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Abstract: Temporal action localization has become an important and challenging research orientation due
to its various applications. Since fully supervised localization requires a lot of manpower expenditure to
get frame-level or segment-level fine annotations on untrimmed long videos, weakly supervised methods
have received more and more attention in recent years. Weakly-supervised Temporal Action Localization
(WS-TAL) aims to predict action temporal boundaries with only video-level labels provided in the
training phase. However, the existing methods often only perform classification loss constraints on
independent video segments, but ignore the relation within or between these segments. In this paper, we
propose a novel framework called Relation Aware Network (RANet) , which aims to model the segment
relations of intra-video and inter-video. Specifically, the Intra-video Relation Module is designed to
generate more complete action predictions, while the Inter-video Relation Module is designed to separate
the action from the background. Through this design, our model can learn more robust visual feature
representations for action localization. Extensive experiments on three public benchmarks including
THUMOS 14 and ActivityNet 1.2/1.3 demonstrate the impressive performance of our proposed method

compared with the state-of-the-arts.
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1 Introduction

Temporal action localization aims to localize and
recognize actions in given long untrimmed videos,
which has a wide range of practical applications, e. g. ,
video understanding''’, visual question answering
(VQA)™ | video surveillance™ and video summarization'*.

However, most of existing methods">™""’ tackle this
task in a fully supervised way, which relies heavily on
expensive and time-consuming manual annotations.

To overcome this issue, researchers have started to
study action localization under a weakly-supervised
setting recently'"™"). Various of weak labels have been
explored, e. g. , action categories'""*"* | movie scripts'"”*”
and sparse spatio-temporal points'"®'.  Among these
methods, action categories based methods have become
the main stream. Compared to label precise temporal
action boundaries, video-level labels are much easier to
collect. Existing methods can be broadly divided into

three categories, learning background suppression
attention  weights'"”**'**) | learning  discriminative
features''>'”! and erasing discriminative segments during

training''*?).  Among these methods, attention based

methods have achieved superior performance.

Despite the success of previous approaches, the
general framework largely relys on the classification
activation, which employs an attention model to identify
the action segments and categorizes them into different
classes. However, as shown in Figure 1, such method
cannot deal with two challenges well; @ action
completeness modeling. The first challenge is how to
localize each action instance completely. In the weakly-
supervised setting, the lack of fine-grained annotations
will complicate the complete-ness modeling since only
video-level labels are given. As shown in Figure 1(a) ,
the current models tend to divide a complete action into
multiple actions. Identifying one fragment of an action
is sufficient for video-level classification but not for
segment-level localization and hence cause negative
influence on the prediction. To solve action
discretization issues, the network cannot only focus on
the most distinctive individual segments. Therefore,
when determining the category of a certain independent
video segment, it is important to establish relations
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(a) Action completeness modeling

(b) Action-context confusion

Figure 1. Two major challenges in WS-TAL: (a) Action completeness modeling, and (b) Action-context confusion. The color yellow
indicates the Ground Truth (GT) while blue indicates model predictions. As shown in Figure 1 (a), a complete jumping action is
divided into multiple segments, which cannot form a whole action. In Figure 1(b), a man is playing tennis. Due to the high similarity
of the background, the localization of the prediction often fails to separate the action from the background, results in false predictions.

between the segments within the video. () action-
context confusion. The second challenge is how to
distinguish action instances from their context with only
video labels. Video-level classifiers learn the correlation
between videos with the same label and discover their
common contents, which unfortunately include not only
the common action but also the closely related context.
As shown in Figure 1 (b), context segments near to
action segments tend to be recognized as action
segments, since they are usually surrounded by visually
related clips. For this reason, we argue that action-
context confusion is inherently difficult with weak super-
vision, unless employing the prior knowledge about
actions. Intuitively, context frame indeed exhibits
obvious difference from action frame at the appearance
and feature level. An important prior knowledge is that
videos with the same action often have different context
background frames. To separate context and action, the
model should be able to capture the underlying
discrepancy between action and context, and therefore,
modeling the inter relations between videos is necessary.

