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0 Introduction

Finsler geometry is more colorful than
Riemannian geometry because there are several
non-Riemannian quantities on a Finsler manifold

One of the

important problems in Finsler geometry is to study

besides the Riemannian quantities.

and characterize the projectively flat metrics on an
open domain UCR". Projectively flat metrics on U
are Finsler metrics whose geodesics are straight
lines. This is the Hilbert's 4th problem in the

[1]

regular case In 1903, Hamel™ found a system

of partial differential equations
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Friyt = Fy (D
which can characterize the projectively flat metrics
F=F(x, y) on an open subset UCR". And we
know that Riemannian metrics form a special and
important class in Finsler geometry. Beltrami’s

B tells us that a Riemannian metric is

theorem
locally projectively flat if and only if it is of
constant sectional curvature. The flag curvature in
Finsler geometry is a natural extension of the
sectional curvature in Riemannian geometry.
Besides, every locally projectively flat Finsler
metrics F on a manifold M is of scalar flag

curvature, 1. e. , the flag curvature K= K(x, y) is
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a scalar function on TM\ {0}. Many projectively
flat Finsler metrics with constant flag curvature are
obtained in Refs. [4-7]. Besides, there are a lot of
locally projectively flat Finsler metrics that are not
of constant flag curvature®®™.  Thus. the
Beltrami’s theorem is no longer true for Finsler
metrics.

In this paper, we construct a new class of
Finsler metrics with three parameters which are
not of constant sectional curvatures. Let € be an
arbitrary constant and Q=B"(r) € R" where r=
V=1 if ¢<<0 and r=-—+0 if £>0, | + | and ¢,) be
the standard Euclidean norm and inner product in
R", respectively.

Define F: TQ—>[0,+2°) by
Ve (x, w2+ e y[PA+¢] 2D

9 2

14+¢] x? (2)
_ o xlx, klasy)

p 14+¢| x| 1+ eaa (&

where € is an arbitrary positive constant, k is an
arbitrary constant, and a € R" is constant vector
with sufficiently small norm.

Remark 0.1 When ¥ =1, {=—1, e=1, Fis
a general Funk metrict'. If a=0, F is Mo and

(J. They not only proved that F is a

Yang's metric
Randers metric but also showed that F is a
projectively flat Finsler metric if and only if
K +ef=0.

As a natural prolongation, we obtain the
following results:

Theorem 0.1 Let F=a+f: TQ—[0,+ )
be a function given by (2) and (3). Then, it has
the following properties.

D When # +¢e¢=0, F is a Randers metric.

@ F is a projectively flat Finsler metric if and
only if ¥ +e¢=0.

® When # + ¢ = 0, the projectively flat
Finsler metric’s flag curvature is given by

Pr Pyt
K=" SRR

1
N
3SLUF— @)% + e’ %),

{(—[4C(F—* + 4 ¢ JF+

K<(l7 !>
1+ela, o

where ¢=

1 Preliminaries

A Minkowski norm ¥(y) on a vector space V
is a C° function on V\ {0} with the following
properties;

@ w(y)=0 and ¥(y) =0 if and only if y=0;

@ W(y) is positively homogeneous function of
degree one, i.e., T(ty) =t¥(y), t=0;

@ W(y) is strongly convex, i. e., for any

y7#0, the matrix g; (x, y) = %[szyl_\,J (xsy) is

positively definite.

A Finsler metric F on a manifold M is C”
function on TM\ {0} such that F, : = F| T 1S a
Minkowski norm on T,.M for any x € M. The

fundamental tensor g; (x,y) ==%|:F2:|yfyi (xsy) 1s

positively definite. If g; (x, y) = g; (x), Fis a
Riemannian metric. If g; Cx, y) = g; (y), Fis a
Minkowski metric. If all geodesics are straight
lines, F is projectively flat. This is equivalent to
G'= P(x, y) y' are geodesic coefficients of F,

where G' are given by
Ill 5 -
G = S ALF ]y —[F D).

