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Abstract: Based on the continuity of the derivative of the nonlinear seepage velocity function in
low-permeability reservoirs, the nonlinear kinematic equation in the real number field for the low-
permeability reservoirs was deduced. The mathematical formula of the apparent permeability and
the apparent pseudo threshold pressure gradient were defined. It was demonstrated that the
continuous derivative of the seepage velocity function was consistent with the continuous
permeability change. The mathematical model of the nonlinear flow in low-permeability reservoirs
with stress sensitive effect under the condition of constant well production rate was constructed.
Owing to its strong nonlinearity, efficient Douglas-Jones predictor-corrector finite difference
method was adopted to obtain its numerical solution. Moreover, its accuracy was verified by
comparison with the numerical solution obtained by the fully implicit finite difference method.
Result analysis shows: log-log curves of dimensionless transient wellbore pressure corresponding
to the nonlinear kinematic equation and pseudo-linear kinematic equation both have inflexions at
the initial period. And the inflexion corresponding to the pseudo-linear one is more obvious; the
permeability modulus has a major effect on the second half of these curves; the bigger its value,
the sharper the pressure drop; there exists a moving boundary in the nonlinear flow in low-
permeability reservoirs; the moving boundary of the pseudo-linear flow moves more slowly than
that of the nonlinear flow.
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0 Introduction

At present, the reserves of low-permeability
reservoirs are assuming an increasingly larger
percentage of all reserves in many mature regions
and countries. For example, in West Siberia of
Russia, the reserves of low-permeability reservoirs
and thin reservoirs account for in excess of 50% of
the proven reserves. In China, at least 50% of the
total oil and gas resources exist in the low-
permeability reservoirs. Efficiently developing and
utilizing low-permeability reservoirs is becoming an
urgent task on hand for the world’s energy
supply™™®. The study on the models of the flow in
low-permeability reservoirs can help to figure out
some intrinsic laws, which can be incorporated into
some petroleum engineering technologies such as
numerical reservoir simulation and well testing,
and is thus of great significance.

Recently, the study on the nonlinear/pseudo-
linear flow in low-permeability reservoirs has
become an important topic. It is well known that
the tri-sectional model of the nonlinear kinematic

L6 was put forward long time ago. It can

equation
precisely describe the seepage flow behavior in low-
permeability reservoirs. However, due to the

complexity of the relevant mathematical model,

the pseudo-linear kinematic equationt™ s

generally adopted to approximate the
nonlinear one.

Current oilfield practices have proved that the
threshold pressure gradient in the pseudo-linear

. 13
overestimated!'#"d,

kinematic equation is
According to the pseudo-linear kinematic equation,
no flow will happen further away from the oil
well, because the pressure gradient is much
smaller than the threshold pressure gradient. This
is generally inconsistent with the actual situation in
well production™®. Besides, in low-permeability
reservoirs the pore throats are very tiny, where the
seepage resistance will be rather large; as a result,
the pressure drop will be very sharp during the
flowing process. The sharp decrease in formation
pressure can deform the rock, which makes the
stress sensitive effect! ™ much more serious. In
this paper, in consideration of the actual situations
mentioned above in the development of low
permeability reservoirs, a mathematical model of
the nonlinear flow in low-permeability reservoirs

with stress sensitive effect is built.

1 Deduction of the nonlinear kinematic
equation
pores and

In low-permeability reservoirs
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throats are very tiny, and the interface area is very
large, therefore the interaction between the rock

and fluid is rather intense and the micro

[3,17-18] ,
scale effect is very serious. Many surface reactive
materials such as asphaltum, clay, etc, adhere to
form boundary

the inner rock surface and

layerst'™'#

, which can resist the fluid flow in the
rock. Besides, the radius difference among pore
throats in low-permeability reservoirs is very
large, and the heterogeneity is very strong. When
the driving pressure gradient is small, the fluid
can’t flow through tiny pore throats or the
marginal areas of large pore throats, but through
the center areas of large pore throats. The two
factors make the permeability in low-permeability
reservoirs not constant, but mutativel’>"; with
the increase of driving pressure gradient, the
thickness of boundary layers becomes thinner and
thinner, and more and more small throats and
regions of large throats participate in the seepage
flow; as a result, the permeability increases
gradually until up to a maximum value.

