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Abstract: Inverse-model-based iterative learning control (ILC) for linear-time invariant, single-
input single output (SISO) systems subject to output noise is proposed with the intent of
predicting expectation of the underlying “noise-free” mean square error (Euclidean norm) on each
iteration. Frequency domain formulae are derived to provide an insight into links between plant
characteristics, noise spectra and inverse-model-based II.C parameters. Simulations are used to
illustrate the theoretical findings.
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0 Introduction

Iterative Learning Control is a new control
theory that is different from the other classical
control theories. The advancements in industrial

automation typically require many control systems
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to perform the same task over and over again. For
example, robot manipulators (e. g. a welding
robot in car manufacturing) are required to repeat
a given motion with high precision. As a result of
the repetition of the same operation, the control

systems should have an ability to do the same task

Automation of electricpower systems.
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more precisely and accurately when the task is
repeated again.

To achieve a near-perfect control theory, ILC
is implemented to reduce the error between the
output signal and the given reference signal in
some repeated systems. It is an iterative update
scheme which can improve the quality of system
performance from trial to trial. This is the
background of ILC.

The original idea was introduced by
researchers including Arimoto et al. ™. Since that
time, many papers, surveys and texts on ILC have
been published e. g. ™ for a variety of algorithms
including those considered in this paper and

Lo-14] Several

optimization-based  methodologies
application based papers have been published
underpinning the practical value of the concepts in
a variety of industrial sectors. e. g. 717,

The overwhelming majority of these papers
consider the noise free cases whereas, in practice,
signals are inevitably noisy. Achieving zero
tracking error in such circumstances is not possible
in reality. This paper considers a simple, practical
class of ILC algorithms (inverse-model-based ILC
algorithm ) for discrete-time systems in the
presence of coloured noise and derives formulae for
the Expectation of the Euclidean norm of the
underlying “noise-free” tracking error on the k"
iteration in terms of the matrices in the “lifted
model” of the plant. Computational experiments
are used to verify the correctness of the proposed

properties.
1 Problem statement

To give a precise definition of ILC, consider a
linear time invariant, single input and single
output, state-space system model defined over a
finite discrete time-interval t&€ [0, N

x2(t+ 1) = Ax(v) + Bu(p)
y() = Cx(p)

where initial states x(0)=x,, () €ER", u(t) €R

QY

and y(t) € % denote the state, input and output,

respectively. The matrices A, B and Cin the state-

space function (1) have the appropriate dimensions
and it is assumed that the system is controllable
and observable and CB is non-zero.

In addition, a reference signal r(t) is specified
over a finite time-interval t € [0, N | and it is
assumed that the sampling interval, t,, is unity.
This reference signal is the control objective
required in order to find the appropriate input u(t)
that is used to compute the output signal y(t).
This output signal should track the reference signal
r(t) with the least amount errors.

The special feature of the ILC is that after the
system has run over the time interval from 0 to N,
the system (1) is reset to its initial states to repeat
the task. This repetition gives the system the
ability to modify the next trial input signal u(®) so
that as the number of repetitions increases, the
output signal y(1) tracks the given reference signal
r() more and more accurately. This behaviour is
the significant feature of ILC. The question that
now arises is how to find a proper control law that
alters the input signal. Precisely, the main idea of

1L.C design is to find a control law

Uk 1 :F(emlae“uka"‘) 2)
so that
lime, = 0 and limu= u" (3)
. freo

where ¢, is the tracking error calculated by (r— y,)
and u” is the perfect input which results in perfect
tracking. As noted earlier, from the definition of
the control problem., it is assumed the perfect
input u” exists. If u” does not exist, the problem
can be modified to find an optimal input u* where
u” is the answer to the following optimisation
problem

u' = arg rr&r} | r— Gou |l * (4)
where U is the set of the possible input signals.

