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specified accuracy were achieved for the generalized linear model with measurement errors.
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0 Introduction

Generalized linear model (GLM) is widely
applied to analyzing the relationship between the
target variable (response) and the explanatory
variables in many fields of modern science such as
econometrics, medical science, sociology and so
on. Especially when the discrete responses, for
example, attribute data and enumeration data, are
analyzed, GLM brings a number of powerful
capabilities. For studies on GLLM please refer to
Refs. [1-4 ] and references therein. Suppose pairs
of response and covariates, (y;,» x;) ERXR?, {=
1, 2, «=-, are sampled from GLM with a link
function 4 as follows,

Ely: | ] = p(xiB), 1
Varly, | ;] = ”Z)(I;'l‘ﬁ())f

where 3, is a p-dimensional vector of the unknown

(D

regression coefficients, p( + ) and v( *+ ) are two
known functions, and the first derivative of p (1)
for all ¢ is positive. In practical applications,
among the p explanatory variables only a few ones
denoted by effective variables in Ref. [ 5] have
contributions to the response. That is, only p,
(po<<p) components of f3, are non-zero.

Under a given sample size (not a random
variable) , many methods can be used to select the
effective variables and obtain estimates of the

LARS™,
and SCAD". However, the number of samples

parameters, for instance, LASSOM/,

needed to identify the effective variables and
simultaneously estimate their coefficients under a
pre-specified estimation accuracy is an important
issue, especially when the cost of the sampling is
considered in Biology and Epidemiology.

It is well-known that the sequential method

O

can save samples by some * early stopping”
sampling. For the linear regression model, Wang
et al. ™) proposed a sequential shrinkage estimate
method to identify the effective variables and attain
the parameter estimates of a presupposed accuracy
with the minimum number of samples. For GLM,

a sequential method has been proposed in Ref. [9]

without distinguishing the effective variables, and
Lu et al. ') developed a sequential approach to
determining a minimum sample size under which
the effective variables and their estimates are
obtained with a pre-set precision. There is an
assumption in Refs. [ 5, 10] that the explanatory
variables can be observed without measurement
errors. However, in practical applications the true
values of the designs z;’s may not be measured
frequently due to the inadequate accuracy of the
measuring tools or some operating mechanism.
Instead, the variable z; consisting of x; and the
measurement error is observed. Chang'' showed
that in a linear regression model, the measurement
errors in the covariates generally do not affect the
consistency of least squares estimator under the
assumption that the measurement errors have mean
0 conditional on the regressors. But he did not
consider the issue of sample size. For GLM with
measurement errors presented in explanatory
variables, in this paper we propose a sequential
procedure to construct a fixed size confidence set of
the effective variables based on an adaptive
shrinkage estimate ( ASE). According to this
procedure, the effective variables can be efficiently
identified with the minimum sample size and
regression

simultaneously their corresponding

coefficients are estimated with the required
precision. Moveover, we show that the proposed
sequential approach is asymptotically consistent
and efficient in the sense of Ref. [12].

In the rest of this paper, an adaptive
shrinkage estimate as well as its asymptotic
properties will be established in Section 1 with
measurement errors appearing in the covariates. In
Section 2, the sequential sampling method based
on the ASE is proposed with the stopping rule and
the fixed size confidence set constructed.
Simulation study is presented in Section 3 to
illustrate the performance of the proposed
sequential sampling method based on the ASE
compared to the traditional method based on the

maximum quasi-likelihood estimate (MQLE). A
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diabetes data set is used as a real example in the
last section and details of the proofs of the main

theorems are given in Appendix.

1 ASE with errors in covariates

Let {Cy;y 2;)s 1=1,2,+,n}) be i.id.

samples generated from model (1). Define S, as

the MQLE of 3, in model (1), that is, S, satisfies

the score equation
In* (5,) =
Dl w(a e ) Ly — p(al8,) Jay = 0 (2)
i=1

where ;(2) denotes the link function of model (1)
and w(z) =v ' (). For more information about
GLM and MQLE, please refer to Refs. [ 3,13 ].
However, the true covariates x;’s in Eq. (2) can
contamination by
=1 + &, is

measured, where & is measurement error term.

not be observed due to

measurement errors. Instead, Z;
Based on z;, we can obtain the quasi-likelihood

equation with measurement errors in the covariates

n

In(p) = D pGIRwI [y — pu(zIp) ]z = 0

i=1

(3
Let 3, be a solution to the estimating function

(3), that is, In(8,)=0. We call g, an MQLE of 8,

with measurement errors. Suppose & is
independent of x; and z;, i=1,+**,n.