Motivated by the above discussions, we propose an
end-to-end Relation-Aware Net-work ( RANet ) for
weakly-supervised temporal action localization by jointly
modeling the inter and intra video relation of segments.
An overview of our algorithm is shown in Figure 2. The
Relation Module of RANet is mainly composed of two
components ;

(I) Intra-video relation module. To model action
completeness, feature sequences extracted from input
videos are fed into the Intra-video Relation Module with
a graph convolution neural network ( GCN ) layer,
which builds a bridge of information flow within a
video, such that complete actions can be retrieved by
aggregating activations from neighbouring multiple
segments.

(Il) Inter-video relation module. As for action-
context confusion, we develop a simple and effective

strategy by sampling video pairs with the same label to
establish relations between videos. we constrain the
segments features of the same action between video pairs
as close as possible. Therefore our model can pay more
attention to the action itself rather than the background
during training.

The contributions of this paper are summarized as
follows. (DWe propose a new end-to-end relation aware
network for weakly supervised temporal action
localization by jointly modeling inter-video and intra-
video relations. (2 The proposed relation methods for
intra-video and inter-video modeling can learn
discriminative relation aware representations for robust
weakly supervised action detection and effectively solve
two current WS-TAL challenges. (3 Extensive
experiments and visualized results on three public
benchmarks demonstrate the effectiveness and
superiority of RANet over the state-of-the art methods
and even compares favorably with some fully-supervised
temporal action localization methods.

2 Related work

Action classification is a fundamental task in computer
vision area. Traditional methods often rely on manually
extracted features, e. g, HOG'*', dense trajectory
iDT'®' and motion mode histogram MBH™.
Subsequently, with the break-through of deep learning,
a large number of deep learning methods have been
applied to video analysis, such as the classic two-stream
network'”’, C3D"*' | P3D'*’ | 13D | and Temporal
segment networks TSN™'' | TRNM | TSM'". In our
method, I3D is used for feature extraction.

2.1 Fully-supervised action localization

Fully supervision action localization requires frame-level
annotations of all action instances during training which
has been extensively studied recently. Several large-
scale datasets have been collected for this task, such as
THUMOS ™ | ActivityNet'** | Charades' ™’ and AVA"™".
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Many methods follow the paradigm that has been widely
used in the field of object detection”®’ because they
have a common set of problems. Specifically, there are
two main directions; two-stage methods and one-stage
methods. The two-stage approaches ™" first
generate action recommendations, then classify them
and further refine time boundaries. The one-stage
methods *“* replace the direct prediction of action
categories and positions from raw data.

2.2 Weakly-supervised action localization

To address the limitation of fully super-vised action
detection, weakly supervised action detection has been
drawing increasing research attention. Wang et al''"
first proposed a UtrimmedNet network, in which the
network first learns the video-level classifier and then
selects high category activated frames for action
localization. The later work can be broadly divided into
three types. The first type is based on attention

mechanisms, which aims to highlight foreground
segments and suppressing background segments.
STPN'"'  first added a class-agnostic attention

mechanism together with a sparsity loss to encourage the
action segments. Followed this framework, a video-
level clustering loss was applied in Reference [21] to
separate fore-ground and background. Besides, several
other methods were proposed by imposing different
constraints on attention weights, such as DGAM'* |
Bas-Net'*) and TSCN'*/. These methods achieved
excellent performance in this field, which shows that
fore-ground and background separation is essential. The
second type aims at learning more discriminative
features by imposing different loss functions. Paul et
al") proposed a framework named W-TALC consists of
Co-Activity Loss is used to encourage class-specific
features. Similarly, 3C-Net''>! proposed a Center Loss
to force features from the same categories to be as close
as possible and features from different categories to be
as far as possible. In addition to the above two types,
more sophisticated works' “***/ have been proposed in
later work. Although attention based methods and
learning dis-criminative feature based methods have
achieved remarkable progress, a common issue for these
methods is that they tend to focus on the most
discriminative action segments but ignore trivial action
segments, which results in incomplete action
localization. To mitigate this issue, the third type works
resort to the erasing mechanism to highlight less
discriminative segments. For example, Hide-and-
Seek!'®’ proposed to randomly erase input segments
during training, which can force the model to discover
less discriminative segments. However the erasing
strategies cannot be learned in an end-to-end manner,
which has many limitations on practical applications,
leading to suboptimal performance. In this paper, we

focus on the second type and develop relation aware
modules within or between videos, which can help learn
more robust video features.

