Vol.47, No.7 Jul. 2 0 1 7

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

文章编号:0253-2778(2017)7-0315-08

Quadratic residue codes over $\mathbb{F}_p + u \mathbb{F}_p + v \mathbb{F}_p + uv \mathbb{F}_p + v^2 \mathbb{F}_p + uv^2 \mathbb{F}_p$

QIAN Liqin, SHI Minjia, LIN SOK, PING Jingshui

(School of Electronics and Information Engineering, Anhui University, Hefei, 230601, China)

Abstract: Let $R = \mathbb{F}_p + u\mathbb{F}_p + v\mathbb{F}_p + uv\mathbb{F}_p + v^2\mathbb{F}_p + uv^2\mathbb{F}_p$, where $u^2 = 1$, $v^3 = v$, and p is an odd prime. Quadratic residue codes of prime length n = q over the ring R was investigated, where q $(q \neq p)$ is an odd prime such that p is a quadratic residue modulo q. The cyclic codes of length n over R were studied, and then the quadratic residue codes over R in terms of idempotent generators were difined. Moreover, the relation between these codes and their extended codes are discussed. Finally, two specific forms of idempotent generators of quadratic residue codes over $\mathbb{F}_p + u\mathbb{F}_p + u$

Key words: cyclic codes; quadratic residue codes; generating idempotents; dual codes

CLC number: O157.4

Document code: A

doi:10.3969/j.issn.0253-2778.2017.07.009

2010 Mathematics Subject Classification: Primary 94B15; Secondary 11A15

Citation: QIAN Liqin, SHI Minjia, LIN S O K, et al. Quadratic residue codes over $\mathbf{F}_p + u\mathbf{F}_p + v\mathbf{F}_p + uv\mathbf{F}_p + v^2\mathbf{F}_p + uv^2\mathbf{F}_p = \mathbf{F}_p + uv^2\mathbf{F}_p = \mathbf{F}_p + uv^2\mathbf{F}_p = \mathbf{F}_p = \mathbf{F}_p + uv\mathbf{F}_p +$

环 $\mathbb{F}_p + u \mathbb{F}_p + v \mathbb{F}_p + uv \mathbb{F}_p + v^2 \mathbb{F}_p + uv^2 \mathbb{F}_p$ 上的二次剩余码

钱丽琴¹, 施敏加^{1,2,3}, LINSOK^{1,5}, 平静水⁴

(1. 安徽大学数学科学学院,安徽合肥,230601; 2. 东南大学移动通信国家重点实验室,江苏南京,210096; 3. 计算智能与信号处理教育部重点实验室,安徽合肥,230039;

4. 淮南师范大学经济系,安徽淮南,232038;5. 金边皇家学院数学系,柬埔寨)

摘要:设 $R = F_p + uF_p + vF_p + uvF_p + v^2F_p + uv^2F_p$, 其中 $u^2 = 1$, $v^3 = v$, p 是一个奇素数. 本文研究了环 R 上素长度 n = q 的二次剩余码,其中 q ($q \neq p$) 是一个奇素数且 p 是模 q 的二次剩余.我们首先研究了环 R 上长度为 n 的循环码,根据其幂等生成元定义了环 R 上的二次剩余码,进一步讨论了该环上二次剩余码与其扩展码的关系. 最后,为了验证结果的正确性,我们给出了 $F_p + uF_p + vF_p + uvF_p + v^2F_p + uv^2F_p + uv^2$

关键词:循环码; 二次剩余码; 生成幂等元; 对偶码

Received: 2016-04-30; **Revised**: 2016-12-30

Foundation item: Supported by

Biography: Qian Liqin, female, born in 1991, Master candidate. Research field: Algebraic coding. E-mail: qianliqin_1108@163.com PING Jingshui, Huainan normal university, School of finance, China. E-mail: kepuduolong@163.com.

Corresponding author: SHI Minjia, PhD/Associate Professor, E-mail: smjwcl.good@163.com

0 Introduction

The class of quadratic residue codes over finite fields plays a significant role in algebraic coding theory. They are cyclic codes of prime length introduced to construct self-dual codes by adding an overall parity-check. They have been studied since the 1960's by Gleason, and in a series of reports by Assmus and Mattson. They are intimately related to Mathieu groups and Witt designs. Their generalizations over rings have been considered^[6].

In [1], Bonnecaze A et al. studied quadratic residue codes over \mathbb{Z}_4 , and their associated unimodular lattices. Gao J et al. researched some results on quadratic residue codes over the ring $\mathbf{F}_p + v\mathbf{F}_p + v^2\mathbf{F}_p + v^3\mathbf{F}_p$ in [3]. Kaya A et al. studied quadratic residue codes over $\mathbf{F}_p + v\mathbf{F}_p$ and their Gray images in [4]. In [5], Liu Y et al. discussed quadratic residue codes over the ring $\mathbf{F}_p + v\mathbf{F}_p + v^2\mathbf{F}_p$. Pless V et al. defined the quadratic residue codes over ring \mathbb{Z}_4 , and its related properties are discussed in [7]. In [8], Raka M and Kathuria discussed (1 — $2u^3$)-constacyclic codes and quadratic residue codes over $\mathbf{F}_p [u]/\langle u^4 - u \rangle$. Zhang T et al. studied the quadratic residue codes over $\mathbf{F}_t [v]/\langle u^4 - u \rangle$.

Following the above trend, this paper is devoted to studying quadratic residue codes over the ring $\mathbf{F}_p + u\mathbf{F}_p + v\mathbf{F}_p + uv\mathbf{F}_p + v^2\mathbf{F}_p + uv^2\mathbf{F}_p$, where p is an odd prime. This ring is semi-local of order p^6 .

1 Preliminary results

Throughout the paper, we let R denote the commutative ring $\mathbf{F}_p + u\mathbf{F}_p + v\mathbf{F}_p + uv\mathbf{F}_p + v^2\mathbf{F}_p + uv^2\mathbf{F}_p$, where $u^2 = 1$, $v^3 = v$, and p is an odd prime. R is a ring of characteristic p and of size $p^{[6]}$. Clearly, $R \cong \mathbf{F}_p[u,v]/\langle u^2-1,v^3-v,uv-vu\rangle$.

