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1　 Introduction
1. 1　 Background
Let p be a prime,q = pk a power of p. Let f∈FF q[x±1

1 ,
…, xn ±1 ] be a Laurent polynomial. Let χ1, …, χn:
FF ×

q→μq-1 be multiplicative characters. The twisted
exponential sum of f with respect to χ1, …, χn is defined
as

S∗
q (f, χ1, …, χn): = 　 　 　 　 　 　 　 　 　
∑
xi∈FF×q

χ1(x1)…χn(xn)ζTr( f(x1, …, xn)) ∈ ZZ [μdp],

where d is the least common multiplier of orders of χ1,
…, χn,ζ is a fixed primitive p-th root of unity and Tr=
TrFFq / FFp . If all χi are trivial and f is a polynomial,we
denote by

Sq(f): = ∑
xi∈FFq

ζTr( f(x1, …, xn)) ∈ ZZ [μp]

the exponential sum of f. If ζ is replaced by another
primitive p-th root of unity,the twisted exponential sum
is replaced by a Galois conjugate and its degree does not
change. There are various results about estimation on
the exponential sums, their absolute values and p-adic
valuations we will not list here. What we will discuss is
their generating fields for some special f, χi .

The generating fields of exponential sums are
related to the distinctness of exponential sums and the
generators of cyclotomic fields. When all χi are trivial,to
give the generating field of Sq(f) or S∗

q (f) is equivalent
to give its degree as an algebraic number. We list some
known results here.

① deg f=1: Sq(f)= 0.
② deg f=2,p≥3 : Sp(x2)= (-1) (p-1) / 2p is the

Gauss sum of the non-trivial quadratic character modulo

p. Hasse and Davenport[1] proved that
Sq(x2) = ( - 1) k-1Sp(x2) k .

Hence Sq(x2+a)= (-1) k+1Sp(x2) kζTr(a) and

degSq(x2 + a) =
p - 1, if Tr(a) ≠ 0;
1, if Tr(a) = 0 and 2 | k;
2, if Tr(a) = 0 and 2 k.{

　 　 ③ f=axd, p≥3 : We may assume that d | (q-1) .
Then deg Sq( f) divides (p-1) / (p-1, q-1

d
) . If d |

(p-1) or d | (q-1) / (p-1),then
deg Sq(f) = (p - 1) / (p - 1, q - 1

d
) .

See Ref. [2, Example 3. 10] .
④ f=axdd2+xdd1 with coprime d1, d2: If p≡1 mod

d,p is large with respect to deg f and Tr(a-d1)≠0, then
deg Sq(f) = p - 1

(d2 - d1, p - 1)
.

See Ref. [3, Theorem 1. 1] .
⑤ For f∈FF q[x], (p-1) / deg Sp(f) is a factor of

(#{(x, y) ∈ FF 2
q | yp - y = f(x)} - 1, p - 1) .

See Ref. [2, Theorem 3. 16] .
⑥ The sequence {Sqk(f)} k is periodic for k≥N for

some constant N,see Ref. [4, Theorem 1] . Zhang gave
a bound on the period in Ref. [3, Corollary 2. 4] .
Combining this result and the bound on the degree of
the L-function of f in Ref. [5, Theorem 1], Zhang
showed that: under certain coprime condition, the
degree of Spk(axd

+1+x)= (p-1) / d for sufficiently large
k if p≡1 mod d and p is large with respect to d. See
Ref. [3, Corollary 1. 2(2)] .

The exponential sum of
f = ax1…xn + x -1

1 + … + x -1
n , a ∈ FF ×

q
is called the Kloosterman sum Kl n(q, a) . When Tr(a)



≠0,the degree of Kln(q, a) is (p-1) / (n+1, p-1),
see Ref. [6, Theorem 1. 1] . When Tr ( a) = 0, the
degree of f can be obtained by the work in Ref. [7,
Corollary 4. 24] and [6, Theorem 5. 1] if p is large or
p does not divide a certain integer,with respect to n and
k. But no simple formula is known in general,see also
Ref. [8, Theorem 2] .
1. 2　 Main results
We see that all of these results are about untwisted
exponential sums. In this article,we will consider the
generating field of the general Kloosterman sum

Kln(χ1, …, χn;d1, …, dn)(q, a) =

∑
x1d1…xndn = a
x1, …, xn∈FF×q

ζTr(∑
i
xi)∏

n

i = 1
χi(xi) ∈ QQ (μdp)

in two cases, where χ1, …, χn are multiplicative
characters on FF ×

q and a∈FF ×
q . See Ref. [9,page 48] .