2.3 Attention mechanism

Our work is related to the attention mechanism which
shines brightly in deep learning. Attention has been
used successfully in a variety of tasks including reading

comprehension, abstractive summarization, textual

entailment and learning task-independent sentence
. 47-50 .. . ..

representations "', Similarly, in computer vision,

attention mechanisms have been used for image and
video recognition, detection, and segmentation"'">*/
To the best of our knowledge, our RANet is the first
model using a cross-attention mechanism between videos

for the WS-TAL task.
3 Our proposed method

In this section, we introduce the proposed Relation-
Aware Network in details. As shown in Figure 2, our
RANet mainly consists of four parts: (a) Feature
extraction module, (b) Intral-video relation module,
(¢) Inter-video relation module, (d) Classification &
localization module. The details for each module are
introduced as follows.

3.1 Feature extraction module

Following recent WS-TAL methods'*"**) " as shown
in Figure 2 (a), suppose we have a set of training
videos and corresponding video-level labels. For each
video, we first divide each input video V into 16-frame
non-overlapping segments ( each segment nearly 0.5s) ,
ie.,V e { Vi,V ! - Then, we feed sampled RGB
and Flow segments into the pretrained feature extractor
to generate feature vectors X** € R’ and X" e R’
respectively, where d = 1024 is the feature dimension.
The video-level label is denoted asy € {0,1,2,---,C}
and O corresponds to background. The network structure
of the RGB and Flow branches is exactly the same and
the training is independent of each other. The final
prediction result comes from the weighted fusion of two
branches. Since the idea of inter-video attention requires
us to sample video pairs that contain the same label
during the training, we denote the random sampled two
videos that have the same label as X, € R"'™and X, e
RNZXIOZZl.

3.2 Intra-video relation module

Action completeness issue means that a complete action
is predicted as multiple sub-actions. In the weakly
supervised setting, the lack of fine-grained annotations
complicates the completeness modeling. Ignoring the
temporal relations of the segments within the video is a
major cause for current problem. In our actual
observation, a complete action is divided into several
parts, but these video parts are usually in a local
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Figure 2. Our RANet consists of 4 components

(a) A feature encoder that extracts video features from input frame/flow sequences.

(b) Intra-video relation module for modeling the relation among segments in a video. (c¢) Inter-video relation module for modeling the

relation between segments of two videos.
classification and localization.

Xi—2 Xi—  Xxj

! (a)

Figure 3. Overall idea of using GCN to solve action completeness issue. We focus on feature segment x,,

(d) Multiple results are obtained for classification&ocalization module for video action

1

0 Class ActivationSequences
(b)
which aggregating

information from the adjacent segments x,,;, j€ [-2,+2]. The action score of nodes x; becomes higher, and thus the discrete action

intervals are connected to form a more complete action during localization stage.

interval. Therefore, a simple and straightforward idea is
to use GCN to establish the relation be-tween segments,
and update the feature of each segment to aggregate
information from the adjacent segments. Figure 3
illustrates our idea in detail, the colored nodes represent
action segments while gray nodes represent background
segments. Each segment is regarded as a node in the
graph, The adjacency matrix A describes the
connectivity between nodes, according to the local
principle, each node is limited to only connect with its
neighborhood of size P = 2k + 1. We generally set k =
2 for the average action duration of the dataset statistics
(average 3s). Furthermore, unlike the self-attention
mechanism which learns the correlation between the
current segment and the all other segments of the video,
using GCN to gather information only from the
neighborhood can significantly reduce the computational
complexity. The Intra-video Relation Mod-ule is shown
in Figure 2 (b), we first feed the extracted video
features X, and X, into an embedding layer to get X',
and X',.

(1)

= ﬁorl\'<X1 ;QD) ’XIZ = f::uuv(XZ;QD)‘

The embedding layer is implemented as a
convolution layer with a kernel size 1 to reduce the
feature dimension from 1024 to 512, wherep denotes
trainable parameters in the convolution layer.

