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Abstract: A planar order is a special linear extension of the edge poset (partially ordered set) of a
processive plane graph. The definition of a planar order makes sense for any finite poset and is
equivalent to the one of a conjugate order. Here it was proved that there is a planar order on the
vertex poset of a processive planar graph naturally induced from the planar order of its edge
poset.
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0 Introduction

The notion of a processive plane graph, a
special case of Joyal and Street’s progressive plane
grapht™, was introduce in Ref. [2] as a graphical
tool for tensor calculus in semi-groupal categories.
Ref. [ 2] gave a totally combinatorial characterization of
an equivalence class of processive plane graphs in
terms of the notions of a POP-graph which is a

processive graph (a special kind of acyclic directed
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graph) equipped with a planar order (a special
linear order of the edges).

However, it turns out that the notion of a
planar order can be defined for a general finite
poset ( partially ordered set) and essentially
equivalent to the one of a conjugate order-", which
is an important notion in the study of planar
posets. So this raises an interesting question: for a
processive graph, are there some relations between

planar orders on its edges and planar orders on its
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vertices? In this paper, we will give a positive
answer to this question by showing that any planar
order of edges of a processive graph naturally

induces a planar order of vertices.

1 processive plane graph

Definition 1.1 A processive plane graph is an
acyclic directed graph drawn in a plane box with
the properties that: (D all edges monotonically
decrease in the vertical direction; @all sources and
sinks are of degree one; and @ all sources and
sinks are placed on the horizontal boundaries of the
plane box.

Fig. 1 shows an example box.

-9 - 9 -

Fig. 1 A processive plane graph

processive plane graphs can also be defined in
terms of processive graphs?’ and their boxed
planar drawings.

Definition 1, 2

acyclic directed graph with all its sinks and sources

A processive graph is an

of degree one.

A planar drawing of processive graph G is
called boxed™" if G is drawn in a plane box with all
sinks of G on one horizontal boundary of the plane
box and all sources of G on the other horizontal
boundary of the plane box. A planar drawing of an
acyclic directed graph is called upward if all edges
increases monotonically in the vertical direction (or
other fixed direction). Thus a processive plane
graph is exactly a boxed and upward planar
drawing of a processive graph.

Definition 1. 3 Two processive plane graphs
are equivalent if they are connected by a planar
isotopy such that each intermediate planar drawing
is boxed (not necessarily upward).

Equivalence classes of processive plane graphs

are mainly used to construct free strict tensor

categories in Ref. [1].
2 Planar order and POP-graph

Ref. [ 2] gave a combinatorial characterization
of an equivalence classes of a processive plane
graph in terms of a planar order on its underlying
processive graph. In this paper, we define planar
order for any poset.

Definition 2, 1 A planar order on a poset (X,
—) is a linear order < on X, such that

(Py) for any x1,x, € X, x; > x, implies
o< x93

(Py) for any x 1,22, 2: € X, 2, < 2, < x4
and x,—>x; imply that either x,—>x, or x,—>x3.

(P)) says that < is a linear extension of —.

Recall that two partial orders on a set are
conjugate if each pair of elements are comparable
by exactly one of them. It is easy to see that (P,)
is equivalent to the condition that if ¢, < ¢, < ey,
then e, 7>e, and e, 7>e; imply that e, 7>e;. Thus
(P, ) enables us to define a transitive binary
relation: ¢,<Ze, if and only if ¢, < e, and e, 7/>e;;
moreover, if (P}) is satisfied, then the linearity of
< implies that < is a conjugate order of —>. So
the planar order < is a reformulation of the
conjugate order of —.

In a directed graph, we denote e;—>¢; if there
is a directed path starting from edge ¢, and ending
with edge e,. Similarly, v;—>v, denotes that there
is a directed path starting from vertex v; and
ending with vertex v,. For any acyclic directed
graph, its edge set and vertex set are posets with
the relation e,—>¢; and v;—>v,. We call them edge
poset and vertex poset of the acyclic directed
graph, respectively.

The following is a key notion in Ref. [ 2].

Definition 2.2 A planarly ordered processive
graph or POP-graph'*, is a processive graph G
together with a planar order < on its edge poset
(EWG),—).

We simply denote a POP-graph as (G, <),
see Fig. 2 for an example.

A basic result is the following.
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Fig.2 A POP-graph

Theorem 2. 1%

POP-graphs and equivalence classes of processive

There is a bijection between

plane graphs.
The POP-graph in Fig. 2 corresponds to the

processive plane graph in Fig. 1.
3 Planar order on verties

In this section, we will prove our main result.
Before that we need some preliminaries.

From now on, we fix be a POP-graph (G, <.
For a vertex v of (G, <), the set T (v) of
incoming edges and the set O(v) of outgoing edges
are linearly ordered by <. We introduce some
notations when I (v) or O(v) are not empty:

i~ (v) =min [ (v),
i (v) =max [ (v),
o~ (v) =min O(v),
0" (v) =max O(v).