Sete; =FE[y;, ] —pu(x!f), i=1,+, n, to be
independent error terms. In this paper, we need
the following assumptions:

(I) sup; || z: || <oo, and E[ | |7 ]<<oo for

p>2.

(1) Awin (> 2fx) > as. and
i=1

lim[ A € Z 2 ) /Inpax € Z xix))]=oo
i= i=1

n—>co

a. S. .

(D lim( Q) 2 [pGIR) PrIg)= /n = S,
et =
where 3 is a positive matrix.

(IV) There exists a sequence of constants {a, }

with 1<la,—><o such that EE( & |l 2/a)» < oo

n=1

for some constants 0<y,<<1/2.

The conditions ( [ ), () and (V) are the
same as those in Ref. [ 11 ], and under these
conditions, Theorem 1 in Ref. [11] implies that for
some 7->0

n%”(g’” —B) =o0(l), as asn—>co (4)

Assume k= (n) is a non-random function of »

such that for some O<é‘<% and y>0,

1 1.
n’k—>0and n’ "k — o, as n— o (5)

For instance, we can take xk=n ’ with §& (% ,% +7.

Define «x, = « | 6, | 7+ where B, is the jth

component of /E’,,. With presuming o0 X 0=0, we
have from(4) and (5),
e, — 0 X 1(B),; # 0) 400 X I(B; = 0)
a.s. asn—> oo (6)

where I( « ) denotes the indicator function. That

is, for each j, the indicator I,; () =1G/nk,;<<¢) can

be used to identify whether the jth component of §,

is significantly apart from zero by at least a pre-

specified positive constant ¢, It also implies that
b

Po =po(n) = Z I,; (O can be used as an estimator
i=1

of po. It can be proved from LLemma 1 in Appendix

that the index I,; (¢) almost surely converges to I

(B, 7 0), which easily implies that p, almost

surely converges to p, and E[ p, | converges to py s

as n tends to oo,

Similar to Ref. [ 5], define ,23” =1,()B, as an
ASE of By, where
I,(0 = diag{ [, (O, 1, )} )

is a p X p diagonal matrix. The strong consistency

and asymptotic distribution of Z?,, are presented in
the following theorem:

Theorem 1  Assume that (y;,x;),i=1,,n,
are pairs of responses and covariates generated
from model (1) and ; satisfies z;=x;+&. Under
(I), (I and (IV), for any small =0, as n—>co

we have with probability one,



452 T EAFHARAREFR

% A5 &

Ci ‘é,,ﬂloﬂo =f,» with convergence rate;
Ci) 18— | =OCIn n/n]"*);

~ L
Ciii ) Vn (B, — ) —> N (0,1, ' 1,) as n—>o0;

where || * || denotes Euclidean norm and I, =diag
(B #0)s =, I (B, 70)) is a p X p diagonal
matrix and 3 is a positive matrix defined in (][] ).

The proof of Theorem 1 is given in Appendix.

2  Sequential sampling strategy with
errors

(415) - are usually

Sequential sampling methods
applied to determine sample size when samples are
observed sequentially or no proper fixed sample
size procedure can be used any more. In this
situation, it is reasonable to consider how many
samples can be saved using sequential procedures.
Thus, we focus on the efficiency of the sequential
method based on the ASE instead of the MQLE.
Similar to Ref. [ 5], the sequential fixed size
confidence set estimation and the expected sample
size are employed to illustrate the performance of
our method.

In order to construct the confidence set for 3

we need to study the asymptotic properties of the

ASE, i e
property of  the

B.» under random sample size. The

uniform  continuity  in

[16-17] sufficient

probability is proved to be a
condition such that the randomly stopped sequence
has the same asymptotic distribution as that of the

fixed sample size estimate. Lemma 2 of Appendix

shows that the sequence ﬁ(ﬁ)’,, —B)sn=1,2,,
has the uniform continuity in probability property,
which indicates the following theorem holds.
Theorem 2  Suppose that the conditions (]) ~
(IV) are satisfied, and let N (¢) be a positive
integer-valued random variable for which N (z)/¢

converges to 1 in probability as t—>co. Then

~ L
iV N([)(‘BN(I‘) 7‘80)—>N(071027110)9 as t —» oo
(€))
We employ Theorem 2 to construct a

sequential sampling procedure to determine the

sample size under which the effective variables are
identified and simultaneously their coefficients are
estimated with a pre-specified accuracy. Let Y, =
(yrsyesros ¥, -vz,) be n X1
and p X n observations,
respectively. And Z, satisfies Z,=X,+§&, in which

X, is the true design and &, is the measurement

and Z,,:(Zl 9 X9 e

matrices of the

error. Following Ref. [ 5], conditional on the
samples given up to the current stage, there exists
an orthonormal matrix O, satisfying 0,0, = 1,,
and (B, B)" = 0O,8,, where (B, )" is the
rearranged order of 8, components such that all of

the indicators I,; ’s relevant to B, are 1 and those

relevant to 3, are 0.