In the intra-video relation module, we view each
segment as a node and then utilize graph convolution to
model the relation among video segments. In specific.
Given an undirected graph with m nodes, a set of edges
between nodes, an adjacency matrix A € R™™ | and a

Z A,
formulation of graph convolutlon as the multiplication of
a graph signal Y € R"" with a filter with a filter W e
Rnxc :

degree matrix D; = Consider a linear

Z= o(DTADTY'W). (2)
where A =A+1I, I is the identity matrix. D; Z Ay
o is a non-linear operation (e. g., Sigmoid). As a

result, the input to a graph convolutional layer isn X m
, and the output isc¢ X m . We keep the GCN network’
s input and output size the same because we only use it
for feature updates. Therefore, we set ¢ = n in our
experiments. The feature of intra-video updating can be
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seen in Equation (3) .

X, = DZAD:XTWXT e (X, X, (3)
In this paper, we find that a single GCN layer is
enough to model the relation among video segments.
We denote the updated intra-video relation feature pairs
as X', € R"*%and X', = e R"™" respectively.
3.3 Inter-Video Relation Module
In weakly-supervised setting, only guided by the
classification loss, some background frames associated
with the action may be activated, which can cause
action-context confusion. To solve this problem, the
model should be able to capture the underlying
discrepancy between action and context. With the
observation that the context exhibits notable difference
from the action at representation level. In other words,
the extracted feature representations for context and
action are also different. Inspired by the Image-Text
matching task*® | which explored the latent alignments
between image regions and words to learn more robust
feature representations. Similarly, we can learn the
correspondence between videos in the feature space by
sampling different videos with the same label during
training, and then to update the segment feature so that
the network could distinguish action instances from their
context well. We adopt such sampling strategy for a
potentially important prior knowledge is that the same
action contains the same action, but usually contains
different context background segments. Specifically, the
Inter-Relation Module we proposed embeds the video
pairs into the same feature space and requires to
reconstruct the segment feature of one video from the
other video with the same category label by cross-
attention mechanism. As illustrated in Figure 4, by
modeling the relation between segments cross video
pairs, the network can effectively alleviate the action-
context confusion issue in the video. As a result, more
accurate video localization results can be obtained.
Figure 2 (¢) illustrates the Inter-video Relation
Module in detail. The network first normalize the
features output from the Intra-video Relation Module

Xj2 Xl X Xl X2

1

Xi—2 Xi-l  yj X+l Xi+2

(@)

because it can stabilize the training and speed up the
convergence. And then, in order to establish the
relation between all the segments, we use a dot product
to measure the similarity matrix S e R"" between
videos for convenience.

_ XX . (4)

XTI x, 1

where N means the feature normalization and T represents
the transpose operation. We use the joint similarity
matrix S because it can help to update the video segment
features cross videos. Unlike using S directly, we use
the softmax layer with the parameter 8 on the similarity

S

matrix to generate the update matrix S,_, and S, , :

_exp(BS) o - _exp(BS) (g

b N

Z exp(BS) ; exp(BS”)

N{XN; N XN,
where S, , € R"*"and S,, € R"" and the arrow —

[/
SIHZ -

indicates the direction of the video relation. We use a
softmax layer here because the dot product similarity
may not be in the range [0,1], and a softmax operation
with the parameter 8 can enlarge the feature difference
for the weight in adjacent matrix. We set8 = 10 in our
experiments. Once we get the attention matrix S, , ,
S, , and the input video segment features X', X',, we
weight the sum to update the segments features
according to Equation (6).

X = Si0X0 X 0= 50X (6)
L € R"2and X', e R Through

this design, the feature update of each segment of the

where X'

video will utilize the relation information from other
videos and the network will pay more attention to the
itself, rather than the high associated
background. In addition, we also reuse X, ,, and X, .,
as the middle layer of super-vision for better results. All

action

1_gen

those four updated segment features will been sent into
the next module to optimize the entire network or
produce predicted results.

3.4 (lassification and localization

In this part, we introduce how to train our models, and

Cross

l :

0 Class ActivationSequences

(b)

Figure 4. Inter-video relation cross videos. The segment features are updated through the cross-attention mechanism, the action and

non-action frames are well separated. There-fore, the predicted localization results are more accurate.
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then use them to generate local-ization predictions. The
overall overview is shown in Figure 2(d).