The tri-sectional model™* of the nonlinear
kinematic equation can accurately depict the flow
behavior in low-permeability reservoirs ( see
Fig. 1). It includes non-flow region OE, nonlinear
flow region EF and pseudo-linear flow region FG;
OE shows small pressure gradient can’t drive the
fluid flow; EF indicates the gradual increase of the
permeability, where the relationship between the
seepage velocity and pressure gradient is power
lawt*; FG represents the pseudo-linear flow,
where the permeability fully recovers and doesn’t
change any more. In order to be convenient for
mathematical treatment, FG and its reverse
extension line, whose arrival is at the point of

intersection with x-coordinate, i. e. the pseudo-

linear kinematic equationt™ is generally adopted to
approximate the nonlinear one. The intercept is
the pseudo threshold pressure gradient Az, MPa/
m. The pressure gradient at point E is the
MPa/m; the

pressure gradient at point F is the critical pressure

threshold pressure gradient Ac,

-------------------- Darcy kinematic equation

-~
v . . . .
————— pseudo-linear kinematic euqgation
——— nonlinear kinematic equation
G
o]

Fig. 1 The schematics of three different kinematic equations

the nonlinear kinematic
[3.6]

gradient Ay, MPa/m.

equation can be expressed as follows

0, 0<de < Acs
dr
v = 7C£[Ccli 7)\(:]”9 )k(;<d4?<}\,\; (D
u r dr
_ k[dp_ ] dp
1 [dr Ao s dr>k\.

Here C/(MPa » m~!)'""is a constant parameter to
be determined; k/pm® is the rock permeability
@/ (mPa <« s) is the fluid

viscosity; p/MPa is the formation pressure; r/m is

fully recovering;

the radial distance; v/(m ¢ d7') is the seepage
velocity; n/f is the power exponent.

[3.19] Of core

From nonlinear fitting curves
experiments for low-permeability reservoirs, it can
be seen that the curve for the nonlinear kinematic
equation (see Fig. 1) is very smooth. A basic
assumption was made that the nonlinear seepage
velocity function with respect to the pressure
gradient has continuous first-order derivative.
Then the mathematical formula of the nonlinear
kinematic equation can be further deduced with
three experiment-determined parameters Ay, Az and
Ac.

According to the continuity of the first order
derivative at point F, we obtain

k

—kenn At =— (2)
# #

Then C can be quantified as follows:
CZI/H/(?\A*)&C)WI. (3)

Besides, according to the continuity of the seepage
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velocity function at point F, we can obtain
n= (s — A/ (s — Az)» n> 1. 4)

In the model computation, the pressure
gradient may be minus. The tri-sectional model of
nonlinear kinematic equation in low-permeability
reservoirs can be extended in the real number field
by origin of symmetry, as follows:

d.

L0l -

0, ‘@‘é)\(,
dr

|
dr/ | dr

k
P
dp
Ac < d < Aas
r

— (/152 £ 15
dr/ | dr u dr Bl

dp
L=

R e
ne (A — )" L dr

7}‘(1]”7

(5

Experimental data i. e. velocity & pressure

tt"" nonlinear fitting can easily verify the

gradien
correctness of Eq. (4). From Eq. (4) it can also be
seen that, if Ac = Az, then n=1.0, and Eq. (5)
turns to the pseudo-linear kinematic equation for
the fluid flow in low permeability reservoirs;
further, if Ac=21;=0, Eq. (5) turns to the Darcy’s
law. Thus, Eq. (5) covers Darcy’s law and
pseudo-linear kinematic equation.