When Tr(a)≠0,we study the generating field of
the twisted Kloosterman sum

Kl(q, a, χ): = Kl2(χ, 1;1,1)(q, a) =
∑
x∈FF×q

χ(x)ζTr(x+a / x),

and the generating field of the partial Gauss sum
g(q, a, χ): = Kl1(χ;q + 1)(q2, a) =

∑
xq+1 = a

χ(x)ζTr(x+a / x) .

These character sums are motivated from the exponential
sums of cubic polynomials. When χ is cubic, the
exponential sum

Sq(x3 - 3ax): = ∑
x∈FFq

ζTr(x3-3ax) =

Kl(q, a3, χ), if q ≡1 mod 3;
g(q, a3, χ), if q ≡- 1 mod 3.{

See Proposition 2. 1.
Fix isomorphisms

σ-:(ZZ / pZZ ) ×→ Gal(QQ (μp) / QQ )
where σt(ζp)= ζtp for any ζp∈μp,

τ -:(ZZ / dZZ ) ×→ Gal(QQ (μd) / QQ )
where τw(ζd)= ζd w for any ζd∈μd . Both σt and τw can
be viewed as elements in Gal(QQ (μdp) / QQ ) since p d.

Theorem 1. 1　 Let d be the order of χ.
① When d=2,
· Kl (q, a, χ)= 0 if χ(a)= -1;
· Kl (q, a, χ) generates QQ (μp)

+ if χ(a)= 1,
χ(-1)= 1 and Tr( a )≠0;

· Kl (q, a, χ) generates QQ (μp) if χ(a) = 1,
χ(-1)= -1 and Tr( a )≠0 .

② When d ≥3 and p > 5d - 2, Kl ( q, a, χ)
generates QQ (μdp)H,where

　 　 H=

〈τ-1, σ-1〉,if χ(-1)= 1 and χ(a)= 1;
〈σ-1〉,if χ(-1)= 1 and χ(a)= -1;
〈τ-1〉,if χ(-1)= -1 and χ(a)= 1;
〈τ-1σ-1〉, if χ(-1)= -1 and χ(a)= -1;
{1}, if χ(-1)= -1 and χ(a)≠±1,

ì

î

í

ï
ïï

ï
ïï

if p≡±1 mod d and Tr(a)≠0.
See Propositions 3. 1 and 3. 4.
Theorem 1. 2 　 Let d be the order of χ. Assume

that Tr(a)≠0.

① If d | (q-1) and p>2,then g(q, a, χ) generates
QQ (μdp)H,where

H = {τwσ ±1 | w ≡1 mod d1}
and d1 |d is the order of a(q-1) / d .

② If d | (p +1) and p>7d -2, then g(q, a, χ)
generates QQ (μdp)H,where

H = 〈τ -1, σ-1〉, if a ∉ FF ×2
q or 4 d;

〈τd / 2+1, τ -1, σ-1〉,if a ∈ FF ×2
q and 4 | d.{

　 　 See Propositions 4. 1 and 4. 4.
For general d, if (p, d) satisfies a combinatorial

condition,we characterize the generating fields of these
character sums when a∈FF p . Let n be the order of p
mod d. For any r∈ZZ or ZZ / dZZ ,write aj ≡rp-jmod d
with 0≤aj≤d-1. Define

Vr: = 1
n∑

n-1

j = 0
min{δj +

aj +1p - aj

d
, p - δj -

aj +1p - aj

d
}

where
δj =

0,if aj ≤ d / 2;
1,if aj > d / 2.{

Denote by
Tp, d = {r ∈ (ZZ / dZZ ) × | Vrs = Vs,∀s ∈ (ZZ / dZZ ) ×} .
This is a subgroup of (ZZ / dZZ ) × containing -1, p.

Theorem 1. 3 　 Let d be the order of χ. Assume
that a∈FF ×

p and p k.
① If d≥3,p >5d -2 and Tp, d = 〈 - 1, p〉, then

Kl(q, a, χ) generates QQ (μdp)H,where

　 　 H=

〈τp, τ-1, σ-1〉,if χ(-1)= 1 and χ(a)= 1;
〈τp, σ-1〉,if χ(-1)= 1 and χ(a)= -1;
〈τp, τ-1〉,if χ(-1)= -1 and χ(a)= 1;
〈τp, τ-1σ-1〉, if χ(-1)= -1 and χ(a)= -1;
〈τp〉,if χ(-1)= -1 and χ(a)≠±1.

