —n —y)e,) =
(gitpie.+A—n,—g)ers u, (G +9)e +
A=p—ypi—p)e)=Gp+yp+9)e, + 1 —g —
70

(i) When m=1,2,3,4,5,6, let T=(1—9;)
e1 +ne; and T/=(1—77,)ez+77;el;?=(1-77,)?1
+ 7., and ?/:(1—77,)224-1]1-21.“7(3 note that T+
T =e,+e,, TT =e,e,, ?—f—?/:?l +e,, TT =
z,2,. Therefore by Proposition 2.3, Q; N Q,.5, =

<TT/>=<elez>=<%h>, and Q;, +Q,yy =(T+T'
—TT' y=(e,+e,—eje,)=C(1)=R,3S, NS, 5 =
(TT)=(e,e,)={0}, and S, + S, s =(T+T ' —
ﬁ/>=<a+a—azz>=<1—%h>.

Similarly, we can prove the result when m =

7,8,+++,31. This proves (ii).
(iit) Using Proposition 2.3, when :=1,2,3,

— 1 1
4,5,6, we have T(;h)z((1—77,»)51—0—7],»52)(;}1)
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— 1
=((—9e, +ye,)(1—e; —e,)=0. And T+;h
1
:(1—77,-)?1-!-77,52+(1—7;,v+7},-)(;h):(1—1],-)
- 1 B 1
(el—F;h)-f—'/},- (ez—F;ll): (I —=7p:) e + e,
1 — 1
Therefore S; ﬂ<;h>=<T(;h)>={O}, and S; +

1 — 1 =1
(—h)=(T+—h—T(—h))=(1—g)e + e
q q q

:Q,'. This proves (1i1) for i1 =1,2,3.4,5.6. For
i=7,8,+,62, the proof follows on the same lines.
(iv) According to (ii), we have |Q, N Q; 4 |

1
:|<;h>|:p6, and since p™ =|R, | =1Q, +

2

:gi Hgi+31 : _ |C;;6| , |Q, |2 :p6(q+l) , SO
i i+31

|Q1‘ | :p3(q+l)‘

P for i =T.8. 0

Qirn | =

Similar argument gives | Q; | =

,31. Now for i=1,2,:+,62,

\ 1 1
we have p*“t’ =[Q, | = |S,-+<?h>|=|si||<;

RY1=1S,1p°, since |sim<éh>|:|<o>|:1. This

giVES |Sz | :p3(<1—1).
Theorem 4.2

quadratic residue modulo ¢, then the following

If g=3(mod 4) and p is a

assertions hold for the quadratic residue codes
over R ;
() Q+=S,,i=1,2,-,62,
(i1) S; is self-orthogonal, i =1,2,-:,62.
Proof As —1& N,. according to Proposition
2.2, since C;={e,), we have C{ =(1—e, (27 "))
1

1 1 1 1
. - I - - -
with 1—e; (') =1 > (1+7q ) > (7q 7 Yh,

%(%—%)hl =2, so Ci =<(&;). Similarly, C;- =
(e,). For i=1,2,3,4,5,6, we have Q;'! =(1—((1—
ni)er T e (7)) =((1—9)e, + e, which
implies Q+ = S,. Using (iii) of Theorem 4.5, we
have S, ©Q, =S;'. Hence, S, is self-orthogonal.
Similarly, we also have Q; = S and S, is self-
orthogonal for i =7, 8, -+, 62. This proves the
results.

We get the [ollowing proposition, whose

proof is easy and thus omitted.

Proposition 4.1 If g=1(mod 4) and p is a
quadratic residue modulo ¢, then the following
assertions hold for the quadratic residues codes
over R ;

(D) Qi =S; 5s i=1,2,,31.
(ll) Q#glzsiv izlyzv"°’31-

S Extended quadratic residue codes
over F,+ulf,+vF,‘+uvlF,+vF
2
, tuv’F,
In this section, we discuss the properties of
extended quadratic residue codes over R.
Definition 5.1 The extended code of a code C
over R will be denoted by C, which is the code

obtained by adding a specific column to the

generator matrix of C. In addition, defline the

generator matrix of Q; as

o 0 1 2 g—1
0
0 G,

1 1 1 e 1
where G’; generates S; (i =1,2,+-+,62), and the
row above the horizontal bar shows the column
labelling by F , Ueo.

Theorem 5. 1

notation Q; (i = 1,2, -

If g=3(mod 4), with the
,62) as in Definition 4.1,

then Q- =Q,. In particular, if g=—1C(mod p),

then Q. are self-dual.