In order to make the analysis of the system
simpler, the system is represented in the matrix
form used by many authorsH*?,

i = Gu,+d (5)
where, if k" is the relative degree of G(z) (or,

equivalently, k" is the smallest integer such that
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the Markov parameter CA* ~!' B#0)

‘cAY 'B 0 0 |
CA* *B CA* 'B - 0

G= |CA" B CA" B - 0 (6)
LCAN'B CAY?B -+ CA* 'B]

ye = [ ) sy (B 4+ 1),y (k" +2)7"‘,yk(N):|"l
w =L (0) s, (1) s uy (2) ooy uy (N— k") ]T
d = [CA}“X Tpsrry CAVZ, T
(7

The dimension of the lower triangular matrix G is
(N+1—k" )X (N+1—%k"). It has only one
distinct eigenvalue CA* ' B with multiplicity
N-+1—*%k". The analysis is unaffected by assuming
that d=0 so this will be assumed from this point
for simplicity. As CA* !B#0, G is nonsingular
and there always exists a u” which satisfies r=
Gu” for an arbitrary reference time series r(t) on
[k*, N]. That is, defining r=[r (k" ), -,
r(NDI]Y, r=Gu" +d.

Note: As the time series vector y has k™ right

shifts relative to u, G is an exact representation of

" G(2 on [0, N—Fk"].

2 Inverse-model-based ILC algorithm
with output noise

2.1 Derivation of the algorithm

This section concentrates on the system in the
presence of output noise written in the form

v = Gouy, + Hon, (8)

where n;, is a zero mean, white noise time series
which differs on each trial but has the same
variance 0. The matrix H, is the matrix
representation of a filter H(2) defining the spectral
characteristics of the noise seen at the output.
That is,

D E(nin;)=0 if i#;.

@ E (nnf) = &1 where I is the identity
matrix.

The work described in this section is related to

that of Butcher et al.™ but is more generally

applicable in the sense that the analysis here is

time domain based and hence does not require
Butcher’s sufficient (but not necessary) frequency
domain conditions for convergence to be satisfied
for their validity.

The Inverse-model-based ILC control lawt is
now expressed as Eq. (9)

w1 = w1+ fG7 e, 9)
where B is a learning gain introduced to add
flexibility to influence the performance. It is
further assumed that the procedure is initiated by
the choice of an arbitrary initial control time series
u, » thereby resulting in an initial error e.

Two error measures are important to the
analysis of the behaviour on trial k+1, namely the
measured, noise contaminated error e-; and the
underlying, unmeasurable noise-free error e ;.
These can be computed as follows

o (10)

ee1 = r— Gugy = e + Heongpy
The noise free tracking error e+, is the one of
interest in assessing the real tracking accuracy on
trial k+1 but the noise contaminated signal e, is
the only one available for ILC control action. Note
that, whilst e, ; does not depend on n, 1, it does
depend on previous noise signals n; for iterations
0<{j<{k due to the inverse-model-based IL.C update
law (9) (which depends on ¢).
tracking evolution

The noise free error

equation needs to be established as reflected in Eq.
an

el 1 — T*G,,Ll.kiﬁek (11)
el — (1— ,8) e+ BHJM
It is useful to make the following observation:
In the absence of noise ¢, ; =(1—R" "¢, so

that noise free error evolution converges to zero as
k—><o if, and only if, BE (0,2).
2.2 Properties

It is impossible to predict exact trajectories for
the noise-free component of a signal f. It is
however possible to predict statistical Expectations
of Euclidean norms f'f and hence the associated
Mean-square values N ' f'f. And mean-square

values is much better to examine the error level.
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The following propositions are the first main
results in this area.
Proposition 2.1  The expectation E( ¢ ) of
| errii 12 at the (kA4 1)™ iteration can be
computed from
ECle i ID = 1A= e, 74 &A,
12»

where A, is an “amplification factor” given by
k
A, = Ftr(H.HD D, (1 — ¥ (13)
i=0