Classification. In the weakly-supervised setting,
only video-level labels are known. Existing methods
simply train a foreground model to respond strongly at
some locations within the video, but leave the remaining
background frames unmodeled. Different from these
models, we follow'”’, which explicitly accounts for
background frames and sub-stantially improves on
weakly-supervised action localization. For each video
segment feature X,  extracted by the pre-trained
network, the Attention Module predicts a frame level
attention vector A =" " which can be used to
pool the frame-level features into a single foreground
video level feature representation. The attention layer
consists of two fully connected layers, with the
nonlinear activation functions ReLU"” and Sigmoid
respectively. The Sigmoid activation function ensures
that the weight A, € [0, 1]. We set an extra small
constant € = le-6 to prevent the denominator from being
zero based on our experience.

N
2 )\l‘xt
t=1

e = S M
z A, t+e€
t=1
The complement of the attention vector 1 -A, can
also be used to pool segments be-longing to the

background  into a video-level background
representation. Similarity
N
2 (1=24)x,
‘xbg = ,i=l—' (9)
Y (1-1,) +e

t=1

Once we get the foreground feature X, e R"°"
and the background feature X,, e R"™"”  we feed the
pooled features to the Prediction Layer which produces a
video-level prediction. Two fully-connected layers with
ReLU are used for mapping the X, to C + 1 categories,
a special category 0 means background. ()} means

trainable parameters in the prediction layer.

SEcore = ])re(lictiml(ng;Q) 08 e = ])rediction<ng;Q>'

(8)
We encourage high discriminative capability of the
foreground feature X, and simultaneously punish any
discriminative capability of the background feature X,, .

We use a Cross-Entropy Loss to measure the difference
between the ground truth and the prediction label. The
classification loss of foreground and background can be
generated for constraint. The total loss function consists
of foreground and background losses from intra-video or
inter-video relation modules respectively.

% = ( )cIA_fg + ae"%;rl,\'_hg ) + (( + aE‘Zi:ls_att_bg )

~total ~ cls_att_fg

(10)
where the hyperparameter o« represents the weight
between the foreground and the background. We set
a=0.1 in our experiments. The total loss is the sum of
these four terms.

Localization. We have given detailed descriptions
about the design of our proposed RANet, and the
remaining issue is how to use the trained network for
action localization. In this section, we introduce how to
use the trained network for action detection. To generate
the Class Activation Sequences ( CAS) used for action
detection, we send the output feature X, in Intra-video
model of each segment to the Prediction layer.

Given the final CAS, following previous
methods > | we use a two-stage method to generate
action proposals. First, we set the thresholdr of the
video-level prediction fg,.,. , and discard the categories
with the confidence lower than the 7 . Then, for each
remaining action category, we apply a threshold on the
corresponding CAS to generate detection proposals. The

score of temporal action segment [i_,,,¢.,,c] can be
obtained via Equation (11).
score =
‘i‘d OA" CAS™ P (1,c) + (1 = 0)A)™ CAS"™(¢,¢)
1 = start tend - tstan + 1 .
(11)

where 6 denotes the weight of the RGB and flow
branches. According to the score, a certain threshold is
set to take the generated continuous segment as the final
action localization result. Finally, the Non-Maximal
Suppression is used to fuse the “flow” stream detections
and the RGB stream detections. We set = 0.3 in this
work. See experiments for more details.

4 Experiments

In this section, we experimentally evaluate the proposed
framework for activity localization from weakly labeled
videos. We first discuss the datasets we used, followed
by the implementation details, ablation learning and
some visualized results.
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Table 1. Results on THUMOSI14 testing set. Comparison with state-of-the-arts on THU-MOS14, we report mAP values at IoU thresholds
0.1:0.1:0.9. In order to demonstrate the superiority of our proposed method, recent works in both fully-supervised and weakly-

supervised setting are reported.