Denote
D218 PPl B )2l = (W2 Z) (W2 Z)T,
=1
where

W = diag{[;(z/B.) P w(=/B,) s i = 1.2, 0.
Partition the matrix (O,WY? Z,) (O,WY2 Z )T
according to the first p, non-zero components of
O,,[?,, such that

(O71W1/2 Zn)(OuWI/QZn)T -

{ Eu(ﬂ);}ox,’ao

201 () i,

21 (7’1)/50><(/)07;0)
S22 (71)<1f}0>x<;r/}0>

Then by simple matrix computation, we have
O, (O(W"ZHYWY2ZHD (00! =
O,1,( 00 ((OW*ZH(OWY*Z)™)O,1,(00F =

1
{Zi (n) 0 9
0 0
where
Sﬂl(n) =

S G+ 30 2 ()35 () 3 (37 ()
252].1(77) = S0 (n) — 3 () 271] ()3, (n).
Let M~ denote a general inverse matrix M. It

follows that
U— BT, WY2Z) W2 X)) L) -
U—B) =
O,U—0,8) 0,1, 00" -
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(OWV2Z)(O,W2Z) ) 10,1, (OO0 ]«
OU—08) =

(Unl _‘AB;II)TEH(n)(Unl _Z?nl) (10)
wu, )" €R? and U, is a sub-

where U= Cuy s uzy ***

vector of U corresponding to Bu. Theorem 1

implies that as N—>co,

NQ@y — BT U (O W2 Zy (W2 Z )T M Ty () s
By —B) =
~ o~ ~ L )
N(Bw *301)1211(]\]) (Bnv1 — 1) *’XZ (po)

(1D
However, the true p, is unknown and has to be
Suppose C,
1 9% k }.

estimated based on the observations.

denote the first £ observations {(y;,2;):i=
A »

We can use p, (k) = 2 I;; () to estimate p, with a

i=1
known positive ¢ based on C,.

Let {@;}*? €R be a
constant satisfying the conditional probability
P(X%O(k)gakz ‘C}»)Zl_a’ for a given Q. Then a

stopping rule Ny is defined as
2
N = Ny =inflk: b= n andy <L) (12)
k

where , is the maximum eigenvalue of

k -~ -~
R (O (D [p(l80 P2 B2z ' [, and d
=1

is a pre-specified precision of the confidence set. A
new observation is collected at a time until the
stopping criterion defined in Eq. (12) is satisfied.
Then when the stopping rule holds, using N
samples, a confidence set of f3, is constructed as

follows,

Ry :{UERP:

Su_d* B
N <yN anduj =0

for INJ(():Osl <]<p} (13)
Where SN: (UN1 *Z‘?;\q )Tgn (N) (UNI *Z{‘\q ) It iS
easy to show that the maximum axis of the
ellipsoid defined by Ry, that is the equation
(N oy /d) (Un ,8\'1 TZH (N { (U ,@\1 =1,
is 2d, which is the pre-specified accuracy of
estimation of B.

Note that there are p— p, axes relevant to zero

components of fy in Ry, and other po components

make up a degenerate ellipsoid confidence set,
called RYY, which is the projection of Ry into the

po-dimensional space spanned by the axes with the

non-zero components of BV In other words, the
proposed sequential estimation procedure focuses
on the effective variables while ignoring the non-
effective ones. The crucial difference between the
proposed method and others is its ability save a
large number of samples. Properties of the
sequential procedure and its confidence set of 3, are
summarized below, whose proof can be seen in
Appendix,

Theorem 3  Assume that the conditions () ~
(IV) are satisfied, and let N be the stopping time

N

as defined in Eq. (12). Then (| ) lim—— =1
d—>0 a V
almost surely; (i) 1Iirr01P(ﬁ0 ERy)=1—a; Cii)
2
limw =1; C(iv) limp, (N) = p,, almost
d-0  a’y d—=0

surely, and LingE(ﬁo (N)) = py; where v is the

maximum eigenvalue of matrix I, 'I,.

From Theorem 3, result ( ji ) shows that the
sequential confidence set has the coverage
probability asymptotically equal to the nominated
value 1 —q, and (jii) illustrates that the ratio of the
expected sample size of the sequential procedure to the
best (unknown) sample size goes to 1.