The following lemma is a result first proved in
Ref. [4].

Lemma 3.1 Let v be a vertex of (G,<). If
the degree of v is not one, theno (v)=i" (v)+1
under the linear order <.

Proof Notice that G is a processive graph,
then deg(v)71 implies that I (v) 7@ and O(v)F#
@. Thus both i7" (v) and o~ (v) exist. Now we
prove o (v) =i" (v) + 1 by contradiction.
Suppose there exists an edge e, such that i 7 (v) <
e<< o (v). Since i " (v)—>0 (v), then by (P,)
we have i " (v)—>e¢ or e—>0 (v). If i7" (v)—>e,
then there must exists an edge ¢ € O (v)
—{o ()}, such that ¢’—>e or ¢’=¢. Thuse <e,
which contradicts with ¢ < o~ (v). Otherwise,
e—>0 (v), then there must exist an edge ¢’ €

I(v)—{i" (v)} such that e—>¢” or ¢”=¢. Then

e=<e¢”, which contradicts with i 7 (v) < e.

Lemma 3. 1 shows that for any vertex v,

E() =I()|]O(), where E (v) is the set of

incident edges of v and X denotes the interval of

subset X in a poset. Due to Lemma 3. 1, we can
define a linear order <y on the vertex set V(G).
For any two different vertices v,, v, of G, v, <y
vy if and only if one of the following conditions is
satisfied:

DI w)<T" (v)), QI (w)D<O (vy),s
@O0 (wD=I"(vy), DO ()< O (vy).
We write v, <y v, if v1 =wv, or v; <y v,. The

following theorem is our main result,

Theorem 3.1 For any POP-graph (G, <), <,
defines a planar order on the vertex poset (V(G),
—>).

Proof O <y satisfies (P,). If v;—>v,, then
there exist ¢; EE (G) (1<<;<{n) such that v,=
sCe)s vo=t(e,) and t (e;) =s(e; 1) for (1<
n—1), which implies that o= (v) < e, <e,<
i (vy,). Thus o (v;) < i" (vy),
definition of <y, we have v, <y v,.

@ <y satisfies (P,). Suppose v <y vs <y v3
and v;—>v;, then 0o (v;) and i " (v;) exist and
o (v)<i"(v;). We have four cases:

Case 1
case, by Definition 1. 2, {0~ (v;)} =0 (v,;) and

{7 (vy)}=ICv3). So v,—>v; implies that o~ (v;)

then by

v, 1s a source and v; is a sink. In this

—>i " (vy). Lete=i"(v;) or o (vy), then v, <y
vy, <y vy implies that 0o~ (v;) < e < i7" (vy) or
0o (v;))= ¢ ore= i (vy). In the first case, by
(P,), we have o (v;)—>¢ or e—>i" (v3), which
implies that v,—>v; or v;—>v;. In the second case,
we have v; —>wv,, and in the third case, we have
V2 > U3.

Case 2 v, is not a source and vs is a sink. In
this case, ¢ (v;) exists and by Definition 1. 2
{it (v} =1ICv;). So v;—>v; implies that i ™ (v;)
—i " (vy). Lete=i"(vy) or o (vy), then v, <y
vy <y w; implies that i T (v 1)< e< i7" (v3) or e=
it (vg).

it (vy)—>e or e=>i " (vy), which implies that v,—

In the first case, by (P,)., we have
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v, Or v,~>vs. In the second case, we have v,—>wvs.
Case 3

This case is similar to Case 2.

v, 1s a source and wv; is not a sink.

Case 4 v, is not a source and v, is not a sink.
In this case, both i" (v;) and o~ (v,) exist and
v;—>wv; implies that {7 (v;) >0~ (v;). Let e=
i (vy) or o (vy),s then vy <y v, <y v; implies
that i T (v < e< i" (vy). By (P,), we have
it (v,)>e ore—>0 (v;), which implies that v,—
Vy O V2 > V3.

Fig. 3 shows the planar order on the vertex
poset of the POP-graph in Fig. 2.

1 23 4 8 9 16 19

i} 10

7 12 13 15 18 20

Fig. 3 Induced planar order on vertices

Theorem 3. 1

graph, each conjugate order of its edge poset

shows that for any processive

induces a conjugate order of its vertex poset.
However, in general, the converse is not true.

Therefore, together with Theorem 2. 1, Theorem

3.1 demonstrates that edge poset is more effective
tool than vertex poset in the study of upward
planarity. It is worth to mention that Fraysseix
and Mendez, in a different but essentially
equivalent context, also showed a similar judgment
in their final remark of Ref. [ 3]. In our subsequent
work, we will show that for a transitive reduced
processive graph, a planar order on its vertex set
can naturally induce a planar order on its edge set,

which is essentially related the work in Ref. [ 3].
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