For any positive integer a, if there is an integer $b(0 \le b \le p)$ such that $ab \equiv 1 \pmod{p}$, we

write $b=a^{-1}=\frac{1}{a}$. It follows that $v^3-v=v(v+1)$ (v-1). Let $y_1 = v$, $y_2 = v+1$, $y_3 = v-1$ and $\hat{y}_i = v$ $\frac{v^3-v}{v_i}$ for i=1,2,3. Then there exist $a_i,b_i \in R_1[v]$, such that $a_i y_i + b_i \hat{y}_i = 1$, where $R_1 = \mathbb{F}_p + u \mathbb{F}_p$. Let $\varepsilon_i = b_i \hat{y}_i$. Then we have $R = \varepsilon_1 R \oplus \varepsilon_2 R \oplus \varepsilon_3 R = \varepsilon_1$ $R_1 \bigoplus \varepsilon_2 R_1 \bigoplus \varepsilon_3 R_1$. Through a direct calculation, we obtain $R = (1 - v^2) R_1 \oplus 2^{-1} (v^2 - v) R_1 \oplus$ $2^{-1}(v^2+v)R_1$. Similarly, we have $R_1=2^{-1}(1-u)$ $\mathbb{F}_{b} \oplus 2^{-1}(1+u)\mathbb{F}_{b}$. Thus we obtain $R = (1-v^{2})R_{1} \oplus$ $2^{-1}(v^2-v)R_1 \oplus 2^{-1}(v^2+v)R_1 = 2^{-1}(1-u)(1-v)$ v^2) $\mathbb{F}_p \oplus 2^{-1}(1+u)(1-v^2)\mathbb{F}_p \oplus 4^{-1}(1-u)(v^2-v^2)\mathbb{F}_p \oplus 4^{-1}(1-u)(v^2-v^2)(v^2-v^2)\mathbb{F}_p \oplus 4^{-1}(1-u)(v^2-v^2)\mathbb{F}_p \oplus 4^{-1}(1-u)(v^2-v^2)($ $v)F_{b}\oplus 4^{-1}(1+u)(v^{2}-v)F_{b}\oplus 4^{-1}(1-u)(v^{2}+v)$ $\mathbb{F}_p \oplus 4^{-1} (1+u) (v^2+v) \mathbb{F}_p$. Denote by η_1, η_2, η_3 , η_4 , η_5 , η_6 respectively the following elements of R: $\eta_1 = 2^{-1} (1 - u) (1 - v^2),$ $\eta_2 = 2^{-1} (1 + u) (1 - v^2),$ $\eta_3 = 4^{-1} (1 - u) (v^2 - v),$

$$egin{aligned} \eta_1 &= 2^{-1} (1-u) (1-v^2) \,, \\ \eta_2 &= 2^{-1} (1+u) (1-v^2) \,, \\ \eta_3 &= 4^{-1} (1-u) (v^2-v) \,, \\ \eta_4 &= 4^{-1} (1+u) (v^2-v) \,, \\ \eta_5 &= 4^{-1} (1-u) (v^2+v) \,, \\ \eta_6 &= 4^{-1} (1+u) (v^2+v) \,. \end{aligned}$$

Then we have following direct results from the ring theory.

(i) η_1 , η_2 , η_3 , η_4 , η_5 , η_6 are non — zero idempotents in R, and $\eta_i \eta_j = 0$, if $i \neq j$ for $i, j \in \{1, 2, 3, 4, 5, 6\}$.

(ii)
$$\eta_1 + \eta_2 + \eta_3 + \eta_4 + \eta_5 + \eta_6 = 1$$
.

For convenience, we let $R_q = R \lceil x \rceil / \langle x^q - 1 \rangle$ and f(x) will be abbreviated as f if there is no confusion. If $e \in R_q$ such that $e^2 = e$, then e is called an idempotent in R_q .

The following results play a crucial role in studying cyclic codes.

Lemma 2.1 With the notation as above, $\eta_1 f_1 + \eta_2 f_2 + \eta_3 f_3 + \eta_4 f_4 + \eta_5 f_5 + \eta_6 f_6$ is an idempotent in R_q if and only if f_i are idempotents in $F_p[x]/\langle x^q-1\rangle$ for i=1,2,3,4,5,6.

Proof Let $g = \sum_{i=1}^6 \eta_i f_i$ be an idempotent in R_q . Then $g = g^2 = (\sum_{i=1}^6 \eta_i f_i)^2 = \sum_{i=1}^6 \eta_i f_i^2 = \sum_{i=1}^6 \eta_i f_i$, which implies $f_i^2 = f_i$ for i = 1, 2, 3, 4, 5, 6. Conversely, if f_i are idempotents in $\mathbb{F}_p[x]/$

 $\langle x^q - 1 \rangle$, then $(\sum_{i=1}^6 \eta_i f_i)^2 = \sum_{i=1}^6 \eta_i^2 f_i^2 = \sum_{i=1}^6 \eta_i f_i$, so $\eta_1 f_1 + \eta_2 f_2 + \eta_3 f_3 + \eta_4 f_4 + \eta_5 f_5 + \eta_6 f_6$ is an idempotent in R_q .

Let S be a commutative ring with identity. Then we have the following propositions by similar methods in Ref. [5].

Proposition 2.1 Let C be a cyclic code of length n over S generated by the idempotent $\xi(x)$ in $S[x]/\langle x^n-1\rangle$. Then its dual C^{\perp} is generated by the idempotent $1-\xi(x^{-1})$.

Proposition 2.2 Let C and D be cyclic codes of length n over S generated by the idempotents ξ_1, ξ_2 in $S[x]/\langle x^n-1\rangle$. Then $C\cap D$ and C+D are generated by the idempotents $\xi_1\xi_2$ and $\xi_1+\xi_2-\xi_1\xi_2$, respectively.

Proposition 2.3 Let M be a 6×6 matrix satisfying $MM' = \lambda I_6$, where M' is the transpose matrix of M, I_6 the identity matrix and $\lambda \in \mathcal{F}_p$. The Gray map associated with M from R to \mathcal{F}_p^6 is defined as $\Phi_M(a_1 + a_2u + a_3v + a_4uv + a_5v^2 + a_6uv^2) = (a_1 - a_2, a_1 + a_2, a_1 - a_2 - a_3 + a_4 + a_5 - a_6, a_1 + a_2 - a_3 - a_4 + a_5 + a_6, a_1 - a_2 + a_3 - a_4 + a_5 - a_6, a_1 + a_2 + a_3 + a_4 + a_5 + a_6)M$ for any $a_1 + a_2u + a_3v + a_4uv + a_5v^2 + a_6uv^2 \in R$, where a_1 , a_2 , a_3 , a_4 , a_5 , $a_6 \in \mathcal{F}_p$. Then this map is naturally extended to R''.

