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Abstract: Many dynamical systems can be modeled by unstable-first-order-plus-dead-time
(UFOPDT) transfer functions. However, analysis and synthesis of UFOPDT systems are much
more challenging due to the general difficulties of infinite dimensionality and the instability of the
plant. Considering the control of such systems, explicit tuning formulae were derived for
proportional (P) and proportional-integral (PI) controllers, based on the digitized open loop
systems. Stability range was also discussed for the feedback systems with delays. Compared with
existing results, the presented method significantly improved the accuracy and sufficiency, and
simplified the tuning process. Numerical example about an isothermal chemical reactor control
problem was given to illustrate this algorithm, and several relevant methods were also compared.
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0 Introduction

Time delays are ubiquitous in the dynamical
modeling of many important industry processes™.
The control of time delay systems has been widely
studied in the past several decades® and still
being further investigated. Among the various
research results on time delay systems, a problem
of particular interest is the analysis and control of

( UFOPDT )

processes that represent many important industry

unstable-first-order-plus-dead-time

applications such as chemical process controlt.
Unlike the classical controller tunings for stable
systems without delays, the analysis and synthesis
of UFOPDT systems are much more challenging
due to the general difficulties of infinite
dimensionality and the instability of the plant.
When a controller (assuming the general form of
PID) is applied, the transfer function of the
feedback systems is in the form of quasi-
polynomialst™. Low order quasi-polynomials can
be treated analytically, while high order quasi-
polynomials are more complex. It should be
noticed that for stable systems with delays, a

called

Tsypkin criterion, is very useful to determine the

frequency domain stability criterion,

stability of the feedback systems. Consider open

loop transfer function H,(s) = P( S)e I QG is
QUs)
a stable polynomial, then the closed loop system

P(s)e ™
Q(s) + P(s)e ™

| Q(jw) |>| P(jw) | holds for all w.

However, Tsypkin criterion cannot be applied

H. () = is asymptotically stable if

to UFOPDT because the open loop system is
unstable. Research on the control of UFOPDT has
been very active in the past two decades, where
different design and tuning approaches have been

-12]

provided™ In particular, Ref. [6] developed a
Ziegler-Nichols type control tuning method for
unstable process, Bahavarnia et al. have discussed
the nonfragility. Refs. [7] and [ 8] provided a more

practical controller design formula for similar

problems based on numerical approximations of the
solutions of transcendental equations derived from
Nyquist stability criterion. Ref. [9] made a low
order numerical approximation for the arctan
functions used in the stability conditions, with
which a simplified tuning method was generated
explicitly. A very recent result from Ref. [10]
discussed the same problem with a first order Padé
expansion of the time delay block of the original
plant, thus the UFOPDT system is treated as a
second order transfer function, instead of an
More

results are given in Ref. [11], but the algorithms

infinite dimensional system. analytical
are computationally complicated. In Ref. [12], a
modified Smith-predictor structure was proposed
for the UFOPDT system. These results provide
some useful tuning methods for the controller
design of UFOPDT systems, as well as practical
tools of analyzing the gain/phase margin of the
feedback systems.

In spite of the abundant research results on
this topic, there are still important open problems
yet to be solved. In particular, the existing results
are either too complicated for practical use, or with
approximations of the time delay blocks or
transcendental equations, such that the necessity
and sufficiency of the stability conditions are no
longer precise for the original systems. Meanwhile
the results on the analysis/comparison of the
accuracies of different approximation methods are
rare in the references. In this paper, we consider P
and PI control of UFOPDT systems from a digital
control perspective. Because the digitized system is
finitely dimensional and thus can be analyzed based
on Routh-Hurwitz criterion for polynomials.
Therefore we can obtain the stability range more
easily. More improtantly, we can also prove that
the stability range for the digitized system is a
UFOPDT
Therefore, we can get the more accurate stability

range of P and PI controller for UFOPDT systems
applying the digital control method. A numerical

sufficient condition for systems.

example proves that the stability range obtained by
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the digital control method can certainly stablize the
original UFOPDT system. The results are also

compared with existing results.

1 Proportional control of UFOPDT
systems

Consider the UFOPDT transfer function of
the form:

hs
G, (5 = Fee " (D

s— 1
And the open loop transfer function with a

proportion controller k.is written as:

— hs
Tr(s) — W’% (2)
TS —

where the phase ¢! (w) and magnitude A?(w) can be
derived as:

¢/ (w) = arctan(wt) — wh —x (3

, B kyk.
Al (w) = Q’;m (4)
Under Nyquist criterion., the Nyquist plot
should encircle ( — 1, 0) exactly once in the
anticlockwise direction. Note the fact that
d¢/(w) T
dw 14+ & 7