mAP@ IoU
Methods Supervised
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
S-CNN'*®! Full 47.7 435  36.3  28.7 19.0  10.3 5.3 - -
SSN'! Full 66.0 59.4 51.9 41.0  29.8 - - - -
BSN'™ Full - - 53.5  45.0 369 -13.1 -28.4 -20.0 -
P-GCN™ Full 69.5 67.8 63.6 57.8 49.1 - - - -
CDE Full - - 40.1  29.4  23.3 - 13.1 7.9 -
TALNet""! Full -59.8 -57.1 53.2  48.5  42.8 - - - -
TPC'®" Full - - 4.1 37.1 28.2 20.6 -12.7 - -
R-C3D" Full -54.5 -51.5 44.8  35.6  28.9 - - - -
""""" UnrimmedNet " Weak 444 3.7 8.2 201 137 - - - -
Hide—and-seek'*’ Weak 36.4  27.8 19.5 12.7 6.8 - - - -
AutoLoc"* Weak - - 358 29.0 21.2 -13.4 5.8 - -
CleanNet Weak - - 37.0  30.9  23.9  13.9 7.1 - -
STPN'" Weak  -52.0 -44.7 355  25.8 16.9 9.9 4.3 - -
MANN!® Weak 59.8  50.8  41.1  30.6  20.3 12.0 6.9 2.6 0.2
W-TALC!" Weak 55.2  49.6  40.1 31.1 22.8 - 7.6 - -
3C-Net'' Weak 56.8  49.8  40.9  32.3  24.6 - 7.7 - -
Liu et a1t Weak 57.4  50.8 4.2 32,1 231  -150 7.0 - -
Nguyen et al"2" Weak 60.4  56.0 46.6  37.5  26.8 17.6 9.0 3.3 0.4
DGAM™ Weak 60.0  54.2  46.8 38.2  28.8 19.8 11.4 3.6 0.4
o Ous  Weak 664 60.05 5.9 4L1 307 198 108 2.9  0.37

4.1 Datasets and evaluation

Datasets. We evaluate our RANet on three popular
action localization benchmark datasets, THUMOS14 "
and ActivityNet 1.2/1.3**).  Both datasets are
untrimmed, meaning the videos include frames that
contain no target actions, and we do not exploit the
temporal annotations for training. THUMOS 14 has
video-level annotations of 101 action classes in its
training, validation, testing sets, and temporal
annotations for a subset of videos the validation and
testing sets for 20 classes. The dataset is challenging as
some videos are relatively long (up to 26 minutes) and
contain multiple action instances. The length of action
varies significantly, from less than a second to minutes.
ActivityNet 1.2 has 4819 training, 2383 validation and
2480 testing videos from 100 activity categories. Note
that the test set annotations for this dataset are withheld.
There is an average of 1.5 activity instances per video.
As in References [ 19,38 ], we use the training set to

train and the validation set to test our approach.
ActivityNet 1. 3 offers a larger benchmark for complex
action localization in untrimmed videos which has 10024
videos for training, 4926 for validation, and 5044 for
testing with 200 activity classes.

Evaluation. We follow the standard evaluation
protocol based on mean average precision ( mAP)
values at several different levels of intersection over
union (IoU) thresholds. The evaluation is conducted
using the benchmarking code for the temporal action
localization task provided by ActivityNet.

4.2 Implementation Details

We use the Kinetics pretrained two-stream 13D
network ™’ to extract video features. The inputs to the
two-stream are stacks of 16 (RGB or Flow) frame
chunks. The output is passed through a 3D average
pooling layer to obtain features of dimension 1024 each
from two streams. Specifically, we apply the TV-L1"*
algorithm to extract optical flow. Our feature extraction
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module is fixed during the training time, which will
make our model more lightweight, require less training
time, and be more friendly to the GPU memory size.
Our RANet is trained using the Adam'®> optimizer with
le-4 learning rate for THUMOUS 14 and 1le-3 learning
rate for ActivityNet 1.2/1.3. We set le-4 as the weight
decay for both datasets. For the hyperparameter a , we
find that ¢ needs to be small enough so that the network
is driven mostly by the foreground loss. We simply set
o = 0. lin our experiments. Besides, we generally set &
= 2for the average action duration of the dataset
statistics. All experiments are trained on RTX 2080Ti
GPU using Pytorch with version 1. 2.
4.3 Comparison with the state-of-the-art methods
We perform a quantitative analysis of our framework by
comparing with current state-of-the-art approaches at
several IoU thresholds for the task of activity localization.
The results on THUMOSI14 and ActivityNet are shown in
Table 1, Table 2 and Table 3 respectively.

Table 1 shows the quantitative results on THUMOSI4.
We compare our RANet with existing approaches in

both weakly-supervised and fully-supervised action
localization. Our method outperforms all other recent
weakly-supervised methods, and improves the mAP@ (.
5 from previous state-of-the-art 28.8% to 30.7% . Even
with a much lower level of supervision, our method
shows the least gap regarding the latest fully-supervised
methods. Furthermore, it can be noticed that our
method even outperforms several fully-supervised
methods at some IoU thresholds.