3 Cyclic codes over $\mathbb{F}_p + u\mathbb{F}_p + v\mathbb{F}_p + uv\mathbb{F}_p + vv\mathbb{F}_p + uv^2\mathbb{F}_p$

In order to study the quadratic residue codes over R, we first introduce, in this section, the structure of cyclic code over R.

Let C be a linear code of length n over R. We define

$$C_{1} = \{x_{1} \in \mathbb{F}_{p}^{n}: \exists x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \in \mathbb{F}_{p}^{n} \text{ such that } \eta_{1}x_{1} + \eta_{2}x_{2} + \eta_{3}x_{3} + \eta_{4}x_{4} + \eta_{5}x_{5} + \eta_{6}x_{6} \in C\};$$

$$C_{2} = \{x_{2} \in \mathbb{F}_{p}^{n}: \exists x_{1}, x_{3}, x_{4}, x_{5}, x_{6} \in \mathbb{F}_{p}^{n} \text{ such that } \eta_{1}x_{1} + \eta_{2}x_{2} + \eta_{3}x_{3} + \eta_{4}x_{4} + \eta_{5}x_{5} + \eta_{6}x_{6} \in C\};$$

$$C_{3} = \{x_{3} \in \mathbb{F}_{p}^{n}: \exists x_{1}, x_{2}, x_{4}, x_{5}, x_{6} \in \mathbb{F}_{p}^{n} \text{ such that } \eta_{1}x_{1} + \eta_{2}x_{2} + \eta_{3}x_{3} + \eta_{4}x_{4} + \eta_{5}x_{5} + \eta_{6}x_{6} \in C\};$$

$$C_{4} = \{x_{4} \in F_{p}^{n}: \exists x_{1}, x_{2}, x_{3}, x_{5}, x_{6} \in F_{p}^{n} \text{ such that } \eta_{1}x_{1} + \eta_{2}x_{2} + \eta_{3}x_{3} + \eta_{4}x_{4} + \eta_{5}x_{5} + \eta_{6}x_{6} \in C\};$$

$$C_{5} = \{x_{5} \in F_{p}^{n}: \exists x_{1}, x_{2}, x_{3}, x_{4}, x_{6} \in F_{p}^{n} \text{ such that } \eta_{1}x_{1} + \eta_{2}x_{2} + \eta_{3}x_{3} + \eta_{4}x_{4} + \eta_{5}x_{5} + \eta_{6}x_{6} \in C\};$$

$$C_{6} = \{x_{6} \in F_{p}^{n}: \exists x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in F_{p}^{n} \text{ such that } \eta_{1}x_{1} + \eta_{2}x_{2} + \eta_{3}x_{3} + \eta_{4}x_{4} + \eta_{5}x_{5} + \eta_{6}x_{6} \in C\}.$$

It is easy to verify that C_i (i=1,2,3,4,5,6) are linear codes of length n over F_p , $C = \eta_1 C_1 \oplus \eta_2 C_2 \oplus \eta_3 C_3 \oplus \eta_4 C_4 \oplus \eta_5 C_5 \oplus \eta_6 C_6$ and $|C| = |C_1| |C_2| |C_3| |C_4| |C_5| |C_6|$.

Then we have the following theorems and we give the proofs for completeness.

Theorem 3.1 Let $C = \eta_1 C_1 \oplus \eta_2 C_2 \oplus \eta_3 C_3 \oplus \eta_4 C_4 \oplus \eta_5 C_5 \oplus \eta_6 C_6$ be a cyclic code of length n over R. Then we have

(i) C is cyclic over R if and only if C_i (i = 1, 2,3,4,5,6) are cyclic over F_p .

(ii) If $C_i = \langle g_i(x) \rangle$, $g_i(x) \in \mathbb{F}_p[x]/\langle x^n - 1 \rangle$, $g_i(x) | (x^n - 1)$, then $C = \langle \eta_1 g_1(x), \eta_2 g_2(x), \eta_3 g_3(x), \eta_4 g_4(x), \eta_5 g_5(x), \eta_6 g_6(x) \rangle$ and $|C| = p^{6n - \sum_{i=1}^6 \deg(g_i)}$.

Proof (i) Let $s = (s_0, s_1, \dots, s_{n-1}) \in C$ such that $s_i = \eta_1 a_i + \eta_2 b_i + \eta_3 c_i + \eta_4 d_i + \eta_5 e_i + \eta_6 f_i$, where a_i , b_i , c_i , d_i , e_i , $f_i \in \mathbb{F}_p$, $i = 0, 1, \dots$, n-1, and $a = (a_0, a_1, \dots, a_{n-1}), b = (b_0, b_1, \dots, a_n)$ b_{n-1}), $c = (c_0, c_1, \dots, c_{n-1}), d = (d_0, d_1, \dots, d_n)$ d_{n-1}), $e = (e_0, e_1, \dots, e_{n-1}), f = (f_0, f_1, \dots, f_n)$ f_{n-1}). Then $a \in C_1$, $b \in C_2$, $c \in C_3$, $d \in C_4$, $e \in C_3$ C_5 , and $f \in C_6$. Since C is cyclic, $(s_{n-1}, s_0, s_1, \dots, s_n, s_n, s_n, \dots, s$ $(s_{n-2}) = (\eta_1 a_{n-1} + \eta_2 b_{n-1} + \eta_3 c_{n-1} + \eta_4 d_{n-1} + \eta_5 e_{n-1})$ $+\eta_{6}f_{n-1}$, $\eta_{1}a_{0}+\eta_{2}b_{0}+\eta_{3}c_{0}+\eta_{4}d_{0}+\eta_{5}e_{0}+\eta_{6}f_{0}$, \dots , $\eta_1 a_{n-2} + \eta_2 b_{n-2} + \eta_3 c_{n-2} + \eta_4 d_{n-2} + \eta_5 e_{n-2} +$ $\eta_{6} f_{n-2}) = \eta_{1}(a_{n-1}, a_{0}, \dots, a_{n-2}) + \eta_{2}(b_{n-1}, b_{0}, \dots, a_{n-2})$ b_{n-2}) + η_3 (c_{n-1} , c_0 , ..., c_{n-2}) + η_4 (d_{n-1} , d_0 , ..., $(d_{n-2}) + \eta_5 (e_{n-1}, e_0, \cdots, e_{n-2}) + \eta_6 (f_{n-1}, f_0, \cdots, e_{n-2})$ $(f_{n-2}) \in C = \eta_1 C_1 \oplus \eta_2 C_2 \oplus \eta_3 C_3 \oplus \eta_4 C_4 \oplus \eta_5 C_5 \oplus \eta_5 C_5$ $\eta_6 C_6$ if and only if $(a_{n-1}, a_0, \dots, a_{n-2}) \in C_1$, $(b_{n-1},b_0,\cdots,b_{n-2})\in C_2, (c_{n-1},c_0,\cdots,c_{n-2})\in C_3,$ $(d_{n-1}, d_0, \dots, d_{n-2}) \in C_4, (e_{n-1}, e_0, \dots, e_{n-2}) \in$ C_5 , $(f_{n-1}, f_0, \dots, f_{n-2}) \in C_6$, i.e. C_i $(i = 1, 2, 3, \dots, f_n) \in C_6$

4,5,6) are cyclic over F_p .