It is straightforward that  >> his a necessary

h (5

condition for stability. Otherwise, there is no
anticlockwise encircling. We refer to Fig. 1 for an

illustrative example.
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Fig. 1 The case of h > .

which cannot be stabilized by P controllers

We assume ¢ := h/7<1 and consider the first
crossover frequency, w = ay, w > 0:

arctan(any ) = anh

=cos(aph) ' = wwy/sin(ayh) &= 1/ (6)
Recall Eq. (4) and Nyquist stability criterion, we
should have

1<khk.< 1+ Za )

We further observe from Eq. (6) that
Vi+Zaf = V1 +tan(wh)? =

(cosCap ) ' =~ 1/

Thus the stability range of the P controller k. is

kmin - % < kr < kmax - l/kps (8)
~p

It is worth noting that the stability condition
of Eq. (8) is the same as that in Ref. [6 ], while we
are not using the optimal phase margin method
therein.

Now that we will revisit the same problem
from the digital systems perspective. Assume the
sample period is AT=h/M, where M=1,2,3---.
The open loop transfer Eq. (2) can be digitized as:

k.kye/M
2(z— (14+¢/ M)

We further simplify the system by letting M=1,

TH() =

(9

thus
k.k e
V3 — . Telps
Ti(2) = (e (1) (10

and have the following result:
Theorem 1.1 A proportional controller k. can
stabilize Eq. (10) if

11
ke € [kp,kps] (1D

Meanwhile, Eq. (11) is also a sufficient condition
for k. to stabilize the original UFOPDT Eq. (1).
Proof Define 2 = (v+ 1)/(v— 1) in the
characteristic equation for the closed loop transfer
function of Eq. (10), we have
(kekpye— v +2(1 —kk,e)v+2+ e+ kke=0
a2
Recall Routh-Hurwitz criterion, the stability of the
closed loop system is guaranteed if
kky(e— e =0, and 1 — kkye >0  (13)
which proves the first statement of the theorem.
The second statement of the theorem follows from
the fact that Eq. (10) is a digitized transfer
function of Eq. (2).
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Remark 1.1 The stability range of Theorem design problem. Again, we pick up the sample rate

1.1 is equivalent to Eq. (8) derived from s-domain
analysis. However, the digital system based
analysis proves sufficient of the condition, which is

not explicit from other methods.

2 Proportional-Integral control of

UFOPDT systems

In this section, we will study the stabilization

problem of UFOPDT systems (1) using PI
controllers defined as:
Coly) = w (11

The open loop transfer function is;

kyk (ST, +1e™
sT;(zs— 1)

TH(S) = Cu(s) % G,(s) =

(15)
where the phase ¢/ (w) and magnitude A¥(w) can
be derived as:

¢/ (w) = arctan(wr) + arctan(wT;) — wh — 3?“

(16>

. kk, [T+ (T.w)’
pi _ RRy i
Al (o) = /1+(m)2 an

Taking the derivative of ¢/ (w), we have
d¢? (w) _ T T;
dw 1+ (ww)? 1+ (Tiw)?

Similar to Section 1, we need to examine the

+ —h (18)

crossover frequencies at w-domain and determine
the direction of encircling based on Nyquist
criterion. As discussed in Ref. [ 8 ], the upper
bound of e = h/7can be estimated by looking at the
extreme case where ¢ (w) = nrand d¢! (w) /dw =
0. It has been further shown in Refs. [6, 8] that
e < 0. 6.

Due to the general difficulties of explicit
solutions for the transcendental equations
associated with ¢ (w) and A (w) , widely deployed
methods are to use different approximations (see
Refs. [6,8-127, to cite just a few contributions).
As a result, accuracy and complexity have been the

8101 Tn what

primary issues for these methods
follows, we will follow the same fashion of digital

analysis as Section 1 to study the PI controller

of AT=h/M (where M=1 to further simplify the
analysis ). Now that the open loop transfer
function (15) is written as:

kk,e(z—7)
W(z— D (z— (14 9)

where y=1—AT/T..
To determine T;, we refer to the analysis of

Ref. [8], where

TH () =

19

T, =~ 5/ w, 20
where , is the crossover frequency of ¢ " /(w— 1),
which can be approximated by
we A= w2 0.2/(zt— h) 2D
Therefore
B:=AT/T; = h/25(z— h) = ¢/25(1 — &
22
yi=1—B=(25—260/25(1 —¢) (23)
We are now in the position to state the
following theorem:
Theorem 2. 1
in the form of Eq. (14), where T, is determined by
Egs. (20) and (21). We further assume that
0<e<<0.577. We have:

(I ) A necessary and sufficient condition for

Assuming the PI controller is

the stability of the closed loop digital systems with
respect to Eq. (19) is:

e |(Lte—28—f—JE1+e—28—e3+[¢
‘ 2k,e(B— 17 7 2k,e(B—1)?