In applications, ¢ is an unknown tuning
parameter, and needs to be determined by using
some model selection criteria such as the Akaike
information criterion (AIC), Bayesian information
criterion (BIC) and a general cross validation
(GCV) method. In this paper, BIC is employed in
our numerical study for illustration purposes. The
precision index d is chosen by users based on the

practical need.

3 Simulation

Performance of the sequential adaptive
estimation with measurement errors is evaluated by
numerical simulation studies in this section. We
use the stopping time (final sample size) and the

coverage probability of final fixed size confidence
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set to compare the proposed method based on and
denoted by ASE with the classical sequential
approach based on and denoted by MQLE. To
illustrate the power of the proposed method, we
use just the p, effective variables to build a GLM
that the p,
denoted by

model while assuming effective

variables are known in advance,

MQLE,, .

efficient method.

Thus, MQLE, is apparently the most

Under the fixed design, the synthesized data
sets for the model (1) are generated as follows:
except the intercept term the other designs with
errors §,’s are generated from z, =z, +§&,, where
the true designs x,’s follow a standard multivariate
normal distribution with mean 0 and identity
covariance matrix and the measurement errors &,’s

follow a multivariate normal distribution with mean

0 and covariance matrix as 2/[n (In(2)"*]1,. The
response y; is independently drawn from the
poisson regression model for each i—=1. The true
values of the parameters are chosen as g, =(—1. 5,
2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) with 8
non-effective variables or (—1.2, 1.2,1.5,0.0,
0.0,0.0,0.0,0.0,0.0,0.0) with 7 non-effective
variables.

We choose y =1, §=0.45 and »=0.75 in

analyzing simulated data. Different precisions of

confidence ellipsoid d are taken as {0.1,0.2,0. 3,
0.4,0.5,0.6) When applying the ASE method,
the regularization parameter ¢ is determined by BIC
criterion,
BIC =—2{+In(n) « df,

where [/ is the log-likelihood function of the
samples {y;,i=1,2:*+,n} and df is the number of
the non-zero components in .

Tab. 1 states the results of the sequential
sampling estimation for Poisson regression, where
values of the final sample size N (stopping time),
«=d*N/(a* v) and empirical coverage probability
CP of the 95% confidence set Ry are presented.
The x is very close to 1 for all three cases:
MQLE, ., ASE and MQLE, and the empirical
coverage probability CP approaches the nominal
95% as d decreases, as stated in Theorem 2.
However, the sample sizes N of MQLE are much
larger than those of the other two cases, and the
sample size of ASE is very close to those of
MQLE, . Especially for d=0. 1, the ratios of the
sample size N of MQLE and ASE are 1961. 188/
783. 5382 2.503 and 3211. 775/1401. 204 = 2. 292
when the non-zero components of 8 are (—1.5,
2.0) and (— 1.2, 1.2, 1.5), respectively.

conclusion, when measurement errors occurs in the

In

covariates, the proposed ASE is more efficient

Tab. 1 Results of sequential sampling method based on ASE, MQLE

with all variables and MQLE with only p, non-zero variables

MQLE,, ASE MQLE

¢ N K CPp N K CP N K CP

0.6 19.554(2.689)  1.044 0.952 42.422(10.994) 1.116 0.980 104.190(7.036) 1.015 0. 950

g= (—1.5. 2.0, 0, 0.0, 0.5 28.934(3.697) 1.027 0.952 57.514(12.232) 1.075 0.966 125.350(2.447) 1.080 0. 966
0.4  46.808(4.106) 1.018 0.946 77.104(15.264) 1.084 0.974 201.122(8.838) 1.006 0. 950

0-0 0.0, 0.0 00, 0.3 90.268(6.110)  1.009 0.958 102.180(14.704) 1.019 0.950 280.331(9.351) 1.110 0.972
0.9,0.0) 0.2 182.256(8.632) 1.004 0.944 266.038(31.932) 1.012 0.946 546.462(11.591) 1.003 0. 944
0.1 824.934(0.789)  1.246 0.968 783.538(18.241) 1.000 0.938 1 961. 188(25.382) 1.000 0. 952

0.6 39.960(2.020) 1.060 0.961  70.166(9.155) 1.044 0.956 181.620(5.436) 1.050 0. 960

B=(—1.2.1.2.1.5.0.0. 0.5 46.000(2.587) 1.056 0.980  92.112(11.135) 1.030 0.948 241.200(18.919) 1.013 0. 940
0040, 0.0.0.0.0.0. 0. 0.4  65.320(3.961) 1.016 0.945 129.494(11.306) 1.013 0.950 324.840(2.244) 1.075 0. 953
0.3 122.300(7.274)  1.006 0.960 207.564(8.004) 1.082 0.962 403.340(13.516) 1.005 0. 920

0.9 0.2 273.900(12.097) 1.004 0.947 386.386(15.283) 1.003 0.946 837.000(16.887) 1.021 0. 960
0.11 434.780(8.512)  1.000 0.971 1401.204(10.676)  1.016 0. 954 3 211.775(42. 623) 1. 000 0. 951

[Note] @ x1=d*N/(a?y).