(ii) If $c \in C = \eta_1 C_1 \oplus \eta_2 C_2 \oplus \eta_3 C_3 \oplus \eta_4 C_4 \oplus \eta_5 C_5 \oplus \eta_6 C_6$, then $c = \sum_{i=1}^6 \eta_i g_i f_i$, $f_i \in F_p[x]$, i = 1, 2, 3, 4, 5, 6, so $C \subseteq \langle \eta_1 g_1, \eta_2 g_2, \cdots, \eta_6 g_6 \rangle$. Next, we prove $\langle \eta_1 g_1, \eta_2 g_2, \cdots, \eta_6 g_6 \rangle \subseteq C$. Let $f = \sum_{i=1}^6 \eta_i g_i s_i \in \langle \eta_1 g_1, \eta_2 g_2, \cdots, \eta_6 g_6 \rangle$, where $s_i \in R[x]$, i = 1, 2, 3, 4, 5, 6, then $f = \sum_{i=1}^6 \eta_i g_i (\eta_1 a_i + \eta_2 b_i + \eta_3 c_i + \eta_4 d_i + \eta_5 e_i + \eta_6 f_i) = \sum_{i=1}^6 \eta_i g_i s_i \in C$, i.e. $\langle \eta_1 g_1, \eta_2 g_2, \cdots, \eta_6 g_6 \rangle \subseteq C$. Hence, $C = \langle \eta_1 g_1(x), \eta_2 g_2(x), \eta_3 g_3(x), \eta_4 g_4(x), \eta_5 g_5(x), \eta_6 g_6(x) \rangle$ and $|C| = p^{6n - \sum_{i=1}^6 \deg(g_i)}$.

Theorem 3.2 Let C be a cyclic code of length n over R. Then the following holds.

- (i) There exists a unique polynomial $g(x) \in R[x]$ such that $C = \langle g(x) \rangle$, where $g(x) = \sum_{i=1}^{6} \eta_i g_i(x)$ and $g(x) | x^n 1$.
- (ii) If $g_i(x)h_i(x) = x^n 1$ for i = 1, 2, 3, 4, 5, 6 and $h(x) = \sum_{i=1}^6 \eta_i h_i(x)$, then $g(x)h(x) = x^n 1$.

Proof Assume $g = \sum_{i=1}^{6} \eta_i g_i$, then $\langle g \rangle \subseteq C$ = $\langle \eta_1 g_1, \eta_2 g_2, \eta_3 g_3, \eta_4 g_4, \eta_5 g_5, \eta_6 g_6 \rangle$. On the other hand, since $\eta_i \eta_j = 0$ ($i \neq j$), we get $\eta_i g_i = \eta_i g$ and thus $C \subseteq \langle g \rangle$. Hence $C = \langle g(x) \rangle$. Let $g_i \in (x)h_i(x) = x^n - 1$, i = 1, 2, 3, 4, 5, 6, $h(x) = \sum_{i=1}^{6} \eta_i h_i(x)$. Then $g(x)h(x) = \sum_{i=1}^{6} \eta_i(x^n - 1)$, hence $g(x)|x^n - 1$. This proof is completed.

In light of Theorems 3.2, we have the following propositions and they can be similarly proved.

Proposition 3.1 Let C be a cyclic code of length n over R with gcd(n,p)=1 and $C_i=\langle f_i\rangle$ with f_i (i=1,2,3,4,5,6) being idempotents. Then there exits a unique idempotent $e \in C$ with $e = \sum_{i=1}^6 \eta_i f_i$ such that

- (i) $C = \langle e \rangle$.
- (ii) $C^{\perp} = \langle 1 e(x^{-1}) \rangle$.

Proposition 3.2 Let C be a cyclic code of length n over R and let C^{\perp} be its dual. Then

- (i) $C^{\perp}=\eta_1C_1^{\perp}\oplus \eta_2C_2^{\perp}\oplus \eta_3C_3^{\perp}\oplus \eta_4C_4^{\perp}\oplus \eta_5C_5^{\perp}\oplus \eta_6C_6^{\perp}$.
- (ii) $C^{\perp} = \langle \eta_1 h_1^{\perp}, \eta_2 h_2^{\perp}, \eta_3 h_3^{\perp}, \eta_4 h_4^{\perp}, \eta_5 h_5^{\perp}, \eta_6 h_6^{\perp} \rangle$, where h_i^{\perp} is the reciprocal polynomial of

$$h_i$$
, $i = 1, 2, 3, 4, 5, 6$.
(iii) $|C^{\perp}| = p^{\sum_{i=1}^{6} \deg(g_i)}$.

4 Quadratic residue codes over $\mathbb{F}_p + u \mathbb{F}_p + v \mathbb{F}_p + u v \mathbb{F}_p + u v \mathbb{F}_p + u v^2 \mathbb{F}_p + u v^2 \mathbb{F}_p$

In this section, quadratic residue codes over R are defined in terms of their idempotent generators. Let q be an odd prime such that $q \equiv \pm 1 \pmod 4$. Let Q_q and N_q be the sets of quadratic residues and non-residues modulo q, respectively.

Let $r_1(x) = \prod_{r_1 \in Q_q} (x - \alpha^{r_1})$, $r_2(x) = \prod_{r_2 \in N_q} (x - \alpha^{r_2})$, where α is a primitive qth root of unity in some extension field of \mathbb{F}_p .