ì

î

í

ï
ïï

ï
ïï

In particular,this holds for d≤31 with p≢±(d / 2+1)
mod d if 4 |d.

② If d | (q+1),p>7d-2 and Tp, d / (2, d) = 〈p〉,then
g(q, a, χ) generates QQ (μdp)H,where

H = 〈τp, σ-1〉, if a ∉ FF ×2
p or 4 d;

〈τd / 2+1, τp, σ-1〉,if a ∈ FF ×2
p and 4 | d.{

In particular,this holds if d / (2, d)≤31.
See Theorems 3. 1 and 4. 1.
It’ s an interesting phenomenon that these two

different Kloosterman sums depend on similar
conbinatorial conditions. It seems that there should be a
direct relation between these two Kloosterman sums.

We will express the Kloosterman sums as a Fourier
expansion and use Stickelberger’ s congruence theorem
to determine the first several terms of the P-adic
expansions for a fixed prime P in QQ ( μ(q-1)p ) . The
main estimation is in Lemma 3. 3. Then the generating
fields are obtained by these results.

2　 Preliminaries
2. 1　 The Stickelberger’s congruence theorem
We will use this theorem to estimate the valuations of
Gauss sums. The prime p splits into f = φ ( q - 1) / k
primes as

p ZZ [μq-1] = p1…pf
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in QQ (μq-1) and each pi is are totally ramified as
piZZ [μ(q-1)p] = Pp-1

i
in QQ ( μ(q-1)p ) . Let p be a fixed prime above p in
QQ (μq-1) and P the unique prime above p in
QQ (μ(q-1)p) . Let v be the normalized P-adic valuation.
Then v(p)= p-1 and v(π)= 1 where π=ζ-1.

Let κ be the residue field of p and ω the
Teichmüller lifting of the quotient map ZZ [μq-1]

×→→κ×

associated to p. We can view ω as a character on FF ×
q if

we fix an isomorphism FF q≅κ. Different choice of the
isomorphism may cause a composite by a power of the
Frobenius map. Take ω(0)= 0 for convention. Then ω
is multiplicative and

ω(a) + ω(b) - ω(a + b) ∈ p.
In particular, its P-adic valuation is at least p - 1.
Denote by

g(m): = ∑
t∈FF×q

ω(t) -mζTr( t)

the Gauss sum of ω-m . Clearly,g(0)= -1 and g(pm)=
g(m) . Recall the Stickelberger’s congruence theorem,
see Ref. [10;11,Chap. 6] .

Theorem 2. 1　 For 0≤m<q-1,

g(m) ≡- πm0+… +mk-1

m0! …mk-1!
mod Pm0+… +mk-1+1,

where
m = m0 + m1p + … + mk-1pk

-1, 0 ≤ mi ≤ p - 1.
In particular,v(g(m))≡m mod (p-1) has same parity
with m.
2. 2　 Relation to the exponential sums of cubic

polynomials
In this subsection,we will show the relations between
the cubic exponential sums and the twisted Kloosterman
sums or the partial Gauss sums. This fact is well known
to experts. Let’s show it briefly.

Proposition 2. 1　 Assume that p>3 and a∈FF ×
q .

① If q≡1 mod 3,then
Sq(x3 - 3ax) = Kl(q, a3, χ)

where χ is any non-trivial cubic character of FF ×
q .

② If q≡-1 mod 3,then Sq(x3 -3ax)= gχ(q, a3)
where χ is any non-trivial cubic character of FF ×

q2 .
From this,Sq(x3-3ax) generates

QQ (μp)
+ = QQ (ζ + ζ -1)

if Tr(a3)≠0 and p>19.
Proof　 Denote by Nc the number of the equation

f(x) = x3 - 3ax = c ∈ FF q
with multiplicities. The discriminant of f-c is

Δ = - 27 2 = - 27(c2 - 4a3) ∈ FF q .

Then Nc = 1 if and only if Δ ∉FF q . Indeed,there are
three cases:

· Nc =1,f-c decomposes into a linear factor and a
degree 2 irreducible polynomial. Thus the splitting field
of f-c is FF q2 and Δ∉FF q .