@ CP is the empirical coverage probability of 95% confidence ellipsoid region Ry.
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Tab.2 Power of variable identification and estimation of nonzero components (—1.5,2.0)

under sequential sampling method based on ASE and MQLE

ASE MQLE
d Num;, Num, Po1 Boz Numy, Num, Bo1 Poz
0.6 0.132 8 —1.323(0. 550) 1.969(0. 131D) - - —1.498(0. 127) 1. 996 (0. 053)
0.5 0. 084 8 —1.407(0. 457) 1. 987(0. 110) - - —1.506(0. 109) 2.001(0.041)
0. 4 0. 058 8 —1.422(0. 376) 1. 985(0. 087) - - —1.499(0. 088) 1. 999(0. 034)
0.3 0. 022 8 —1.463(0. 249) 1. 992(0. 060) — - —1.508(0. 062) 2.002(0.02D)
0.2 0.016 8 —1.4770. 205) 1. 996 (0. 046) - - —1.499(0. 043) 2.000(0. 015)
0.1 0. 00 8 —1. 500€0. 040) 2.000€0. 014) - - —1.500€0. 023) 2.000(0. 008)

[Note] Num, and Num are the average number of zero components in f correctly identified and nonzero components incorrectly estimated

as zero values, respectively.

Tab.3 Power of variable identification and estimation of nonzero components (—1.2,1.2,1.5)

under sequential sampling method based on ASE and MQLE

ASE MQLE
d Num; Num, Bor Boz Pos Num;  Num, Bo1 Poz Pos
0.6 0.014 6.956 —1.205(0.238) 1.192(0.110) 1.507(0.073) - - —1.199¢0. 123)  1.195(0.057) 1.497(0. 040)
0.5 0.004 6.984 —1.223(0.186) 1.204(0.067) 1.505(0.060) - - —1.205¢0. 124)  1.205(0.045) 1.495(0. 047)
0.4 0.002 6.996 —1.210(0.145) 1.201(0.049) 1.502(0.145) - - —1.198(0.073) 1.195(0.032) 1.500(0.030)
0.3 0.002 7 —1.205¢0.109) 1.201(0.038) 1.501(0.029) - - —1.202(0.068) 1.200(0.027) 1.500€0. 022)
0.2 0.0 7 —1.200€0. 068) 1.200(0.024) 1.500(0.018) - - —1.207¢0.040) 1.201(0.018) 1.500(0.014)
0.1 0.0 7 —1.201¢0.033) 1.200(0.011) 1.500(0.008) - - —1.202(0.024) 1.202(0.008) 1.501(0.008)

[Note] Num, and Num are the average number of zero components in f correctly identified and nonzero components incorrectly estimated

as zero values, respectively.

than MQLE, while remaining efficient with
MQLE,, .
Tabs.2 and 3 report the power of the We apply the sequential ASE method to a

proposed method for identify the effective variables diabetes data set provided in Ref. [187]. and
and their estimates of the regression coefficients

4 A real example

compare the performance of the proposed method

for Poisson regression when the non-zero with the traditional MQLE method. There are 381
components of g, are (—1.5,2.0) and (— 1.2, subjects which have complete observations in total
1.2,1.5), respectively. We can see that number of 403 samples of the data set, and 8 explanatory
incorrectly identified zero variables (Num, ) using variables: total cholesterol ( Chol ), stabilized

ASE is almost close to 0, and the number of glucose(Stab. glu), high density lipoprotein(HdD ,
correctly identified zero variables (Num,) are all cholestarol/HDL ratio(Ratio), age(Age), gender
very close to the true number of effective variables (Gender) , body mass index(BMI), and waist/hip
(8 and 7). These results suggest that p, (N) is a ratio ( WHR ). The response variable is
good estimator of p, under the sequential sampling glycosolated hemoglobin (Glyhb) which is usually
method based on ASE. The MQLE procedure does selected as a primary measure of diabetes. Due to

not identify the effective variables, so Num, and Num, the precision requirement of measurement tools
are not available. In addition, the estimates of and skills of the researchers, wvariables such as
parameters of effective variables are all very close to Stab. glu and Hdl exhibit measurement errors

the true values. except Age and Gender. It is well-known that
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diabetes (Glyhb) has a significant relationship with
Stab. glu"*.