We denote $h_1(x) = \sum_{i \in Q_q} x^i$, $h_2(x) = \sum_{i \in N_q} x^i$ and $h(x) = 1 + h_1(x) + h_2(x) = 1 + x + x^2 + \cdots + x^{q-1} = r_1(x)r_2(x)$. Consider the cyclic codes of length q defined by

$$Q = \langle r_1(x) \rangle, \ N = \langle r_2(x) \rangle,$$

$$\overline{Q} = \langle (x-1)r_1(x) \rangle,$$

$$\overline{N} = \langle (x-1)r_2(x) \rangle.$$

Lemma 4.1^[5] If p>2 and $q\equiv\pm 1\pmod{4}$, then idempotent generators of Q, N, \overline{Q} , \overline{N} over F_{ρ} are given by

$$\begin{split} E_{q}(x) &= \frac{1}{2}(1 + \frac{1}{q}) + \frac{1}{2}(\frac{1}{q} - \frac{1}{\theta})h_{1} + \\ &\frac{1}{2}(\frac{1}{q} + \frac{1}{\theta})h_{2}, \\ E_{n}(x) &= \frac{1}{2}(1 + \frac{1}{q}) + \frac{1}{2}(\frac{1}{q} - \frac{1}{\theta})h_{2} + \\ &\frac{1}{2}(\frac{1}{q} + \frac{1}{\theta})h_{1}, \\ F_{q}(x) &= \frac{1}{2}(1 - \frac{1}{q}) - \frac{1}{2}(\frac{1}{q} + \frac{1}{\theta})h_{1} - \\ &\frac{1}{2}(\frac{1}{q} - \frac{1}{\theta})h_{2}, \\ F_{n}(x) &= \frac{1}{2}(1 - \frac{1}{q}) - \frac{1}{2}(\frac{1}{q} + \frac{1}{\theta})h_{2} - \\ &\frac{1}{2}(\frac{1}{q} - \frac{1}{\theta})h_{1}, \end{split}$$

respectively, where θ denotes Gaussian sum and $\chi(i)$ denotes Legendre symbol, that is

$$heta = \sum_{i=1}^{q-1} \chi(i) lpha^i, \chi(i) = egin{cases} 1, i \in Q_q; \ -1, i \in N_q; \ 0, p \mid i. \end{cases}$$

For convenience, we let $e_1 = E_q(x)$, $e_2 = E_n(x)$, $\overline{e}_1 = F_q(x)$, $\overline{e}_2 = F_n(x)$.

Lemma 4.2 Let p be an odd prime and let η_i ($i=1,2,\cdots,6$) be as in Preliminary results. Then $\eta_1e_i+\eta_2e_j+\eta_3e_k+\eta_4e_l+\eta_5e_m+\eta_6e_n$, $\eta_1\overline{e}_i+\eta_2\overline{e}_j+\eta_3\overline{e}_k+\eta_4\overline{e}_l+\eta_5\overline{e}_m+\eta_6\overline{e}_n$ are idempotents in the ring $R_q=R[x]/\langle x^q-1\rangle$, where e_i , e_j , e_k , e_l , e_m , e_n are not all equal and \overline{e}_i , \overline{e}_j , \overline{e}_k , \overline{e}_l , \overline{e}_m , \overline{e}_n are not all equal for i, j, k, l, m, $n\in\{1,2\}$.

According to Lemma 4.1, by direct calculation, we get the following lemma.

Lemma 4.3 With the above notation, $e_1 + e_2 = 1 + \frac{1}{q}h$, $\overline{e}_1 + \overline{e}_2 = 1 - \frac{1}{q}h$, $e_1 - \overline{e}_1 = \frac{1}{q}h$, $e_2 - \overline{e}_2 = \frac{1}{q}h$, $e_1e_2 = \frac{1}{q}h$ and $\overline{e}_1\overline{e}_2 = 0$.

We now define quadratic residue codes over R.

Definition 4.1 Let q be an odd prime such that p is a quadratic residue modulo q. The following sixty-two codes are defined as quadratic residue codes over R of length q.

(i) For
$$i = 1, 2, 3, 4, 5, 6$$
,
$$Q_{i} = \langle (1 - \eta_{i})e_{1} + \eta_{i}e_{2} \rangle, Q_{i+31} = \langle \eta_{i}e_{1} + (1 - \eta_{i})e_{2} \rangle,$$

$$S_{i} = \langle (1 - \eta_{i})\overline{e}_{1} + \eta_{i}\overline{e}_{2} \rangle,$$

$$S_{i+31} = \langle \eta_{i}\overline{e}_{1} + (1 - \eta_{i})\overline{e}_{2} \rangle.$$

(ii) For $1 \le i \le 5$, $i < j \le 6$ and $k = \sum_{i=1}^{i} (6-t) + i$, i.e. $k = 7, 8, \dots, 21$,

$$egin{aligned} Q_k &= \langle (\eta_i + \eta_j)e_1 + (1 - \eta_i - \eta_j)e_2
angle \,, \ Q_{k+31} &= \langle (1 - \eta_i - \eta_j)e_1 + (\eta_i + \eta_j)e_2
angle \,, \ S_k &= \langle (\eta_i + \eta_j)\overline{e}_1 + (1 - \eta_i - \eta_j)\overline{e}_2
angle \,, \ S_{k+31} &= \langle (1 - \eta_i - \eta_j)\overline{e}_1 + (\eta_i + \eta_j)\overline{e}_2
angle \,. \end{aligned}$$

(iii) For $2 \le i \le 5$, $i < j \le 6$ and $l = \sum_{i=1}^{i} (6-t) + j + 10$, i.e. $l = 22, 23, \dots, 31$,

$$\begin{split} Q_{l} &= \langle (\eta_{1} + \eta_{i} + \eta_{j})e_{1} + (1 - \eta_{1} - \eta_{i} - \eta_{j}e_{2}) \rangle, \\ Q_{l+31} &= \langle (1 - \eta_{1} - \eta_{i} - \eta_{j})e_{1} + (\eta_{1} + \eta_{i} + \eta_{j})e_{2} \rangle, \\ S_{l} &= \langle (\eta_{1} + \eta_{i} + \eta_{j})\overline{e}_{1} + (1 - \eta_{1} - \eta_{i} - \eta_{j})\overline{e}_{2} \rangle, \\ S_{l+31} &= \langle (1 - \eta_{1} - \eta_{i} - \eta_{j})\overline{e}_{1} + (\eta_{1} + \eta_{i} + \eta_{j})\overline{e}_{2} \rangle. \end{split}$$

By Definition 4.1, we can obtain the following theorems.

Theorem 4.1 If $q \equiv \pm 1 \pmod{4}$, with the notation as in Definition 4.1, then the following

assertions hold for the quadratic residue codes over R.

(i) Q_m is equivalent to Q_{m+31} and S_m is equivalent to S_{m+31} for $m=1,2,\cdots,31$.