· Nc =3,clearly Δ∈ FF q .
· Nc =0,f-c is irreducible and

Δ ∈ FF q3∩ FF q2 = FF q .
　 　 Fix a nontrivial cube root of unity λ∈ FF q2 . Then
Δ =±3(2λ+1) .

① In this case,λ∈FF q. Assume that = c2-4a3 ∈
FF q. That ’ s equivalently to say, Nc = 0 or 3. By
Cardano’s formula,the solutions of f(x)= c in FF q are

u + au -1, λu + λ2au -1, λ2u + λau -1,
where u3 =(c+ ) / 2. If Nc =3,then u+au-1∈FF q,u lies
in FF q2∩FF q3 = FF q and vice versa. Hence Nc = 3 if and
only if v:= (c+ ) / 2∈FF ×3

q . We have a3 / v = (c- ) / 2
and c=v+a3 / v.

If Nc =3 and c=±2a3 / 2,we have =0 and there is a
root with multiplicity 2. Denote by

Bi = ∑
Nc = i,c≠ ±2a3 / 2

ζTr(c) .

Then
B3 = 1

2 ∑
v∈FF×3q , v≠ ±a3 / 2

ζTr(v+a3 / v),

B0 = 1
2 ∑

v∉FF×3q

ζTr(v+a3 / v) .

and
B0 + B1 + B3 + ζTr(2a3 / 2) + ζTr( -2a3 / 2) = ∑

c∈FFq

ζTr(c) = 0.

If a∉FF q
×2,the terms ζTr(±2a3 / 2) disappear. Now

Sq(f) = B1 + 3B3 + 2ζTr(2a3 / 2) + 2ζTr( -2a3 / 2) =
2B3 - B0 + ζTr(2a3 / 2) + ζTr( -2a3 / 2) =

∑
v∈FF×3q , v≠ ±a3 / 2

ζTr(v+a3 / v) - 1
2 ∑

v∉FF×3q

ζTr(v+a3 / v) +

ζTr(2a3 / 2) + ζTr( -2a3 / 2) =

∑
v∈FF×q

χ(v) + χ(v)
2

·ζTr(v+a3 / v) =

Kl(q, a3, χ) + Kl(q, a3, χ)
2

= Kl(q, a3, χ)

by Lemma 3. 1①.
② In this case,p≡-1 mod 3,k=2l+1 is odd and λ

∈FF q2-FF q . Thus -27 is not a square in FF q . Assume
that (2λ+1) ∈ FF q . That’s equivalently to say,Nc =0
or 3. Let δ: x xq be the nontrivial element in
Gal(FF q2 / FF q) . The solutions of f(x)= c in FF q are

u + uδ, λu + λ2uδ, λ2u + λuδ,
where u3 =(c+ ) / 2. If u∈FF ×

q2,then Nc = 3 and vice
versa. Hence Nc =3 if and only if v:=(c+ ) / 2∈FF ×3

q2 .
We have vδ =(c- ) / 2 = a3 / v and c = v+vδ . Similar to
①,we have
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Sq(f) = ∑
vvδ = a3

χ(v) + χ(v)
2

·ζTr(v+vδ) =

gχ(q, a3) + gχ(q, a3)
2

= gχ(q, a3)

by Lemma 4. 1①.
Finally, the claim on the generating field of

Sq(x3-3ax) follows from Propositions 3. 4 and 4. 4.
Remark 2. 1 　 The condition on p can be weaken

to p>11,see Ref. [3, Corollary 1. 2] .

3　 The twisted Kloosterman sums
In this section,we will study the generating field of the
twisted Kloosterman sum
Kl(q, a, χ): = ∑

x∈FF×q

χ(x)ζTr(x+a / x) ∈ QQ (μdp), a ∈ FF ×
q ,

where d | (q-1) is the order of χ.
Lemma 3. 1　 We have
① Kl(q, a, χ)= χ(a) Kl(q, a, χ);
② Kl(q, a, χp)= Kl(q, ap, χ) .
Proof　 We substitute x by a / x or xp respectively,

then the result follows.
There is an integer w prime to d such that χ =

ω-(q-1)w/ d . Then
Kl(q,a,χ) = τwKl(q, a, ω-(q-1) / d) .

Since we are interested in the generating field of Kl(q,
a, χ),we may assume that χ=ω-(q-1) / d from now on.

Lemma 3. 2　 We have a Fourier expansion

(q - 1) Kl(q, a, χr) = ∑
q-2

m = 0
ωm(a)g(m)g(m + q - 1

d
r) .