@2'9)
where
E=(e(B—D4+2(B— 1D + 1) —4e(B—1)*
(25

and B defined by Eq. (23);
(II) (1) is also a sufficient condition for the
PI controller to stabilize the UFOPDT system (1).
Proof = The characteristic equation for the
closed loop systems of Eq. (19) is:
(z—D(z— U +9e) + kkelz—7) =0
(26)
Replacing = with (v 4 1)/(v— 1) in Eq. (26),
we have
@YU FwtFavta =0 27)

where
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as = kk,e— kk,eY = kk,ef
a; = 3kk,ey —2e— kk,e =
2kck e — 26— 3kck,eB e
w = 4 — kkye— 3kk,ey = 4 — dkk e+ 3kk,eB
4 = 4+ 2e+ kk e+ kk ey
(28)
Recall criterion. The
necessary and sufficient condition for the closed
loop stability is; a;>0, i=0,1,2,3; and aja; >
asas. Observe the fact that 7,B,e > 0. It is

Routh-Hurwitz

straightforward that a;>0 and a,~>0. Meanwhile

2
, > 05 e
a, >0 kkk,,>(2733) (29)
and
4
k. —
a >0 k(kp<€(4738) (300
which can be written as:
2 4
273‘8<kpk,<7s(4738) 3D

From Eq. (28), we further have
a)a; > ayaz
Se(f — 2B+ 1D (kk,)* +
(B+28—e—Dkk,+1<T0 (32
We claim that &€ > 0 when 0 <e<C0.577,
which can be analytically validated. A numerical
plot is also provided to verify this result (see
Fig. 2).
For & > 0, the explicit solution of the
inequality in Eq. (32) can be written as:
wh, € |[LTe— 28—~ 1+e—28— g+ |
2e(B—1H* 2e(B—1)°
(33)

sufficient

Therefore the
condition for the closed loop stability of the digital

necessary and

system (19) is to satisfy.

Egs. (31) and (33) simultaneously. The
proof of ( I ) is concluded by further observing the
fact that

4 1+e—28—ep+ e
e(4—3p 2e(f—1)?
which is the upper line of Fig. 3; and

1+e—28—f—[ 2
2e(f—1)? (2—3p)

>0 3D

>0 (35

0 01 02 03 04 05 06 07
Fig. 2 Verification of £ > 0 for any 0 << ¢<C 0. 577
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Fig. 3 Numerical verification of Eqs. (34) and (35)

which is the lower line of Fig. 3.

Part (II) of the Theorem 2.1, follows from
the fact that Eq. (19) is a digitized transfer
function of Eq. (15). Therefore, the closed loop
stability with respect to Eq. (19) is a sufficient
condition of that of Eq. (15).

3 Numerical example

The effectiveness of our proposed method is
evaluated by a representative numerical example,
which is an isothermal chemical reactor control
problem widely discussed in the references of
chemical engineering.

The mathematical model equation of the

reactor is written as:

dc _ . kC
di (b, C+ D*

where Q is the inlet flow rate and C, is the inlet

%cf—o (36)

concentration. The values of the operating

parameters are given as Q=0. 033 33 L./s, V=1 L,
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k=10 L/s, and k;, =10 L/mol. For the nominal
value of C; = 3.288 mol/L, the steady-state
solution of the model equation gives two stable
steady states at C=1,767 3, C=0.014 2 mol/L,
and one unstable steady state at C=1. 316 mol/L.
Feed concentration is considered as the

manipulated variable.  Linearization of the

manipulated variable around this operating
condition C = 1.316 gives the unstable transfer
function model as 3.433/(103. 1s—1), and a time
delay of 20 s is considered.

Therefore, the linearized model can be written

as a UFOPDT system:

3.433 o2
103.1s—1

We have t=103.1, h=20, ¢ =0. 194, k,=3. 433,
B=0.0096, T,=25(ct—h)=2077.5. Thus we
can pick up a P controller with k. € (0. 291,1.5) to

G,(s) =

stabilize the system. As depicted in Fig. 4, the
Nyquist plot indicates stability with k. = 1.
Otherwise, we pick up k.=1 and can easily verify
that the PI controller stabilizes the UFOPDT
with k. & (0.298,1.498) from
Theorem 2.1, which can be illustrated by the

system (1)

Nyquist plot in Fig. 5.

1.5

1.0

imaginary axis
=) n

|
=
n

-1.0

5 : :
-3.5 -3.0 -25 =20 -1.5 -1.0 =05 0O 05
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Fig.4 Using P controller to stabilize the UFOPDT systems

4 Comparison

We can see that the major contributions of this
paper include; @ An explicit tuning method for P
and PI controllers for UFOPDT systems, which is

much simpler compared to existing results; @ The

60

40

20

imaginary axis
=
'S

=20

=40

-4 -3 -2 -1 0
real axis

Fig. 5 Using PI controller to stabilize the UFOPDT systems

controllers derived in the present paper will always
guarantee stability of the closed loop UFOPDT
systems, while most existing results don’t. In this
section, we will provide various numerical
examples to demonstrate the effectiveness of the
proposed method, and provide comparisons with
other results in the references.