explanatory factors and focus on the relationship

So we remove Stab. glu from the

between Glyhb and other variables in this paper.
Tabs. 4 and 5 list the results of the sequential
estimation for the diabetes data set. In Tab. 4, the
sample sizes based on ASE and MQLE are
presented. The coefficients estimates are given in
Tab. 5. It is shown that the traditional sequential
sampling based on MQLE can not be stopped even
if the sample size reaches the number of total
samples 381, that is, the final sample size N is
larger than 381 no matter what the value d takes
from 0.6 to 0.2. But the sample size for the
sequential sampling method based on ASE ranges
between 23 and 127 when the value of d varies
from 0.6 to 0. 2. From the lower panel, it follows
that both of ASE and MQLE select Age as an
effective variable. In conclusion, the sequential
sampling based on the ASE method is much more
efficient and can save a lot of samples compared to
the traditional sequential sampling based on
MQLE.
Tab.4 Results of sequential estimation (sample size estimates)

for two methods: ASE and MQLE based on the diabetes data

ASE LSE

d

N K N K
0.6 23 1. 692 381 0.671
0.5 23 1. 175 — —
0.4 34 1. 013 — —
0.3 101 1. 702 — —
0.2 127 1. 008 — —

[Notel @ x1=d*N/(@*).
@ Stopping rule is not satisfied although sample size
reaches total 381.
Tab.5 Results of sequential estimation (coefficient estimates)
for two methods: ASE and MQLE based on the diabetes data

method d Chol Hdl Ratio Age Gender WHR BMI

ASE 0.6 0 0 0 0.240 0 0 0
0.5 0 0 0 0.240 0 0 0
0.4 0 0 0 0.321 0 0 0
0.3 0 0 0 0.309 0 0 0
0.2 0 0 0. 335 0 0 0

LSE 0.4 0.029 0.080 0.312 0.256 0.011 0.071 0.064

5 Conclusion

When measurement errors are presented in
explanatory variables, we develop a sequential
sampling procedure to construct the fixed size
confidence set for the effective parameters based on
ASE. According to this sequential procedure, the
effective coefficients can be efficiently identified
sample size and their

with the minimum

corresponding regression coefficients estimated
simultaneously with the required precision. The
consistency and asymptotic normality of ASE have
been proved by using a last time method.
Meanwhile, we prove that the proposed sequential
procedure is asymptotically optimal in the sense of
Ref. [12]. Results of simulation study implies that
the proposed method can save a large number of
samples compared to the traditional sequential
sampling method. Application of the diabetes data
set shows that the proposed method based on ASE
is more efficient than the traditional method with
MQLE. However, the design of covariates is fixed
in this paper, hence we will investigate the
sequential sampling method in the case of

covariates with random design in our future work.
Appendix

First of all, we define a last time random

variable, L,, as follows,

L,=

supin=1: — (B—B)DTL (P <0, IR € %) =
sup{n =1:(3—pB)"L(® =0, A€ 9%} (AD
where A= (4)={p: || p—H || <y} for some »p=0
and 9% denotes the boundary of %.

Lemma 1 Assume that (y;,2;),i=1,,n,
are pairs of responses and true designs satisfying
Eq. (1) with random error ¢;, which has mean 0
and variance 0<(g*< oo, Then for any small >0,
we have I, () >1(f,; #0), a.s.. In addition,
limp,=po a.s. and imEp,=p, a. s. .

n—>oo n—>co

Similar to Ref. [ 5, Theorem 1], Lemma 1 holds.

Proof of Theorem 1 By definition of Z)’,I for any
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given >0 and >0, we have

PCsup || g — I | >0 =
S 5 — £
P(sup || g —p |l > 5 )+
P(ﬁgp Il « | L —I 1 >0 (A2)
According to Lemma 1 and Ref. [11, Theorem 1],

the consistency of 8, can be easily obtained, thus

similar to the proof of Ref. [5, Theorem 2], the

consistency of ‘é,, is proved. For simplisity we only

consider the situation of the canonical link
function, then following Eq. (3) and by the mean-

value theorem, it can be shown that

0= %Zzi[yi _#(Iiﬁo)] -
=1

L L) — el ] —
i=1

%2 (210 — p(=TB) ] =
i=1
I,
n i=1
L La? B 216 +(=IB =T (B, — )]