　 　 Proof　 We have

∑
q-2

m = 0
ω-m(a -1xy) = 0,if xy ≠ a;

q - 1,if xy = a.{
Thus
(q - 1) Kl(q, a, χr) = (q - 1)∑

xy = a
χr(x) ζTr(x+y) =

∑
x, y∈FF×q

ω-(q-1)r / d(x)∑
q-2

m = 0
ω-m(a -1xy)ζTr(x+y) =

∑
q-2

m = 0
ωm(a)g(m)g(m + q - 1

d
r) .

3. 1　 The quadratic twist
Proposition 3. 1　 Assume that d=2.

① Kl(q, a, χ)= 0 if χ(a)= -1.
② If χ(a)= 1 and Tr( a )≠0,then Kl(q, a, χ)

generates QQ (μp)
+ if χ(-1) = 1; generates QQ (μp) if

χ(-1)= -1.
Proof　 ① Note that χ(a)= -1 and χ= χ,the result

follows from Lemma 3. 1①.
② Write a=b2 . By Lemma 3. 2, we have

(q - 1)Kl(q, a, χ) = 2 ∑
(q-3) / 2

m = 0
ωm(a)g(m)g(m + q - 1

2
) .

Write

m = ∑
k-1

j = 0
mjpj, m + q - 1

2
= ∑

k-1

j = 0
njpj

with 0≤mj, nj≤p-1. Then

nj = mj +
p - 1
2

+  j -1 - p j,

where j ∈{0, 1} and -1 = k-1 = 0. Denote by m′j =
min{mj, nj} and ′j = | j-j+1 | . Then

mj + nj =
p - 1
2

+ 2m′j + ′j -1
and

v(g(m)g(m + q - 1
2

)) = ∑
k-1

j = 0
(mj + nj) =

(p - 1)k
2

+ ∑
k-1

j = 0
(2m′j + ′j -1) ≥ V: = (p - 1)k

2
.

The equality holds if and only all m′j = ′j = 0, that′s to
say,m=0.

There are two cases such that the valuation is
secondly minimal.

(i) All m′j =′j =0 except m′i =1 for a unique i with
0≤i≤k-1. That’s to say,m=pi,

m+(q-1) / 2≡pi(q+1) / 2 mod (q-1) .
The summation of Fourier terms over these m is

2∑
k-1

i = 0
ωpi(a)g(pi)g(pi + q - 1

2
) =

2ω(Tr(a))g(1)g(q + 1
2

) ≡

2ω(Tr(a))πV+2

(p - 1
2

)! k-1(p + 1
2

)!
≡ Cω(Tr(a))πV+2 mod PV+3,

where C=4(p-1
2

)!-k .

(ii) All m′j =′j =0 except ′i =′i′ =1 for a unique pair
i, i′ with 0≤i<i′≤k-1. That′s to say,i+1 =…= i′ =1
and zero otherwise,m=(pi+pi′) / 2,

m+(q-1) / 2≡(pi′+pi+k) / 2 mod (q-1) .
The summation of Fourier terms over these m is
2 ∑
0≤i < i′≤k-1

ω(pi+pi′) / 2(a)g(p
i + pi′
2

)g(p
i + pi′
2

+ q - 1
2

) ≡

∑
0≤i < i′≤k-1

2ωpi+pi′(b)πV+2

(p - 1
2

)!k-2(p + 1
2

)!2
≡

Cω(Tr(b)2 - Tr(b2))πV+2 mod PV+3 .
Now we have

(q - 1) Kl(q, a, χ) ≡
- 2g(q - 1

2
) + Cω(Tr(b))2πV+2 mod PV+3 (1)

If σt fixes Kl(q, a, χ),we have
σt Kl(q, a, χ)= χ(t) -1 Kl(q, at2, χ)= Kl(q, a, χ)
and then χ(t)= 1,

ω(Tr(bt))2 ≡ ω(Tr(b))2 mod P.
Note that Tr(b)≠0. If χ(-1)= -1,we have t = ±1 and
Kl(q, a, χ) generates QQ (μp)

+ . If χ(-1)= 1,we have
t=1 and Kl(q, a, χ) generates QQ (μp) .
3. 2　 The d-th twist with d≥3
We need the following lemma to obtain the P-adic
expansion of Kl(q, a, χ) .