Note: Here tr(A) =tr(A”) denotes the trace
of a square matrix A.
Remark 2.1

to the value of the noise free error norm (squared)

That is, the expectation is equal

obtained when noise is removed from all iterations
increased by the term & A, which is the variance
(squared) amplified by a factor A, dependent on
plant dynamics and inverse-model-based ILC
parameters. This amplification increases from
iteration to iteration as it is easily seen that
At = Ay YEZ=0 14
Proof Applying induction to the noise free
error evolution Eq. (11)
e = (1 — P e, + BH.ny (15)
results in
et = (=P e +pI— P Hom +
B(1— P H.ny + - + BH .n, 16>
The norm of e+, has the form
e, 2= 11A—=PpP" e, +B1— R H.ny +
Bl — @ Hony + +++ + BH, ny || 2 an
Taking the expectation, noting that the cross
product terms vanish and using the identity f*f=

trl ff7] gives

E( H €k 1 H 2) = H (lfﬁ)hl €0 H z +
k
FRUCHHD D (A —p¥ (18)
i=0

This completes the proof.

This formula applies exactly to each iteration.
It takes the form of summations of k+ 1 terms
and, as a consequence, may become arbitrarily
large as k—> <o if the monotonically increasing
sequence { Ay} =y diverges. This suggests that the
reduce algorithm

introduction of noise may

performance catastrophically. The following result
identifies the conditions where noise amplification
remains finite as k>0,
Proposition 2.2  If the noise-free inverse-
model-based ILC algorithm is convergent (i. e.
n;=0, VY j==0) and the learning gain 3 satisfies fE
(0,2), then
_ B H.HD
2—B

Because the learning gain f satisfies

19

,lirpE( I e 1)

Proof
B€ (0,2) which implies that —1<{1—f<1, so that
hm(l - B)Zk+2 H €1.0 H = O (20)

P,

Now note that
k
A, :thr( HIH}) Z (1— B)Zj _

, 1= (=
FuCHHD S0 @D

As pE (0,2), then
.
A = ﬁt—r(zli?) (22)

It follows that
Fper(H.H))

28 (23

klir{}E( H €1, k+1 H °) =
This completes the proof.

3 Frequency domain bounds for

amplification
In the most common practical situation when
N is large, it would be useful to have formulae
that do not need the manipulation of large (N+1—
k=) X ( N+ 1 — k™) matrices.

addresses this issue by the derivation of upper

This section

bounds on the amplification factors A, in the
frequency domain using contour integration. The
results are shown to be very accurate if N is large
and have the potential to provide an insight into
the effect of plant dynamics and inverse-model-
based ILC parameter choice on noise-related
performance.

Recall the formula for A,
k
A, = Fu(HHD D) (1 —p¥ (24)
i 0

where H, is the matrix form of a filter represented

by the transfer function H(2) and
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Mhy 0 0 difficult to compute or interpret. Simplifications
hs hy 0 are possible in the special case where
H,= | hy e 0 (25) e (0,2) (33)

hy hy hy
Note that { h1 ’ hg s

response of H(z).

«, hy} represents the impulse

It is easily seen that
tr(H,H!) = Nhi + (N— 1D hi + -+ hi
(26)

and hence that
N R N
Nt (HHD = > = N' > G —DFE
i1 i1
D)
which leads to the result that
Proposition 3. 1  Because the filter H(z) is
asymptotically stable, then

N 't (HHD < lim N *tr(H.HY) =
Ne»oo

STk < oo (28)
j=1

the limit being approached from below.

Proof The proof is equivalent to proving that
N
Im N7 D> G— DR =0 (29)
N > P
Asymptotic stability guarantees the existence of a

number M >0 and 0<A<<1 such that |hj [2< MV 2
for all j==1. Hence

N N d
DGR <MY Sh <
i=1 j=1 da
d
dA

The result follows.