For each tangent plane IC T .M and y €& II, the
flag curvature of (II, y) is defined by

g Riu*u”
Frgjue —[gyy'u']’

where II=span{ y, u}, and

WG PG 5 G 9G G

Ri=255%—y 555526

We need the following lemma for later use.
Lemma 1. 17”0  Let F be a Finlser metric on
an open domain UCR", F is projectively flat on
this domain if and only if
Fayyt = Fu,

In this case, the flag curvature K of F is given by
PZ . P(kylz
F2
where the projective factor can be expressed as

_ Eay”
P = oF

K =

b
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2 Proof of Theorem 0. 1

Let o=1+¢| x|*, =¥ tel, &« =a;y'y,
B=b;y".
@ From (2) and (3), we obtain
a":@‘FKZIiIia
Y w w*
_kx! ka'
b = ) +71+(a,x> 4
okl ok
b= w +l+<a,31‘> 5
Noting that w=1+¢| z[* >0, (d') = (a;) *,
we get
i W 3izf%J
a . [ 1 gl (6)
Combining (4), (5) and (6), we have
S AP S BV o o A
| Bl .2 = a’bb; . J T gl
[ S N '~ SR L
w +1+<a,ac>] o +1+<a,x>]_
& | 1‘\2+ 2 a, a)
ew e(1+ela,a))
w | al? 2kt | x[*a, )

e+ a0’ el +ela,ao) (et | x|D

K{as 0w £ ] xl

el+ (a0t |z ewletd | x|?)
Suppose ¢ = +e{=0 and a has sufficiently small

norm, we have

2 2 2(.0<(,L91‘> o
gl == | —ZRelan)

Cw | al’ Cala, )’

O+ elara)? A+eaa)?

w[(§<a,x>+l+€<av1‘>)2+§‘ a‘zj <1
(14 ela, x))? '

So F is a Randers metrics.

@ Let
A=,y +e|l y|?A+¢] x]? =
x2<1‘,y>2+€m\ y|2’

17

by direct computations, we have
1

a,l :%[A ?w(fcz<x,y>y1+e§| y\le)*ZgA‘%l‘L]
w

7

[ :i [ ! fM
Bt = gy’ =20 ] =T o e (8
1

3 , 1
akyyt = 2{A2502w|y‘4wT1+A 2 wla, )y —
w

A7%$2w| y\2<:c,y>y’*2A%Cxl+e‘§Af%w| NS,
(9)

exla, y) a
(14 eCa, a))?

10

L4yt yt = %[Kwy’ — 28,y a' ] —
w

From (7) and (8), we obtain
F»I_/ = q,! +,8_,[ B

LA Foté oy y + | yla) —2gat 2]+
w

1
ex{a, ya an

l L I
wz[,«uy 2§K<Iay>f:| (1+€<a71>)3

We also have
F]_lxylyk — al_lz\‘l,yk -+ ‘BJ_Izyl,yk =

Liatetol yllart+A Plala )y —
w

A%qozw\ ¥ |2<x,y>yl*2A%C:rl+
sCAféw\ y|Pat+ kwy' — 28,y 2 —

_elaya
(14 ela, x))* (12

here we use (9) and (10).
By (11) and (12), we get

I«‘»kalyk—f‘ll = %{A %e‘ozw| y |4w:1i
w

A%€p2w| v,y =
13 5 2 2 i
GA e [y y P = ey y

If p2 = +e(=0, we have F.ty*—F,t=0, so Fis
a projectively flat Finsler metric. The converse is
obvious, so the proof is omitted here.

@ From Lemma 1. 1, projectively flat Finsler

metri’s projective factor and flag curvature are

given by
_ Emy”
P = 5 (13)
PZ _ P -kyh
K= —=FF— 14
2 aH

By a simple calculation for F, we get

Fxmyrn:%[A*]?KOZ ‘ y|2<x,y>*2Al"§<Iay>+
w

TR Coye o eklan
Kw ‘:>| 2CK<‘1’>>:| 1+€<CL91'>2
15
For A=« (x, W +ewl y|*, we have
ol ylF=La—geyh a6
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By (13), (15) and (16), we get

Foy" _

P="%

1\{ L}[A T;PZ | y‘2<1,y>*2A%C<x,y>+ch*
2F U

3 2 2

£ {xs? 2}7 el a, y)
€ 2GeC e y) (1+€<a,1‘,>)2}'
When ¢ =¥ +e{=0, P can be expressed as the

following form.