(ii)
$$Q_m \cap Q_{m+31} = \langle \frac{1}{q}h \rangle$$
, $Q_m + Q_{m+31} = R_q$ for $m = 1, 2, \dots, 31$. Moreover, we have $S_m \cap S_{m+31} = \langle 0 \rangle$ and $S_m + S_{m+31} = \langle 1 - \frac{1}{q}h \rangle$, $m = 1, 2, \dots, 31$.

(iii)
$$S_i \cap \langle \frac{1}{q}h \rangle = \{0\}, S_i + \langle \frac{1}{q}h \rangle = Q_i \text{ for } i = 1, 2, 3, 4, \dots, 62.$$

(iv) $|Q_i| = p^{3(q+1)}$, $|S_i| = p^{3(q-1)}$ for i = 1, 2, $3, 4, \dots, 62$.

Proof (i) For any $a \in \mathbb{F}_p^*$, $n \in \mathbb{N}_q$, let u_n be the multiplier map u_n : $\mathbb{F}_p \to \mathbb{F}_p$ given by $u_n(a)$ = na (mod p) and act on polynomials as u_n ($\sum_i f_i x^i$) = $\sum_i f_i x^{u_n(i)}$. Then $u_n(h_1) = h_2$ and $u_n(h_2) = h_1$. Therefore $u_n(e_1) = e_2$, $u_n(e_2) = e_1$, $u_n(\overline{e_1}) = \overline{e_2}$, $u_n(\overline{e_2}) = \overline{e_1}$, so $u_n((1 - \eta_i)e_1 + \eta_i e_2)$ = $(1 - \eta_i)e_2 + \eta_i e_1$; $u_n((\eta_i + \eta_j)e_1 + (1 - \eta_i - \eta_j)e_2)$ = $(\eta_i + \eta_j)e_2 + (1 - \eta_i - \eta_j)e_1$; $u_n((\eta_1 + \eta_i + \eta_j)e_2 + (1 - \eta_1 - \eta_i - \eta_j)e_1$; $u_n((1 - \eta_i)\overline{e_1} + \eta_i\overline{e_2})$ = $(1 - \eta_i)\overline{e_2} + \eta_i\overline{e_1}$; $u_n((\eta_i + \eta_j)\overline{e_1} + (1 - \eta_i - \eta_j)\overline{e_2})$ = $(\eta_i + \eta_j)\overline{e_2} + (1 - \eta_i - \eta_j)\overline{e_1}$; $u_n((\eta_1 + \eta_i + \eta_j)\overline{e_2} + (1 - \eta_i - \eta_j)\overline{e_1})$ = $(\eta_i + \eta_j)\overline{e_2} + (1 - \eta_i - \eta_j)\overline{e_2})$ = $(\eta_1 + \eta_i + \eta_j)\overline{e_2} + (1 - \eta_i - \eta_j)\overline{e_2}$.

(ii) When m=1,2,3,4,5,6, let $T=(1-\eta_i)$ $e_1+\eta_ie_2$ and $T'=(1-\eta_i)e_2+\eta_ie_1$; $\overline{T}=(1-\eta_i)\overline{e}_1+\eta_i\overline{e}_2$ and $\overline{T}'=(1-\eta_i)\overline{e}_2+\eta_i\overline{e}_1$. We note that $T+T'=e_1+e_2$, $TT'=e_1e_2$, $\overline{T}+\overline{T}'=\overline{e}_1+\overline{e}_2$, $\overline{TT}'=\overline{e}_1\overline{e}_2$. Therefore by Proposition 2.3, $Q_i\cap Q_{i+31}=\langle TT'\rangle=\langle e_1e_2\rangle=\langle \frac{1}{q}h\rangle$, and $Q_i+Q_{i+31}=\langle T+T'-TT'\rangle=\langle e_1e_2\rangle=\langle 1\rangle=R_q$; $S_i\cap S_{i+31}=\langle \overline{TT}'\rangle=\langle \overline{e}_1\overline{e}_2\rangle=\{0\}$, and $S_i+S_{i+31}=\langle \overline{T}+\overline{T}'-\overline{TT}'\rangle=\langle \overline{e}_1+\overline{e}_2-\overline{e}_1\overline{e}_2\rangle=\langle 1-\frac{1}{q}h\rangle$.

Similarly, we can prove the result when $m=7,8,\cdots,31$. This proves (ii).

(iii) Using Proposition 2.3, when i=1,2,3,4,5,6, we have $\overline{T}(\frac{1}{q}h) = ((1-\eta_i)\overline{e}_1 + \eta_i\overline{e}_2)(\frac{1}{q}h)$

$$= ((1-\eta_i)\overline{e}_1 + \eta_i\overline{e}_2)(1-\overline{e}_1-\overline{e}_2) = 0. \text{ And } \overline{T} + \frac{1}{q}h$$

$$= (1-\eta_i)\overline{e}_1 + \eta_i\overline{e}_2 + (1-\eta_i + \eta_i)(\frac{1}{q}h) = (1-\eta_i)$$

$$(\overline{e}_1 + \frac{1}{q}h) + \eta_i(\overline{e}_2 + \frac{1}{q}h) = (1-\eta_i)e_1 + \eta_ie_2.$$
Therefore $S_i \cap \langle \frac{1}{q}h \rangle = \langle \overline{T}(\frac{1}{q}h) \rangle = \{0\}$, and $S_i + \langle \frac{1}{q}h \rangle = \langle \overline{T} + \frac{1}{q}h - \overline{T}(\frac{1}{q}h) \rangle = \langle (1-\eta_i)e_1 + \eta_ie_2 \rangle$

$$= Q_i. \text{ This proves (iii) for } i = 1, 2, 3, 4, 5, 6. \text{ For } i = 7, 8, \cdots, 62, \text{ the proof follows on the same lines.}$$

$$(iv) \text{ According to (ii), we have } |Q_i \cap Q_{i+31}|$$

$$= |\langle \frac{1}{q}h \rangle| = p^6, \text{ and since } p^{6q} = |R_q| = |Q_i + Q_i + Q_i + Q_i|$$

$$|Q_i| = p^{3(q+1)}. \text{ Similar argument gives } |Q_i| = p^{3(q+1)} \text{ for } i = 7, 8, \cdots, 31. \text{ Now for } i = 1, 2, \cdots, 62,$$
we have $p^{3(q+1)} = |Q_i| = |S_i + \langle \frac{1}{q}h \rangle| = |S_i| |\langle \frac{1}{q}h \rangle|$

Theorem 4.2 If $q \equiv 3 \pmod{4}$ and p is a quadratic residue modulo q, then the following assertions hold for the quadratic residue codes over R:

- (i) $Q_{i}^{\perp} = S_{i}$, $i = 1, 2, \dots, 62$,
- (ii) S_i is self-orthogonal, $i=1,2,\cdots,62$.