[I%Ak oo (30)

The value of this result is seen by using

Parseval’s theorem in the form

Dok =
j=1

which, using the known formula for summation of

b I HG |2 3D
unit circle =
finite geometric series (13), gives
N lAk < ]gIH}N lAk ==
Fad—Aa—p*
21— (1 —pPH

The formulae derived above are upper bounds on

3§| H(o 292 (32)
Z

amplification factors but, for large k, may be

Note that,

(@D This special case assumption is strongly
related to the case considered by Butcher et al. M
underwriting the fact that the results in this paper
are distinct and, in their domain, more general.

@ 1t is a sufficient but not necessary condition
for convergence of inverse-model-based ILC
algorithm. The necessary and sufficient condition
is BE (0,2) as stated previously.

The following bound is then obtained

N1*tA, < ignN YA, =
FA—A—p*5H
2mi(1— (1 —PH

the bound being equal to the following limit

R ,d=
lim lim N Ak_mzﬁf—ﬁ)ﬂ% H() 7% (35)

This proves the Proposition:

If € (0,2), then
limN ' E [ H €1, k1 H 2] <

o

3E\ H(2) |2df (34)

Proposition 3. 2

FFEA— A — P

)3E\ H(» \?d;z<<>0

(36)
and
lim im N "EC | e || ) =
ko Nosoxs

B

2 dz
27 (2 — ) | H(2) | . 37)

=l=1

The formula (37) is simply a scaled version of the

variance of the coloured noise H,n. The scaling

B
2—B

takes the value unity if =1 (i. e. the asymptotic

factor depends only on the learning gain p. It

value of the mean square error norm is simply the
variance of the coloured noise) and is small only if
B is small - a beneficial situation but one that leads
to slow convergence.

For the special case where H (2) is a first
order system, the Eq. (37) can be rewritten as

B’ZBCXZBXZ
QC—pUa—A"

(38

lim im NTEC| e | 2) =
fomoo N o



84 T EAFHERKFFR

F 44 %

where A", B” and C" are the state matrices in the
state-space function of H(z) (for the first order
system, A", B" and C” are the numbers) and
assume C* B™ #0.

To prove this, recall H, which is the matrix

representation of H(z) with the forms

C' B’ 0 0
C"A"B” C" B 0
H = | C"A:B" C"A"B" - 0
L[C*A*NIB* CTANIB* C*' B
(39)
And
L ﬂg zdizz *2 A*2j 2¥2
o= | H(2) | N ;C A% 2B

| zl=1
o CPBYA = AT
N 1— A

Because H ( z) is asymptotically stable which

40)

implies that A*?*<C1, it follows that

1 ,dx_ C7B
b IHe P dEo EEBT

‘~:
Hence the Eq. (37) can be rewritten as
82‘8(34213*2
Q2—PpPpAa—A"%
42)

lim lm NTEC| e | 2) =
fo N

as H(2) is the first order system.

4 Numerical examples

To demonstrate the validity of the theoretical

findings, consider continuous-time plant with

transfer function

s+ 1
§ +5s5+6

sampled using a sample interval 0. Ols using a

G(s) = 43

Zero-order hold. The corresponding discrete-time
system has transfer function

0.0098z— 0. 0097
Z —1.9512+0.9512

and zero initial conditions are assumed. The

44)

G() =

discrete reference signal chosen is the sampled
version of r=sin(t). And the filter H(2) takes the
forms

_ 0.1362—0.13

z+0.72 “45)

H(=2)

where the state matrices of filter H(z) is A" =
—0.72, B® =0.5 and C* = —0.455 8. Consider
the case of noise variance §=0.072 (i.e. & =
0.005 2)
(NSR) of approximately 10%. Noise signals were

equivalent to a noise-to-signal ratio
generated using standard MATILAB routines.
Consider  the  inverse-model-based  ILC
algorithm takes the form
e = w1+ G, (46)
Example 4. 1
and 2. 2, if Bis selected as 0.5 which satisfies &
(0,2) and A"?=0.518 4<1, then

llrl:lE( H €1, b1 H 2) — 82A :1

According to Propositions 2. 1

Sptr(H.HD
2—B
logi,0. 112 ~— 0. 951

~0.112 [ 47

The noise amplification in this case is A. =

21.53 4.