1

(A3)

where z; is in the line segment of x; and z; for each

i, and B, is in the line segment of ﬁ,, and B. Eq.
(A3) implies that

‘Z?n 7@) - (ZP(Z;I‘QHX )le’il‘)il °
i—1
[22585 - 2/.1(1',"X Bo)ziBOTSi:I -
i=1 =1
(O pGIR =zl e
i=1

> s D B0 a6l ] =
<2 AGIB e

[2 - Z; et B plE —
Sitat pogate ] (AD

provided that the inverse of 2/)(2?,8,,* )z2F exists
i=1

when n is large. If n=>L,, then [:’” exists and is in
%,. It is proved in Ref. [ 11] that under (IV) with

a,=OGn) , with probability one
l2&—»0, iE |&1*—>0 (A5)
n 4 ni4

Therefore, it follows from the assumption that
sup; || =i || <<oo almost surely, and by continuity

properties of z1» we have on the event {n>>L,}

B—B = O (D ez Dee, (A6
i—1 i=1

By integrability of L,, we have limP (n<CL,) =0.

Note that the right-hand side of Eq. (A6) is similar
to that in Ref. [197]. Then, by applying the results
of Ref. [19] to (A6), we obtain the convergence

rate of 8,; that is, with probability one
n l
I (D 22D 1] 7
i=1

18, —p | =0 i =
Apmin 2 ziz})
i=1

O([In n/n]"*) (A7)
Just like Ref. [ 5, Theorem 2], the proofs of
Theorem 1(i1) and (iii) are completed. ]

Lemma 2 Under the conditions of Theorem
1, the sequence of random variables, {\/Z(ﬁ?” —) >
n=1,2,-+} is uniformly continuous in probability.
Proof With probability one, we have that
\/;(,Z?u * ,80 ) =
Jal, (OB, — B +/n(1,() — 1) ~
Ay () + Ay () (A8)
Following Ref. [17, Example 1. 8], we can show

that the sequence {ﬁ(é, —B)s n=1,2,} is
uniformly continuious in probability and that for 7> 0,

PCsup | V/n T k@i —B) —nB —p) 1= 9/ <

O<k=Tnr

7/2 (A9)
This implies that
PCsup | Ai(n+k) —Ai(n) |=> 9 =

OCk=_nr
P(oék{p | V4 ks (OB —p) —

Sl (0@, —B) | > <
PCsup | (Lo — L) Va8 — ) | = p/2) +

O<k==nr

P( sup | I,I\k(()(\/n+k(wn\k_ﬁo)_

Ok



458 ¥ EAFHEARKF % A5 &

B — B 1> p/2)
From Lemma 1 and (A9), we have

PCsup [Ai(n+k) —A () | > 9 <

O=<k<nr
77/2+77/2:77 (A1D)

Thus if we prove that A, (n) converges to 0

(A1)

almost surely as n tends to infinity, then the proof

=0 as ;=0 for all

j. Therefore, we need to prove that for g,; 740,
PCsup | A (B) | =) < g (A12)

n<=

is completed. Note that Ay; (1)

By the definition of A, (1), we have
P(%up | Az (k) | > n) =

n<<

P<sgpw? | By (IR | By |7 <0 —1D > =

P(supf\ [V \,6’», 7T <O—1 ][>,

n=

supfx\ﬁp] |7 <o+

n=k

P<supf\ TGk | By |77 <0 —1 | > ep,

n=k

sup vk | fs |7 =0 <

P(supfx | ,8;\7 7 =0

n=*k

(A13)

According to the strong consistency of B,, it
implies that P (sup | By — B | =, ) <7y for large
n=*k

enough n. Hence,

P(QUP“/?’C ‘Bb =0 <

n<=*k

P(:tﬂp | Vx| [8@ éa*up | ﬂkf B 1=+

P(zl\f? | Vhe | /3’@ | 72(7?‘2{? | ﬂfej —B =p <

ﬁP(sgp(m By l—=p 7 =0 =

7+ PlsupGhe = o) (A1D)

n=

Since vnx—>0 by definition of «, then from (A13)
and (Al4) we get the inequality ( Al2).
Combining (Al11) and (A12) implies Lemma 2. []

Lemma 3 Let a be a constant such that
P(X,Jozgaz):l—

Lemma 2 are satisfied, and let a, be a sequence of

Assume the conditions of

satisfying the conditional
a; | CH =1

denotes the set of first n observations {(y;,x;) :i=

positive  constants

probability P (X;O < — as where C,

1,+++yn}, then a,—>a as n—>co,

For the proof of LLemma 3 please see that of
Ref. [5, Lemma 3.
Proof of Theorem 3 Let

2 2
na-y a'y
Sl =My, —ay
Anvy d

Then Eq. (12) can be rewritten as
N = min{k:k = n, and f(k)/t = 1}.
Since I, () and (Z, (e (£fB)*w (218,)) ZD) /n

converge almost surely to I, and 3, respectively.