We also evaluate our RANet on ActivityNet 1.2 in
Table 2. We see that our method outperforms all other
weakly supervised approaches. Moreover, similar to
THUMOS14, our method significantly outperforms
existing weakly-supervised approaches while maintaining
competitive with other fully-supervised methods.

Experimental results on ActivityNet 1.3 are shown
in Table 3 to compare our method with more baseline
methods. Our model outperforms all weakly-supervised
methods, following the fully-supervised method with a
small gap.

Table 2. Results on ActivityNet 1.2 testing set. Comparison with state-of-the-arts on ActivityNet 1.2, we report mAP values at IoU
thresholds 0.5 : 0.05 : 0.95. In order to demon-strate the superiority of our proposed method, recent works in both fully-supervised and

weakly-supervised setting are reported.

mAP@ IoU
Methods Supervised

0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

SSN] Full 41.3 38.8 35.9 32.9 30.4 27.0 2.2 18.2 13.2 6.1
AutoLoc'™ Weak 27.3 24.9 22.5 19.9 17.5 15.1 13.0 10.0 6.8 3.3
W-TALC!?! Weak 37.0 33.5 30.4 25.7 14.6 12.7 10.0 7.0 4.2 1.5
3C—Net!?! Weak 35.4 - - - 22.9 - - - 8.5 -
Liu et al™’ Weak 36.8 - - - 22.9 - - - 8.5 -
CleanNet'* Weak 37.1  -33.4 -29.9 -26.7 23.4 -20.3 -17.2 9.2 5.0 -
DGAM'?! Weak 41.0 37.5 33.5 30. 1 26.9 23.5 19.8 15.5 10.8 5.3
Ours Weak 42.3 38.7 34.5 31.2 27.3 24.0 20.1 15.4 10.1 5.2

Table 3. Comparison of our method with state-of-the-art W-TAL methods on the ActivityNet v 1.3 validation set. The Avg column

indicates the average mAP at IoU thresholds 0.5 : 0.05 : 0.95.

mAP@ JoU
Methods Supervised
0.5 0.75 0.95 Avg
TAL-Net Full 38.2 18.3 1.3 20.2
R-C3D Full 26.8 - - 12.7
BSN Full 52.5 33.5 8.9 34.3
 Lmetal™ Weak 3.0 200 s 202

STPN® Weak 29.3 16.9 2.7 -
Nguyen et al" Weak 36.4 19.2 2.9 -21.7
Ours Weak 37.5 20.7 58 21.8
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4.4 Ablation learning

We first study the impact of two-stream fusion. We
carry out the experimental results with different score
fusing weight (6 = 0.1,0.2,---,0.9) on THUMOSI14
and summarize them in Figure 5. We simply set § = 0.
3 as default in all experiments for its better performance.
Then we conduct several ablation experiments on
THUMOSI14 to investigate the effectiveness of different
components in our proposed RANet in Table 5.

Baseline. Our baseline is derived from”'' and
contains only foreground and back-ground modeling.
No relation modules have been considered.

Intra-video relation module. We add an auxiliary
branch for modeling the relation within a video into the
baseline, i. e., Intra-video Relation module, which
leads to an impressive improvement in a high IoU.
Compared to Baseline, our intra-video module gets
1.7% gain in IoU = 0. 5. We conjecture that it is
because the network is trained to build a bridge for
feature update between video segments, and bring out
completeness to action especially in IoU 0. 5.

Inter-video relation module. We evaluate a
variant with only the Inter-video Re-lation Module
branch in order to verify its importance in the network.
It can be seen from the experimental result that the Inter
branch has achieved significant accuracy improvements
from the baseline at all IoU thresholds. The significant
improvement in accuracy indicates the utility of the
proposed Inter-video Relation module, which aims to
separate the action from the context, thus producing
more accurate action location results.

RANet. By employing both branches and jointly
training them with contrasting objectives, RANet learns
the relation within or between video segments and shows
the best performance from the others. Compared to the
baseline, our RANet gets a remark-able gain in both
accuracy and completeness. Under the IoU threshold
0.5, our method improves mAP on THUMOSI14 from
25.7% to 30.7% . The excellent performance of action
detection indicates that the action predicted by our
model is more complete and closer to the Ground Truth.