(=T ST N
L.
=
o

Line 2

2

llea]|” in logyg

Liﬁf 3 Line 4

..................................................................

0 10 20 30 40 50 60 70 80 90 100
iteration k
Il 2

Line 1: logio || er.pe1 | 25 Line 2: logio ECll er,per [ 2

Line 3: logio& Ars Line 4: logio | (I—BG) ¥ Ve || 2
Fig. 1 Evolution of || ¢, || * and

EC| e | 2) for NSR~10%

The results in Fig. 1 indicate the following:

@ Although the inverse-model-based ILC
algorithm converges to zero error in the absence of
noise (Line 4), the presence of noise (Line 1)
leaves a residual error as k—>oo,

@ The example confirms that EC || ejeq | 2)
(Fig.1 Line 2) can be a good prediction of
observed values of | e,y |2 (Line 1) in the
presence of noise.

® The

existence of a finite limit for EC|l e, | 2) and

results are consistent with the

indicate the validity of the prediction that it
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approaches & A, as k goes to infinity (Fig. 1 Line
3) e. g. after 20 iterations, EC| e,y | ?) and
& A, are already very close in value suggesting in
Eq. (47) that

lim E( H (I3R! H Z) = 82A— =~ 0.112
b (48)
log1,0. 112 ~— 0. 951

@ As a consequence, for practical purposes
the algorithm performance is dominated by the
term 8" Ay if k is large and hence the computation of
A, is central to evaluating algorithm performance.

Example 4.2 To indicate the validity of the
predictions in section 4, N is chosen as 600 in this

case and

l1m llm Nil E( H €1,k H 2) —
oo N owow

FpRCTEB™: A
- =~ 1.870 49
Q2—pPpa—A* 9
logiy1.563 " &~—3.728 (50)
The information from Fig.2 confirms the

correctness of Proposition 3. 2. In this simulation,
the experimental result is very close to the
theoretical value, —3. 728, which implies

¥pC*B**?
2—Ppa—A"")

D

Ihm LirQN YECI e 17 =

if H(2) is the first order system.

N'E|le,|F in logjg

_4 L 1 L L L L 1 L L
0 10 20 30 40 50 60 70 80 90 100

iteration k

Fig. 2 Evolution of N || ¢, || * for NSR~10%

5 Conclusion

In this paper, the main work was to compute
the expectation of the noise-free error norm
squared on each trial by taking into account the
fact that noise from previous iterations will affect

dynamics due to the inclusion of previously

measured errors from previous iterations in the
inverse-model-based ILC algorithm.  Explicit
formulae have been derived which demonstrate the
fact that normally convergent inverse-model-based
1LC algorithms of the type considered will again
“converge” to limit error time series that have
norms equal to the variance of the underlying white
noise amplified by a factor dependent on plant
dynamics, noise characteristics and inverse-model-
based ILC parameter choice.

It has also been shown that these exact
formulae can be replaced by frequency domain
bounds are

bounds and that these

upper
increasingly less conservative as the time interval
for control increases in length. These results have
the potential to show the direct link between plant
dynamical properties and noise amplification.

Finally, it is noted that, in the event that the
noise variance varies from trail to trial but is
bounded by &, then noise statistics could be
modelled by the inequality E[ nin;," J<<&1 V i=>0.
Under this (12) in
Proposition 2. 1 is replaced by

E( H €1, k1 H 2) < H (1 *B)fhl €1,0 H £ + 82AI<

(52)

and it is a simple matter to show then that the

circumstance, the Eq.

formulae given in this paper provide upper bounds

on the behaviour of EC| e, 1 || #).
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