Proof As $-1 \in N_q$, according to Proposition 2.2, since $C_1 = \langle e_1 \rangle$, we have $C_1^\perp = \langle 1 - e_1(x^{-1}) \rangle$ with $1 - e_1(x^{-1}) = 1 - \frac{1}{2}(1 + \frac{1}{q}) - \frac{1}{2}(\frac{1}{q} - \frac{1}{\theta})h_2 - \frac{1}{2}(\frac{1}{q} - \frac{1}{\theta})h_1 = \overline{e}_1$, so $C_1^\perp = \langle \overline{e}_1 \rangle$. Similarly, $C_2^\perp = \langle \overline{e}_2 \rangle$. For i = 1, 2, 3, 4, 5, 6, we have $Q_i^\perp = \langle 1 - ((1 - \eta_i)e_1 + \eta_ie_2)(x^{-1}) \rangle = \langle (1 - \eta_i)\overline{e}_1 + \eta_i\overline{e}_2 \rangle$, which implies $Q_i^\perp = S_i$. Using (iii) of Theorem 4.5, we have $S_i \subseteq Q_i = S_i^\perp$. Hence, S_i is self-orthogonal. Similarly, we also have $Q_i = S_i^\perp$ and S_i is self-orthogonal for $i = 7, 8, \cdots$, 62. This proves the results.

We get the following proposition, whose

proof is easy and thus omitted.

Proposition 4.1 If $q \equiv 1 \pmod{4}$ and p is a quadratic residue modulo q, then the following assertions hold for the quadratic residues codes over R:

- (i) $Q_i^{\perp} = S_{i+31}$, $i = 1, 2, \dots, 31$.
- (ii) $Q_{i+31}^{\perp} = S_i$, $i = 1, 2, \dots, 31$.

Extended quadratic residue codes over $\mathbb{F}_p + u\mathbb{F}_p + v\mathbb{F}_p + uv\mathbb{F}_p + v^2\mathbb{F}_p$ $_p + uv^2\mathbb{F}_p$

In this section, we discuss the properties of extended quadratic residue codes over R.

Definition 5.1 The extended code of a code C over R will be denoted by C, which is the code obtained by adding a specific column to the generator matrix of C. In addition, define the generator matrix of \hat{Q}_i as

$$\infty$$
 0 1 2 ... $q-1$

$$\begin{pmatrix} 0 & & & & & \\ 0 & & & G'_{i} & & \\ \vdots & & & & \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

where G'_i generates S_i ($i=1,2,\cdots,62$), and the row above the horizontal bar shows the column labelling by $\mathbb{F}_q \bigcup \infty$.

Theorem 5.1 If $q \equiv 3 \pmod{4}$, with the notation Q_i $(i = 1, 2, \cdots, 62)$ as in Definition 4.1, then $\overline{Q}_i^{\perp} = \hat{Q}_i$. In particular, if $q \equiv -1 \pmod{p}$, then \hat{Q}_i are self-dual.

Proof Theorem 4.1 tells us that $Q_i=S_i+$ $\langle \frac{1}{q}h \rangle$ ($i=1,2,\cdots,62$) and then the generator

matrix of \hat{Q}_i is

where G'_i is a generator matrix of S_i . Since S_i are self-orthogonal, any two rows of G'_i are

orthogonal. According to the proof of (iii) in Theorem 4.5, we know that each row of G'_i are orthogonal together with the vector $(\frac{1}{q}h)$. Since $(1,h)\cdot (-1,\frac{1}{q}h)=0$, then $|\overline{Q}_i^\perp|=|\hat{Q}_i|=p^{3(q+1)}$. That is, $\overline{Q}_i^\perp=\hat{Q}_i$. In particular, if $q\equiv -1\pmod{p}$, \overline{Q}_i are linear codes generated by the matrix

$$\overline{G}_i = egin{pmatrix} \infty & 0 & 1 & 2 & \cdots & q-1 \ 0 & & & & & & \ 0 & & & G'{}_i & & \ dots & & & & & \ 1 & -1 & -1 & -1 & \cdots & -1 \end{pmatrix}$$

Obviously, $(1, h) \in \overline{G}_i$. Hence, $\overline{Q}_i^{\perp} = \overline{Q}_i$. That is, \overline{Q}_i are self-dual.

Similar to the proof of Theorem 5.1, we have the following theorem.

Theorem 5.2 If $q \equiv 1 \pmod{4}$, with the notation Q_i $(i=1,2,\cdots,62)$ as in Definition 4.1, then $\overline{Q}_i^{\perp} = \hat{Q}_{i+31}$, $\overline{Q}_{i+31}^{\perp} = \hat{Q}_i$ $(i=1,2,\cdots,31)$. In particular, if $q \equiv -1 \pmod{p}$, then $\overline{Q}_i^{\perp} = \overline{Q}_{i+31}$, $\overline{Q}_{i+31}^{\perp} = \overline{Q}_i$ $(i=1,2,\cdots,31)$.

6 Examples

In this section, we give some examples to illustrate the main results obtained in this paper. Using Magma [2], we search, among all the 62 inequivalent codes, the codes having highest minimum distance of different lengths over different fields. In the following examples, we take $M_0 = I_6$, the identity matrix,

$$M_1 = egin{pmatrix} 0 & 1 & 2 & 2 & 0 & 1 \ 1 & 0 & 1 & 0 & 1 & 1 \ 2 & 2 & 2 & 0 & 2 & 0 \ 1 & 2 & 0 & 1 & 0 & 2 \ 0 & 1 & 0 & 2 & 2 & 1 \ 1 & 0 & 1 & 2 & 1 & 0 \end{pmatrix},$$

$$M_2 = egin{pmatrix} 2 & 3 & 3 & 2 & 3 & 3 \ 3 & 2 & 3 & 3 & 2 & 3 \ 3 & 3 & 2 & 3 & 3 & 2 \ 2 & 3 & 3 & 5 & 4 & 4 \ 3 & 2 & 3 & 4 & 5 & 4 \ 3 & 3 & 2 & 4 & 4 & 5 \end{pmatrix}$$

satisfying $M_1M_1'=I_6$ over \mathbb{F}_3 and $M_1M_1'=2I_6$ over \mathbb{F}_7 .