P:1 |:£(F7¢)27%2:|:7 (F— &)? — el

2FL e 2kF
an
Using (17), we have
2 1 Y 2772
= 2 FZ[E(F W 4 e’ ] (18)
1 5 5
bk 2 N3 2 13 o
Puyt = o |G (F—p* +12¢1F
2 5(F— ) + o' | (19
Substituting (18) and (19) into (14), we get
_ PP =Pyt
K=" =
1 2 3 2 13
(g F - HaegIF+
3[§(F—¢>2+s¢2]2},
_wla,y
where ¢ 1+ela, "
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reconstructed from focal plane variables with optics. In principle, the optics is the mathematical
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0 Introduction

There are two high resolution spectrometers
(HRS) in Hall A at Jefferson Lab, both with

QQDbQ (€ Q:

configurationst.  The

quadrapole, D: dipole )
HRSs have

properties that are point-to-point in the dispersive

focusing

direction. The scattered particles passing through
the HRS are bent and focused on the VDC (vertical
drift chamber) plane. All signals are translated
into physical variables on the VDC plane, also
called “focal plane variables”. However, in order
to study the acceptance and calculate cross
sections, one needs to obtain “target variable” on
Target variables can be

the target plane.

reconstructed from focal plane variables with

“ ”»

optics In principle, the optics 1is the
mathematical expression (i. e. optics matrix)™ of
magnetic field of HRS. The optics matrix elements
allow the reconstruction of the interaction vertex
from the coordinates of the detected particles on
the focal plane. Data obtained with a set of foil
targets ( which define a set of well-defined
interaction points along the beam) and a sieve-slit
collimator were used to determine the optical
matrix elements. For Coulomb sum rule (CSR)F™
experiment, the nominal momentum range for
optics runs for both arms is 0. 4~2.0 GeV/c. The
optimization method to determine the optics matrix

elements will be studied as follows.

1 HRS optics system

1.1 Optics optimization process

During a normal calibration procedure, we can
obtain the theoretical and experimental values
from one measurement and then try to change
calibration constants to make theoretical values as
close to experimental values as possible. For
example, we know Vi and V., assuming
Viaa=C *

a linear fit for Ve vs Viu. And Cis the result we

Vineors. With optimizing C, we finally get

want to get.

It is the same idea for optics optimization.

What we have are target variables, such as Z.ue»
$us Ogs yg» calculated from sieve slit and survey
information. We can define these variables as
TgVarye,. The experimental values for target
plane

variables (FpVar) detected by VDC with the help

of optics matrix (OP). In general, the relation

variables are reconstructed from focal

between them is TgVarg. = OP + FpVar. By
changing OP and getting smallest y* of (TgVary, —
TgVaryewy ) » we can get new optics matrix (OP)
for better optics optimization.
1.2 Target and focal plane coordinate

Target coordinate system is one of the
coordinates of Hall-A at Jefferson Lab used to
define the target variables. Fig. 1 shows the
coordinates for electrons scattered from a thin foil
target. The target coordinate center is shown in
the figure as a black cross. L is the distance from
Hall center to the sieve slit plane. The black line
tagged with z, is along the central line of the
spectrometer and the one with y,, is perpendicular
to it. B, is the setting central angle of the
spectrometer. ¢y Vi and e are defined in the

tJ. D is the horizontal displacement of the

figure
spectrometer axis from its ideal position. And D is
also the D, defined later in Eq. (1). Note that x,
Og» D. and x4, are vertically down C(into the
page).

scattered
electron

PR
. ,,-“: Ysieve
o N
\,

Zy

T ’ sieve plane
A spectrometer
central ray
5 a— » beam
Zreact

Fig. 1 Target coordinate system schematic

The HRS sieve slit hole pattern is shown in
Fig. 2. The distance between holes and the
diameter of different holes are defined in the

figure.
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o—fo o © o o ©
25.0 mm @4.0 mm
O—L:J o o g o ©

A:L rlz,Smm
o o o o

@2.0 mm

o oojo o o
@4.0 mm

electron arm hadron arm
thickness=5 mm
Fig. 2 Sieve slit structure in Hall-A
Tab.1 L and sieve slit survey
location 7,/mm X/mm Y/mm yaw angle/degree 3D dist/mm

left arm sieve slit 357.72 1109.13 —0.12 72.124 1 165. 39

left arm 6 Msr 335. 89 1 038.08 0. 05 72.070 1 091.08
2006-07-03

right arm sieve slit 994, 57 —657. 87 —0.15 —33.483 1192. 46

right arm 6 Msr 933.01 —615.17 —0.18 —33.398 1117.56

left arm sieve slit 948. 05 677.59 2.05 35. 9554 1 165. 30
2008-02-08

left arm 6Msr 888. 31 633. 35 2.53 35. 488 1 090. 98

Survey information on the distance from the
Hall center to the front surface of the sieve slits,
L, is shown in Tab. 1. Sieve survey information is
in Fig. 2 and Tabs. 1, 2. The survey informations
of Zwwrs D.s D, of the left and right arm were also
obtained. The distance between each optics foil is 4
cm.