In Eq. (5), the first-order derivative of the

seepage velocity with respect to the pressure
. . . . d
gradient is continuous. So mark point S (ﬁ 5 Us)
S

arbitrarily in the curve corresponding to the

nonlinear kinematic equation and plot its
tangent SH (see Fig. 1). At the small interval of
point S, the seepage flow can be considered as
pseudo-linear flow, which can be represented by

the line SH, and its kinematic equation is as

follows:
=[]
AR AN
dT d?' 5+U dl’ s /U d?’ s ’ (6)

where v'/(m? « d7' « MPa™') is the derivative of

the seepage velocity function with respect to the

pressure gradient and can be expressed as follows:

0, dl<xty

dr
fAdekaH

o %J= p (A — A Ll dr ’ ’<7>
r
A<‘<‘di‘<)\,\;
dr
*ﬁa ‘di‘>k\.
Ll dr

In comparison of Eq. (6) with the pseudo-

linear  kinematic  equation™,  the apparent
permeability k,/pm*, and the apparent pseudo
threshold pressure gradient G,/(MPa * m '), can

be respectively expressed as follows:

kl, = U,' Lo (8)
G, =4 v 9
dr v

The first-order derivative of the seepage
velocity function i. e. Eq. (7) is continuous, and
then from Egs. (8)~(9) the apparent permeability
and the

gradient with respect to the pressure gradient are

apparent pseudo threshold pressure

both continuous, which accords with the objective

principle of gradual permeability changet'"*" in

low-permeability reservoirs. Contrariwise, from
Egs. (7) ~(8) the continuous permeability change
in low-permeability reservoirs can also guarantee
the continuity of the first-order derivative of the
Therefore,

derivative of the

nonlinear seepage velocity function.
the continuous first-order
nonlinear seepage velocity function is consistent
with the continuous permeability change, and thus
the basic assumption of continuous first-order
nonlinear velocity

derivative of the seepage

function is reasonable.

2 Mathematical modeling

considered here involves

The problem
production of oil from a fully penetrating well at
the center of a cylindrical low-permeability
reservoir; some assumptions are as follows:

(D The reservoir is homogenous, isotropic and
ceiling and bottom

isothermal with closed
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boundaries.

@ Single-phase, horizontal and radial flow
without considering gravity effect.

® Eq. (5) 1is applied as the kinematic
equation,

@ The fluid and rock are

compressible.

slightly

The fluid density®? can be expressed as
follows:
o(p) = pi[ 1+ CCp—p) ], 10)
where p;/MPa is the initial formation pressure; p/
(kg * m °) is the initial fluid density; p/
(kg * m™) is the fluid density; Ci/MPa™' is the
fluid compression coefficient.

2
U can be expressed as

The rock porosity
follows:

o(p) = @ 1+ C,(p— pD], 1D
where ¢/f is the porosity; ¢ /f is the initial
porosity; C,/MPa ' is the porosity compression
coefficient.

Y/MPa ', s

similar to the compressibility coefficient, and can

The permeability modulus,

be defined by the following equationt ',
= ik Z{%‘ (12)

Coefficient 7y plays an important role in the

stress  sensitive effect towards the rock

permeability. It is the measurement of the
dependence of the permeability on the formation
pressure. For practical use, ¥ can be assumed to be
constant. So the permeability of deformed rock in
low-permeability reservoirs can be expressed as
follows:
k= ke 700, (13)
where k;/pm? is the rock permeability at the initial
pressure.
The continuous equation for the radial flowt"

is as follows:

Ll )
. ar(rpu) FPR a4

Substituting state equations Eqs. (10) ~ (13)
and nonlinear kinematic equation Eq. (5) into the

continuous equation above, we obtain

e TR (20) 4 Dby (2B) oy 2Ry

r dr a7 dr

c 2»
(P'(4 (,)ta (15)

C/MPa ! is the total

coefficient; t/h is the time.

where compression
The initial condition is as follows:

pCroD) | =y = pi. (16)
Because near the wellbore the pressure
gradient is much larger than the critical pressure
gradient Ay, the inner boundary condition of

constant well production can be written as follows:

athra, o (42|
#B dT ]

where r,/m is the radius of the wellbore; qo/
(m*«d ') is the well

(m® *m ?) is the volume factor of the crude oil;

= Q> (17)

production rate; B/

h/m is the thickness of the reservoir.
The outer boundary condition of constant
pressure is as follows:
p(r. ) \,.:Q = Di» (18)
where r./m is the radius of the outer boundary.