Example 1 Let p=3 and q=11. The sets of quadratic residues and non-residues modulo q are $Q_q=\{\ 1,3,4,5,9\}$, and $N_q=\{\ 2,6,7,8,10\}$, respectively. Then $h_1(x)=\sum_{i\in Q_q}x^i=x^9+x^5+x^4+x^3+x$, $h_2(x)=\sum_{i\in N_q}x^i=x^{10}+x^8+x^7+x^6+x^2$, $\overline{e}_1=x^{10}+x^8+x^7+x^6+x^2+1$, $\overline{e}_2=x^9+x^5+x^4+x^3+x+1$. $e_1=2x^9+2x^5+2x^4+2x^3+2x$, $e_2=2x^{10}+2x^8+2x^7+2x^6+2x^2$. So $S_1=\langle (1-2^{-1}(1-u)(1-v^2))\overline{e}_1+2^{-1}(1-u)(1-v^2)\overline{e}_2\rangle$, $S_7=\langle (2^{-1}(1-u)(1-v^2)+2^{-1}(1+u)(1-v^2))\overline{e}_1+(1-2^{-1}(1-u)(1-v^2)-2^{-1}(1+u)(1-v^2))\overline{e}_2\rangle$.

The codes over F_3 obtained from the extended quadratic residue codes over R are as follows:

- $\Phi_{M_0}(\overline{Q}_1)$ is a [72,36,6] self-dual code.
- $\Phi_{M_1}(\overline{Q}_7)$ is a [72,36,12] self-dual code.

Example 2 Let p = 7 and q = 3. Then $h_1(x) = x$, $h_2(x) = x^2$, $\overline{e}_1 = 3x^2 + 6x + 5$, $\overline{e}_2 = 6x^2 + 3x + 5$. $e_1 = x^2 + 4x + 3$, $e_2 = 4x^2 + x + 3$. So $S_1 = \langle (1 - 2^{-1}(1 - u)(1 - v^2))\overline{e}_1 + 2^{-1}(1 - u)(1 - v^2)\overline{e}_2 \rangle$, $S_1 = \langle (2^{-1}(1 + u)(1 - v^2) + 4^{-1}(1 + u)(v^2 - v))\overline{e}_1 + (1 - 2^{-1}(1 + u)(1 - v^2) - 4^{-1}(1 + u)(v^2 - v))\overline{e}_2$.

 $\%\rangle, S, 31\rangle = \langle \% (2^{-1}(1-u)(1-v^2) + 4^{-1}(1-u)(v^2+v) + 4^{-1}(1-u)(v^2+v) + 4^{-1}(1-u)(v^2+v) + 4^{-1}(1-u)(v^2+v) - 4^{-1}(1+u)(v^2+v) - 4^{-1}(1+u)(v^2+v) + 2^{-1}(1+u)(v^2+v) + 2^{-1}(1+$

The codes over F_7 obtained from the extended quadratic and quadratic residue codes over R are as follows:

- $\Phi_{M_0}(\overline{Q}_1)$ is a [24,12,3] self-dual code.
- $\Phi_{M_2}(\overline{Q}_{13})$ is a $\lceil 24, 12, 4 \rceil$ self-dual code.
- Φ_{M_0} (S_1) is a [18, 6, 3] self-orthogonal

code.

• $\Phi_{\rm M_2}$ ($S_{\rm 13}$) is a [18,6,9] self-orthogonal code.

7 Conclusion

In this paper, we studied some properties of quadratic residue codes over the ring $R = \mathbb{F}_p + u\mathbb{F}_p + v\mathbb{F}_p + uv\mathbb{F}_p + v^2\mathbb{F}_p + uv^2\mathbb{F}_p$, where $u^2 = 1$, $v^3 = v$, and p is an odd prime. The research results in this article can enrich the theory of error correcting codes over finite rings. Many codes are derived from the quadratic residue codes over R.

Acknowledgement The authors are grateful to Solé for careful reading and helpful comments. This research is supported by National Natural Science Foundation of China (61202068), the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (2015D11), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (05015133) and Key projects of support program for outstanding young talents in Colleges and Universities (gxyqZD2016008).

References

- [1] BONNECAZE A, SOLÉ P, CALDERBANK A R. Quaternary quadratic residue codes and unimodular lattices [J]. IEEE Transactions on Information Theory, 1995, 41(2): 366-377.
- [2] BOSMA W, CANNON J. Handbook of Magma

- Functions [Z]. Sydney, 1995.
- [3] GAO J, MA F H. Some results on quadratic residue codes over the ring $F_p + vF_p + v^2 F_p + v^3 F_p$ [J]. Discrete Mathematics Algorithms & Applications, 2017, 9(3): 1750035(1-9).
- [4] KAYA A, YILDIZ B, SIAP I. New extremal binary self-dual codes of length 68 from quadratic residue codes over $F_2 + uF_2 + u^2F_2$ [J]. Finte Fields and Their Applications, 2014, 29(1): 160-177.
- [5] LIU Y, SHI M J, SOLÉ P. Quadratic residue codes over F_ρ + vF_ρ + v² F_ρ [J]. Lecture Notes in Computer Science, 2015, 9061: 204-211.
- [6] MACWILLIAMS J, SLOANE N J A. The theory of Error Correcting Codes [M]// North- Holland Publishing, 1977, 68(1):185-186.
- [7] PLESS V S, QIAN Z Q. Cyclic codes and quadratic residue codes over Z_4 [J]. IEEE Transactions on Information Theory, 1996, 42(5): 1594-1600.
- [8] RAKA M, KATHURIA L, GOYAL M. $(1-2u^3)$ constacyclic codes and quadratic residue codes over $F_p[u]/\langle u^4-u\rangle[J]$. Cryptography and Communications, 2017, 9(4): 459-473.
- [9] SHI M J, SOLÉ P, WU B. Cyclic codes and the weight enumerator of linear codes over F₂ + uF₂ + u² F₂ [J]. Applied Computational Mathematics, 2013, 12 (2): 247-255.
- [10] ZHU S X, WANG Y, SHI M J. Some results on cyclic codes over $F_2 + vF_2$ [J]. IEEE Transactions on Information Theory, 2010, 56(4): 1680-1684.
- [11] 张涛, 朱士信. 环 $F_t + vF_t$ 上的二次剩余码[J]. 中国科学技术大学学报,2012,42(3):207-213. ZHANG T, ZHU S X. Quadratic residue codes over $F_t + vF_t$ [J]. Journal of University of Science and Technology of China, 2012, 42(3): 207-213.