(A15)

Then v, converges to v with probability one as n—
co, By using Ref, [12, Lemma 1],
2
1 —=lim LN &N
00 t d—>0 YyNA N

2

d*N
lim = a.s.
d—-0 ya-

(A16)
which implies (). By the definition of R,, we have
P(B: (ﬁl 7"'9ﬁ]))T 6 RN) -

P{ (‘BNI _/Agm )TSU (N) (ﬂwl - léNl ) <
d*N

VYN

and 8 = 0 for I, (0 = 0} (A17)

where a1 is sub-vector of § corresponding to Sui.

2
From (A16), 4N . .2

VN

and N/t — 1 with

probability one as t—>co, then by Lemma 3, (i)
follows.
From (| ), to prove (ji), it suffices to show
that
{d®*N: d € (0,1} (A18)

is uniformly integrable. By definition of L,,

we have

N = NI(N;:>LV> JF]\U<s\r<:1,v> (A19)
On {n=L,}, and by (Al) again, we have

Amin ( 2 [ﬁ(z?ﬂﬁn )]2 uj(z:r[?n )Z,z;r) 2
i—1
Amin ( 2 gmin/:Lmin zzz1l) (A20>
i=1

where g, =infig (2,) >0 and pru = infyrm, (2:) >

0. For each i€ N, let
Mi - gnxin/)minziz’z’r - E[gﬁ\in/;minziz;rj (A21>
Define

77,12*

>I:UT2M{Z}< 2 ’

i=1

L, :sup{n

for some v € R? and || v || = 1)(A22)
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where 0" =p guinftmn. By Ref. [13, Lemma 3. 1],
it can be shown that EL, < co, Let L =
max(L,, Li). Then, by definitions of L, and L,,
on {n>Lj},

Amin (Eu) == Amin € 2 gmin/:(min zzl) =
i1

Amin( 2 Mz) + Amin ( 2 E[gmin/:lminzizgril) >
i=1 i=1

*12‘02;—0—7110* :E‘éi (A23)

Therefore, it follows from Eq. (A19), for d&(0,1)
2 2

p%“dZ Jr1)+r, = ﬁ
(A24)

where notation [ ¢ ] denotes the largest integer less

than ¢ for any tER. Note that RHS of (A24) does

not depend on d. Hence, EL,<Cc> implies that

{d*N: d€ (0,1)} is uniformly integrable. Thus,

the proof of (i ) is completed.

&N <d* ¥ ([

To prove
conclusion (jv) we denote that the integer part of
va*
&
(i), we have that N/N, almost surely converges

to 1 as d tends to 0, and
ﬁo(N) — Do = ﬁo(]\n_ﬁo(No) Jﬁﬁo(No) — po =

by Ny, which is not a random variable. From

» N -~

Z {IG/Ne | By |7 <O —IG/Ne | By 7 <<ot+
=1
ﬁ()(No)*po (AZS)
We know that p, (N,) — p, almost surely converges

to 0 as d tends to 0. Thence, to satisfy (jv) we
only need to prove that I (v Nk \,é,\vj | T <o) —
I( N()K|E’Noj | 77<Z0) almost surely converges to 0,

that is, we need to validate that [N?N *[N?No almost
surely converges to 0 as d tends to 0. Without loss
of generality, take d=1/F for some integer £ and
denote N=N(1/k),Ny=N,(1/k), then

PGsup [ Bty =By 1= =

P(sup | Puchy — By by 1=
suplN(%)—NO(%)I<S)+

n=k

P(sup | fucty —Bv(b) 1=

n=

sup | N )= No () 1>¢) <

n==r

P(sup [ uciy =By 1>,
N (Heen(b)= (b e

forall kb >n) +

n<k

P (sup su |N —N‘ >+
"<k Ny () —e<i<N, (1 )+ g BNO ) 7

7/2 <

P (sup SR |8 —B |>n/2)+
n=_ N() % *EQZLQN() i =3

P (sup sup | By (1) — B 1= n/2+
RN () e, (£)+e P R 7

7/2 <

n/4+77/4+77/2:7]—>0 (A26)
It is clear that {Inw),;(0):d€ (0,1)}, for each j=
1,++, p, is uniformly integrable. Then the last
part of (jv) of Theorem 3 follows from the

dominated convergence theorem. ]
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