Nondimensionalizing Eqs. (15) ~ (18),

we have
e YL)PL)[ [E)PD]i , EJPD] E)ZPui
las w dry N I I
Jd Pp aPD]} Jd Pp
. . =20 (1
7o P ™ * U I a1, (19
PD | o0 =0, (20)
e who | 220 +GB] — 1. @D
dIm "y 1

Py | = 0. (22)

HT e

Eqgs. (19)~(22) construct the dimensionless
mathematical model of the nonlinear flow in low-

permeability reservoirs with stress sensitive effect.

o= I — 3.6k
D . s D goiCl }ﬂ'i ’
oy = T Gy = khrw)\:\
P T 10842 X 10 e B
kh
P D s L - 2 i s L ’
p(me i) = T 10 Tl P PP
(‘ _ khrw)\p,
1,842 X 10 PquB’
GC _ khrw)\(‘

1.842 X 10 % g, uB’
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1.842 X 10 ; Qo MBY
o = ’
kh

where 1, is the dimensionless radius; ry is the

dimensionless radius of the outer boundary; tp is
the dimensionless time; P, is the dimensionless
formation pressure; G, is the dimensionless critical
pressure gradient; Gg is the dimensionless pseudo-
linear pressure gradient; G¢ is the dimensionless
threshold

dimensionless

pressure  gradient; w 1s  the

seepage velocity; v p is the
dimensionless derivative of the seepage velocity; ¥y

is the dimensionless permeability modulus.
3 Numerical solution of the mathematical
model

First, the authors perform the logarithmic

transformation = In (ry), Egs. (19) ~ (22)

become
i . @ al / L R E)PD .
U et (’)l‘ € Up ot (’)1
1 9Py 1 Py Py
eZ x J T eZ x 9 IZ D 9 T
i % __ _atry P aPL)
U e (’)T]ie DD . atr)’ (23)
PD ‘rD:O =0, (24)
§ 9 B
e o [ﬁ +GBJ=—1, (25)
dx | =0
Py . nCrpy = 0. (26)

Douglas-Jones predictor-corrector method*%

is an implicit finite difference method based on
implicit linearization for numerical solution of
nonlinear parabolic PDEs. It only requires two

]

iterations per time step. Babajimopoulos™*

obtained the accuracy-verified numerical solutions

of Richards

problems in soils by Douglas-Jones predictor-

equations for wunsaturated flow
corrector method. The strong nonlinear PDE for
the flow in low-permeability reservoirs with stress
sensitive effect i. e. Eq. (23) has the similar form
with  Richards

functions and strong nonlinear terms. Douglas-

equations involving piecewise
Jones predictor-corrector method can make them
explicit in the difference equations and it is

unnecessary to iterate them, which can largely

improve computational efficiency and numerical
stability.

The Douglas-Jones predictor scheme for Eq.
(23) (time step from j to j + 1/2) is as

follows?%

. 1 i
eBr e [QT « (Phy, — Phy )/Z/AIJi
Ug [ﬁ e (P — Py 1)/2/AIJ *

(= (Phus — Pl ) /2/82+

rols

1
2

)/2/Ax) —
an‘ )/2/Ax e

( Pﬁ'% . 2 Pjit + Pj7
Di

Ditl Di
N )
Yo e e e (Phyy —

Up[ﬁ' (szlipf)ﬁl)/Z/Af

2. demtho o (PP Py /AL (21D
where i, j is the space index and the time index,
respectively.

The predictor scheme for the inner boundary

condition is

1 L1 ;
P} = PL7 + 28z« (P 4+ Gy (28)
The Douglas-Jones corrector scheme (time

step from j+1/2 to j+ 1) for Eq. (23) is as

follows#%7,

iAx ( 1 j+% ji% |
€ 'UD[eu.r' (PD’rHiPDil)/Z/A‘TJi

r |1 iy ity
Up [eiA,r ° (PD‘iZI o PD:1 )/Z/AIJ )

<(P;J‘%717P;‘Ji§1 )/2/Ax+

1

Z(AI)Z((P%;,-H — 2P + Phily) +

(Phi 1 — 2Ph + Phy)) ) —

) .t S
Yoo e (Pi» i PE)‘:l )/2/Ax -
1 1
w | ke (P = U 2/ =
i+ pill — pi
eZiA.rF"/DPl_:Z Pf)l P%), (29)

At
The corrector scheme for the inner boundary

condition is
) it
P = PP +2Ax . (e’ +Gy). (30)
Scheme of the initial boundary condition:
Pf)i,zov izOv'"yM. (31)
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Scheme of the outer boundary condition:

3
PDV_Ov]_O’ZylyZ’"'yN. (32)
Numerical solution with Douglas-Jones

predictor-corrector method has two procedures.
First, increasing half time step, the predicting
pressures at every space grids when time step j+
1/2 needs to be solved. From Egs. (27)~(28) and
Egs. (31)~(32), it can be seen that the difference
equations are tri-diagonal and linear, which can be
solved by Thomas algorithm®" Second,
increasing half time step once again, the pressures
when time step j+1 can be corrected and obtained

by Eqgs. (29) ~(32).

the difference equations are also tri-diagonal and

For the corrector procedure,

linear, and can be solved by Thomas algorithm.
The accuracy of Douglas-Jones predictor-corrector
method is second-order™"™*"
In order to verify the accuracy of the
numerical solution obtained by the Douglas-Jones
predictor-corrector method., the fully implicit finite
difference method™" is also adopted. The fixed-
point iteration scheme for the resulting nonlinear
finite difference equations is as follows, where for

every iteration a group of tri-diagonal and linear

equations need to be solved by Thomas
algorithm"
AN, 1 . m. m.
elAvL . ? . ( i 1( ) Pg»l( ))/Z/Al

ug<ei, < (PLIT™ — PBY™)/2/A) -

(— (PRI — PRI ) /2/ A+

(PRI Y — 2 Pt o PRI DY /2 /A x) —
Yo o e e (PhIy™Y — PRAN" V) /2/Ax -

H1Cm) piciom
V) e'm (Pﬂ,um Ph )/Z/AJC

2. ezm.hyDP{j‘ . (Pi;l(nﬁ'l) _

hi) /At (33)

where m is the iteration times.

4 Result analysis

4.1 Accuracy verification
Fig.2 is  the

dimensionless

comparison  figure  of

transient  wellbore  pressures

computed by Douglas-Jones predictor-corrector
method and fully implicit finite difference method.
From Fig. 2, it can be seen that the log-log curves
of dimensionless transient wellbore pressures
computed by the two methods have excellent
agreement with each other, and so the accuracy of
the numerical solution by Douglas-Jones predictor-

corrector method can be verified.

G;\=2E—4, GB=8E—5, Gc=] E—S
1ER2— Douglas-Jones predictor-corrector method
------- fully implicit finite difference m

Pywp

1E+1

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

In
Fig. 2 Comparison of dimensionless transient wellbore

pressures computed by the two methods

Besides, from Fig. 2 it can also be shown that
log-log curves of dimensionless transient wellbore
pressures have inflexions at the initial period.
Before the inflexions, the curves are straight, and
the dimensionless wellbore pressures increase
slowly. After the inflexions, the pressures go up
quickly. reaching eventually a stable state when
the pressures don’t change any more.

4.2 Influence of stress sensitive effect
Fig.3 is  the

comparison  figure  of

dimensionless transient wellbore pressures under

GA=2E—4, GR=8E—5, G(:=] E-5

1E+2¢

PWI']

1E+1}

— n=4E-3

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6
Ip

Fig. 3 The effect of dimensionless permeability modulus

on dimensionless transient wellbore pressure
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different values of dimensionless permeability
modulus. From Fig. 3, it can be seen that the
dimensionless permeability modulus has the main
effect on the second half of these curves. The
bigger its value, the faster the dimensionless
wellbore pressures ascending, and the later the
arrival time of the stable state. The permeability
modulus indicates the degree of stress sensitive
effect. The bigger its value, the more serious the
stress sensitive effect, the more the energy
consumption for the flow in the formation, and the
sharper the pressure drop.