Proof Theorem 4.1 tells us that Q; =S, +

1
<;h> (i =1,2,++,62) and then the generator

matrix of Q; is

o 0 1 2 qg—1
0
0 G,
11 1 1
_1 R — — ces _—
g q9 q q

~/ . . .
where G, is a generator matrix of S;. Since S, are

sell~orthogonal, any two rows of G’; are
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orthogonal. According to the prool of (iii) in

Theorem 4.5, we know that ecach row of G'; are

. 1 .
orthogonal together with the vector (7/1). Since
1

1 — -
(1.h) » (—1,;/1):0, then Q¢ | =1Q; |

p>TV That is, 6} =Q,. In particular, if g=—1

(mod p), Q. are linear codes generated by

the matrix

oo 0 1 2 qg—1
0

0 G’

—1 =1 =1 =1 - =1
Obviously, (1,h) € El . Hence, a,i = 6i.
That is, Q, are sel-dual.
Similar to the proof of Theorem 5.1, we have
the following theorem.
Theorem 5.2 If g =1 (mod 4), with the

notation Q; (i =1,2,++,62) as in Definition 4.1,

then 5} :Q1+31 ’ 5#31 :Qi (i=1,2,--
particular, if g=—1(mod p). then 6} =§;+31 s
Qs =Q (i=1,2,.3D),

»31) . In

6 Examples

In this section, we give some examples to

illustrate the main results obtained in this paper.

Using Magma ', we search, among all the 62

inequivalent codes, the codes having highest

minimum distance of different lengths over
different fields. In the following examples, we take

M,=1; . the identity matrix.

o1 2 2 0 1
01 0o 1 1
2 2 2 0 2 0
Ml: )
1 2 0 0 2
01 0 2 2 1
1 0 1 2 1 0

2 3 3 2 3 3

3 2 3 3 2 3

M, — 3 3 2 3 3 2

2 3 3 5 4 4

32 3 4 5 141

3 3 2 4 4 5
satisfying M\ M| =1, over F 5y and M M| =

21 over F ;.

Example 1 Let p =3 and ¢ =11. The sets of

quadratic residues and non—residues modulo ¢ are
Q,=1{1,3,4,5,9}, and N,={ 2,6,7,8,10},
respectively. Then h, (2) = X,cq, 2’ =2"+ 2" +
2, hz(x)zz,-gl\:qx"ZIIO—f— i el
2+ 2t e =+ 2 T 2P e, =
2t 2ttt ley =22+ 22°+ 2x¢
+ 22°+ 2z, =22+ 22+ 227+ 22°+ 227,
So S, =((1—2""U—w)(I—v* e, +27" (1—w)
(1—v9e,),S; =27 (1—w)(1—v)+27'(1+
wA—u* e, +A—27"1—w)(1—2vH)—2""+
w) (1—v*)e,).

The codes over F,

extended quadratic residue codes over R are as

obtained from the

follows:

- Dy, (61) isal[72,36,6] self-dual code.

« @y, (Qy) is a [72.36.12] self-dual code.

Example 2 Let p =7 and ¢=3. Then A, (x)
=z, ho(x)=x%, e, =32+ 6x + 5, e,=6x"+
3x + 5.ev=x>+ 4x + 3.e, =42+ x + 3. So
S, =((1—2""U—w)Q—v* e, +27 ' (1—u)(1—
02)e,),S 13} =" (I+u)(1—0")+47" (1+u)
(v*—ovNe, +A—2"'A+w)(1—v?)—47 (1+uw)
(v —wv))e,.

%>.S31y=(% 27" (1—w) (1—ov) +47 (1
—w) (W Fo)+H47 A+w) (v Fov)e, +(1—27"' (1
—uw)(1—v)—47"A—w) (v’ +v)—47 ' (1+u) (v*
+uv))e, % ).

The codes over F ; obtained from the extended
quadratic and quadratic residue codes over R are as
follows:

- Dy, (61) is a[24,12,3] self-dual code.
« Dy, (Qy) is a [24,12,4] self-dual code.
o Dy, (S1) is a [18, 6, 3] self-orthogonal
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o @Dy, (Sy3) is a [18,6, 9] self-orthogonal

code.

7 Conclusion

In this paper, we studied some properties of
quadratic residue codes over the ring R=F, + uF,+
vF, +uvF, +v*F, +uv’F,, where u’=1, v'=uv,
and p is an odd prime. The research results in this
article can enrich the theory of error correcting
codes over [inite rings. Many codes are derived
from the quadratic residue codes over R.
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