First of all, we will recall a widely discussed
tuning method of PI controllers for UFOPDT
systems (Ref. [ 8]). The algorithm of Ref. [ 8]
suggests that the PI controller (14) can be
determined by

Roin << ke < Roax (37

where

ki t= 0.98 V14 2ol /k, (38)

1+ Zatd
knx]'])\ :: 5 7%/
; N k, 39

with a=5p(z—h), w, = 0.2(z—h), and §= 1. 373
for e<C 0. 25, or B = 0.953 for e << 0. 25. Here T;
follows the same definition to Eq. (20).

Now that we recall an example of UFOPDT
systems (1), with k, =1, t=1, and h=0. 1,0. 2---
0. 5, respectively. The PI controller can be
computed based on Eq. (37) and Theorem 2. 1.
The comparison results are listed in Tab. 1, where
we can clearly see that kyy => ko and ku. < ko, for
all scenarios.

Actually, we can easily find a counter-example
to demonstrate that the algorithm of Ref. [8] is not
always stabilizing the system and therefore our

algorithm is more precise. For the case of h=0. 1,
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we pick up k. =13, which agrees with Eq. (37), Tab.2 Comparisons of controller gains

but outside the stability range calculated from our e ke k. exact

algorithm (refer to the second row of Tab. 1). The 0.1 3.72 3.18 3.53

Nyquist plot (see Fig. 6) verifies that the system is 0.2 2.65 2.26 2.48

indeed unstable. 0.3 1.84 1.86 1.98

Tab. 1 Stability range comparisons 0.4 1.63 1.62 1. 66

0.5 1.51 1.47 1. 48

B Femin Remas Rain max
0.1 1.003 9 13.766 3 1.009 5 9.994 8
0.2 1.010 2 6.937 3 1.023 1 4.986 5
0.3 1.019 2 3.329 8 1.043 7 3.306 0
0.4 1.033 0 2.582 8 1.078 3 2,447 2
0.5 1.055 5 2.150 5 1.148 3 1.889 9

50F
40}
30t
g 20f
g 10}
i..‘ -
N ————
@10}
g _20 L
=30
40}
—50+

[

-12 -10 -8 -6 -4 =2 0
real axis

Fig. 6 An example of unstable system

with PI controllers from Ref. [8]

It is worth noting that similar counter-
examples can be generated for most of the existing
results based on various approximation methods,
due to the fact that the approximations cannot
guarantee sufficiency of the stability when applied
to the controller tunings. However, the method
presented in this paper has the obvious advantages
of sufficiency for the stability condition.

Another interesting question is: what is the
conservativeness and inaccuracy of the stability

conditions, if sufficiency is achieved. We define

ke = Vkuin ko as the “default” controller gain and
will compare the inaccuracy accordingly. As
demonstrated in Tab. 2, the differences between
column 3 and column 4 (exact calculations based
on iterative numerical solutions ) indicate the

conservativeness of the proposed algorithm.

5 Conclusion

In this paper, we considered the P and PI
controller design for UFOPDT systems. The
stability = conditions and  controller  tuning
algorithms were derived based on the digitized
systems with a special sample rate. The results
achieved in this paper were compared with existing
results and demonstrated better accuracy and can
guarantee stability (sufficiency achieved), while
We obtained the
stability range of the P and PI controller for
UFOPDT systems by the digital control method

Future works along this line of

most existing results don’t.

successfully.
research include extension of the present method to
gain/phase margin specifications and design, as

well as to other types of time delay systems.
References

[ 1] Kheirizad I, Jalali A A, Khandani K. Stabilization of
fractionalorder unstable delay systems by fractional-
order controllers[ J]. Journal of Systems and Control
Engineering, 2012, 226(9) .1 166-1 173.

[2]1Luo Y, Chen Y Q. Stabilizing and robust fractional
order PI controller synthesis for first order plus time
delay systems[J]. Automatica, 2012, 48(9): 2 159-
2 167.

[ 3 ] Hohenbichler N. All stabilizing PID controllers for
time delay systems[J]. Automatica, 2009; 45(11):
2 678-2 684.

[4] YU Tao, LIU Xiang, SUN Youxian. Frequency-
domain design of PI Controllers for first-order systems
with time delay[ J]. Journal of University of Science
and Technology of China. 2005, 35(S): 167-173.
RV XU, IMEYE. — YRR R G PR A i R
WAHE LT R R 2R R 2% i, 2005, 35(8):
167-173.

(T 4% 817 7O