Table 4. Effect of each component of RANet on the action
localization perfor-mance on THUMOS14.

mMAP@ IoU
Ours Intra Inter

0.3 0.5 0.7
x x 50.3  25.7 7.3
vV x 50.6 27.4 8.4

RANet

x Vv 51.1 30.1 8.6
Vv Vv 5.9  30.8 9.8

4.5 Discussion

In this section, we discuss and compare some of our
related works, which also use graph convolution and
attention mechanisms, or deal with action completeness
and action-context confusion issues for action
localization task. In addition, we have also added some
discussion about the proposed two relation modules.

Graph methods. We observe that two recent
explorations'®*" also refer to graph convolution
methods in action localization task. However, they are
all used for full supervision, which mainly to model the
proposal-proposal interactions and boost the temporal
action localization performance. The method in this
paper is based on weakly-supervised and can only model
relation between segments. Besides, another significant
difference is that both of them are related to all
proposals to establish the edge of graph convolution,
while ours are only based on partial adjacent segments to
establish the connection.

Attention methods. Attention mechanism is also
widely applied to current video tasks. Chen et al'®’ has
proposed a relation focus module to enhance expression
by extracting useful information from other proposals.
However it learns a proposal-wise attention map to
capture relative information within a video. In contrast
to such approaches, our approach learns a segments-
wise attention between different videos, which is
inspired by the image-text matching task, using a cross-
attention mechanism that embeds video pairs into same
feature space, learning the potential alignment of action
or background. The goal is to solve the problem of
action-context confusion.

Completeness modeling &  action-context
separation methods. There are two under explored
problems in WS-TAL task, namely action completeness
modeling and action-context confusion. Some of
existing approaches presented have begun to explicitly
study these two challenges. As far as we know, these
studies are quite different from method proposed in this
paper. For example, references ™%’ inspired by the
adversarial erasing mechanism to highlight less
discriminative segments, thus making the actions
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prediction more complete. However the erasing
strategies cannot be learned in an end-to-end manner,
which limits its performance. DGAM'”' devotes to
solve the action-context confusion issue and devises a
conditional variation auto-encoder (CVAE) to construct
different feature distributions conditioned on different
attentions. However it treats each segment as an
individual, which still ignores the relation cross videos.

Intra-video VS inter-video. In this work, the
proposed two relation modules correspond to solving
two different challenges respectively, making the
predicted action localization more close to the ground
truth without the frame-level or segment-level fine

from the model trained with only video level labels.

annotations. But they’ re going in different directions.
The intra-video relation module pays more attention to
forming the discrete action parts into a complete action,
which is a process from discrete to complete, while the
inter-video relation module aims to separate the action
from the highly relevant context, which is a process
from redundant to compact. Therefore, they are
complementary to each other. Experiments also show
that the excellent performance can be obtained by
combining the two modules together. In addition,
unlike most existing methods that only solve one of the
issues in WS-TAL, the RANet proposed in this paper is
an end-to-end network which could solve both problems
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simultaneously. and conference papers in these areas, including over 40 IEEE/

4.6 Visualized results

In Figure 6, we present some visualization results on
THUMOSI14 testing set which show that our RANet can
effectively learn to localize temporal action instances
without any direct temporal boundary information during
training. The first row of each sub-figure shows video
frames uniformed sampled frames from a video. The
second rows show Ground Truth. Rows three to six
show different action duration predictions, respectively.
Comparison with ground-truth, we can find that each
instance” s temporal boundary is close to the ground-
truth annotation. Compared to a separate RGB or Flow
branch. When considering the relations, the network is
more accurate in the prediction results, whether in the
time span or confidence. The RGB,., or Flow ...
visualization results indicate the robustness of our
model.

5 Conclusions

In this work, we first introduce the two existing
problems in the current weakly-supervised action
localization methods, which are called action
completeness modeling and action-context confusion.
To tackle the two issues, we proposed a RANet
consisting of an Intra-video Relation Module and an
Inter-video Relation Module. Our experiments on three
challenging datasets demonstrate that the proposed
method achieves state-of-the-art results in the WS-TAL
task. We hope that this work will foster further research
in video localization.
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