4.3 Comparison of dimensionless transient
wellbore pressures corresponding to three

different kinematic equations

Fig.4 is the comparison figure of
dimensionless  transient  wellbore  pressures
corresponding to three different kinematic

equations. From Fig. 4, it can be seen that the
influence of different kinematic equations for low-
permeability reservoirs on the dimensionless
transient wellbore pressure mainly focuses on the
initial period of well production. The curve
corresponding to the Darcy kinematic equation is
very smooth and doesn’t have inflexions; but the
curves corresponding to the nonlinear and pseudo-
linear kinematic equations both have inflexions,
and the inflexion for the pseudo-linear one is more
obvious; but at last these

curves converge

together. Because the nonlinear and pseudo-linear

1E+2 :'G,q:2E—4, Gp=8E-5, Gc=1E-5, p=2E-3

I Darcy kinematic equation

PWD
T

; psedo-linear kinematic equation
o . - . 0
“#—» non-linear kinematic equation

1E+1}

, —— G=Gc=0
_— < Gg=8E~5, Gc=1E-5
.......... GB=GC=SE_5

0 1 1 1
1E+1 1E+2 1E+3 1E+4 1E+5
n

Fig. 4 Comparison of dimensionless transient wellbore

pressure corresponding to different kinematic equations

kinematic equations are both sectional functions,

and so different flow regions of pressure gradient

obey different rules, which results in the
occurrence of inflexions on these curves;
especially, for the pseudo-linear kinematic

equation, larger threshold pressure gradient makes
its inflexion on curves more obvious.
4.4 Existence of moving boundary

From Tab. 1, it can be seen that when t, =
100, the dimensionless pressures corresponding to
three different kinematic equations all decrease
gradually from the inner boundary to the outer
boundary; on every spatial grid, except for the one
at the outer boundary with constant pressure, the
dimensionless pressure of Darcy flow are all bigger
than zero, and so to the entire reservoir can the
pressure wave propagate. For the nonlinear
kinematic equation and the pseudo-linear kinematic
equation, dimensionless pressures are zero outside
certain spatial grids, where the resulting pressure
gradients are zero and then the fluid can’t flow.
Fig. 5

pressure

displays the change of dimensionless

distribution with the increase of
dimensionless time. From Fig.5, it can also be
seen with the increase of the dimensionless time,
the pressure wave of the nonlinear flow expands
outside gradually. Therefore, the existence of the
moving boundary for the nonlinear flow in low-
permeability reservoirs is validated here. From
Tab. 1, it can also be concluded that the moving
boundary of the pseudo-linear flow propagates
more slowly than that of the nonlinear flow.

Tab. 1 Data of pressure distributions corresponding

to three different kinematic equations, when #, =100

x Darcy nonlinear pseudo-linear

1.0 4.5 1.8 1.8

3.4 0.1 0.03 0.008

3.5 0. 005 0.01 0

3.6 0.025 0.001 0

4.0 7.4E—5 0 0

4.9 1.2E—18 0 0

5.2 9.6E—26 0 0
InCreny) 0 0 0
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12t —1p=1E+2
B to=1E+3
o Tt to=1E+4
8 L
G
H 6F
L
4r - S
2 ‘\\\:“
0 - “""
0 1 2 3 4 5
X

Fig. 5 The change of dimensionless pressure

distribution with the increase of dimensionless time

5 Conclusion

( I ) Based on the continuity of the first order
derivative of the seepage velocity function in low-
permeability reservoirs, the nonlinear kinematic
equation for the low-permeability reservoirs was
deduced. It's very convenient for the reservoir
modeling and computation.

(GUIND)

equation, the mathematical model of the nonlinear

Based on the nonlinear kinematic

flow in low-permeability reservoirs with stress
sensitive effect was constructed. It is much more
practical than previous models such as models of
the pseudo-linear flow or models with no
consideration of stress-sensitive effect in low-
permeability reservoirs. The implicit Douglas-
Jones predictor-corrector method was adopted to
obtain  its  numerical  solution  with fast
computational velocity, good numerical stability
and second-order accuracy. The solution was also
verified by the comparison with the numerical
solution obtained by the fully implicit finite
method.  The

model can

difference research on the

constructed support  theoretical
foundation for numerical well testing in low-
permeability reservoirs.

(1) Result analysis shows: log-log curves of
dimensionless transient wellbore pressure for the
nonlinear flow in low-permeability reservoirs have
inflexions at the initial period; the inflexion for the

pseudo-linear flow is more obvious; the

dimensionless permeability modulus has a major
effect on the second half of these curves, the
bigger its value, the sharper the wellbore pressure
drop; there exists a moving boundary for the

nonlinear flow in low-permeability reservoirs.
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