In Tab. 1, the coordinates are relative to the
ideal Hall-A target and beamline, with + Z along
the beam, + X to the beam left and + Y up.
Measurements are to the upstream face of the
collimators. In Tab. 2, the first sets of coordinates
are to the center of the slits relative to the

spectrometer center line. The second set is relative

to the Hall-A target and beam line as reported in
the DT A1102. A + X is to the beam left, A +7Z

is downstream and a +7Y is up.
Tab. 2 Sieve slit offset

location Z/mm X/mm Y/mm

relative to the spectrometer center line
left (electron slit) 974 1.48 2.76
right (hadron slit) 1002 —1.31 —2.67
relative to the Hall A beam line
left Celectron slit) 949 213.93  2.12

right (hadron slit) 977  —215.76 —3.19

1.3 TgVaruwy and TgVarg,. calculation
The Formulas to calculate TgVarge, are

defined as follows.
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b
e~
wl
7

¢ — ySiCVL‘ + Dy 7 Ibcamcos( 60) + Zrcact Sln< 6())
* L— Zreact COS( 60 ) T Tbeam Sln( 60 )

Zsiowve T D — Yoeam
. b
L— Zreact COS( 00 ) T Xbeam Sln( 00 )

9

0, =

Vg = Ysieve — Lprgs
Tig = Xsieve — LOig »
cos( ) — $ysin(h)
A+ &+ ¢i
_ E
1+ E/M(1 — cos()’
 p(M, O — pCM, 00D
P{)

Qs = arccos

p(M,0) = E’

dP kin — dP

(D

Making use of the survey values, Fig. 2 and Eq.
(1), we can calculate TgVar jeor.

VDC detector and focal plane coordinate

system is shown in Figs. 3 and 4, respectively.

VDC 2

VDC 1 jr@
1 J45°% |

N

Fig. 3 VDC detector coordinate system

LA

Zdet

//‘%’%/‘/

Xip

Fig.4 Focal plane coordinate system

The formulas to calculate TgVarg,, are defined

as follows.

6 = Z Djlzl efp yfp ¢%p ’
NN

etg = 2 ,fjklefjp yg) ¢£p ’

Ikt (2
Y = 2 ijl@{}) yﬁ? d’fl’ ’

Jrksl
by = Z Py OTip }’fkp ‘i’%p

jrksl

where

Djhl = Z Cf})kllffl) (3)

=0
So after obtaining the &, 0y, y, and ¢, value from
theory and data, we can extract the calibration
COfoiCiel’ltS ( Djkz ’ 'I‘jlgl ’ ijl ’ ijl )

minimization method for VDC and get better optics

with XZ

conditions.

2 The optics optimization results

After the optimization calculation procedure,
we obtained some results. Fig. 5 shows y, vs ¢
distribution before optics calibration, from which
we can see the peak location or the center of events
cluster can not match well with the theoretical line

or center initially.

TE
0.10 Mean x —0.M7§8
008
0.04 F .
& 002¢ 4
0F
-0.02E
~0.04F
~0.06 =
~0.08F
_{)'IO E 1 1 1 1 1 1 1 1 1
-005 -0.03 -001 001 0.03 0.5

e

Fig.5  y, Vs ¢, distribution before optics calibration

Fig. 6 shows vy vs ¢, distribution after optics
calibration, from which we can see that the peak
location or the center of events cluster are aligned
well to the theoretical line or center after the optics

calibration well.

Foil 4 for Run 1292 T
Entrics 5633
0.10 Mean x ~0.004972
0.08 |- RS 00108
0 06 :_ RMS v 002801
0.04
& 002
oF
-0.02 ‘—
-0.04 '—
-0.06
-0.08
_0_'0:”-.qu||||”-|. S T P P T W N N W e
=0.0 -0.03 -0.01 0.01 0.03 0.05

P

Fig.6  y, vs ¢, distribution after optics calibration