Lemma 3. 3　 Let

s = ∑
k-1

j = 0
sjpj, 0 ≤ sj ≤ p - 1,

be an integer less than q-1,satisfying sj≠(p-1) / 2 for
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all j. Denote by
M: = ∑

δ j = 1
(p - δj -1 - sj)pj,

M + s ≡∑
δ j = 0

(δj -1 + sj)pj mod (q - 1)

and
V: = v(g(M)g(M + s)) =

∑
k-1

j = 0
min{δj -1 + sj, p - δj -1 - sj},

where
δj =

0,if sj < p / 2;
1,if sj > p / 2.{

Consider v(g(m)g(m+s)) for 0≤m< q-1.
① If | (p-1) / 2-sj | >1 for all j,then the valuation

is minimal: m=M,v=V.
② If | (p-1) / 2-sj | >2 for all j,then the valuation

is secondly minimal: m≡M+pi mod (q-1) for some i,
v=V+2.

③ If | (p-1) / 2-sj | >3 for all j,then the valuation
is thirdly minimal: m≡M+pi+pi′ mod (q-1) for some
i, i′,v=V+4.

Proof　 Denote by sj′=min{sj, p-1-sj} . Write
m + s - (q - 1)k-1 =

∑
k-1

j = 0
njpj < q - 1, 0 ≤ nj ≤ p - 1,

where k-1∈{0, 1} . Then
nj = mj + sj +  j -1 - p j,

where j ∈ {0, 1} and -1 = k-1 . Denote by m′j =
min{mj, nj} and ′j = | j-j+1 | . Then

mj + nj =
2mj′ + sj′ + ′j -1,if δj′ = 0;
2mj′ + (p - 1 - sj′) + ′j -1,if δj′ = ± 1,{

where δj′=δj-j . Assume that | (p-1) / 2-sj | >λ for all
j.

① Place δ′0, …, δ′k-1 in a circle. If all δ′j =0,

v(g(m)g(m + s)) = ∑
k-1

j = 0
(2mj′ + sj′ + ′j -1) ≥

∑
k-1

j = 0
(sj′ + ′j -1) = V.

Otherwise there are α strings of ±1’ s,with total length
z. If δ′j =δ′j+1 =0,then ′j = | δj-δj+1 | . Thus

v(g(m)g(m + s)) = ∑
k-1

j = 0
(mj + nj) ≥

V + ∑
δ′j≠0

(p - 1 - 2s′j) + ∑
k-1

j = 0
(′j -1 -| δj -1 - δj | ) ≥

V + ∑
δ′j≠0

| p - 1 - 2sj | - (z + α) >

V + 2λz - 2z = V + 2(λ - 1) .
Therefore,v(g(m)g(m+s))≥V with equality holds if
and only if m=M.

② Note that the valuation has same parity with s.
When z≥1,we have that v(g(m)g(m+s))>V+2. Thus
the valuation is secondly minimal if and only if all δ′j =0
and only one mi′=1. The result then follows.

③ When z≥1,we have that v(g(m)g(m+s))>V+
4. Thus the valuation is thirdly minimal if and only if
all δj′=0,m′i =2 for some i or m′i =m′i′ =1 for some i≠i′,
and other entries are zero. The result then follows.

Definition 3. 1　 Let p be a prime prime to d. Let
n be a positive integer such that pn≡1 mod d. For any
r∈ZZ or ZZ / dZZ ,write aj≡rp-jmod d with 0≤aj≤d-1.
Define

Vr: = 1
n∑

n-1

j = 0
min{δj +

aj +1p - aj

d
, p - δj -

aj +1p - aj

d
}

(2)
where

δj =
0,if aj ≤ d / 2;
1,if aj > d / 2.{

This definition does not depend on the choice of n.
Proposition 3. 2　 If p>3d-2,then the valuation of

Kl(q, a, χr) is kVr .
Proof　 If r≡d / 2 mod d,Vr = (p-1) / 2 and the

valuation of
Kl(q, a, χr) = Kl(q, a, ω(q-1) / 2) =

∑
q-2

m = 0
ωm(a)g(m)g(m + q - 1

2
)

is (p-1)k / 2 by Equation(1) .
If r≢d / 2 mod d,then aj≠d / 2 and

| p - 1
2

- aj +1p - aj

d
| =

| (2aj +1 - d)p + (d - 2aj) |
2d

≥

p - (d - 2)
2d

> 1.

Thus
(q - 1)r

d
= ∑

k-1

j = 0

aj +1p - aj

d
pj

satisfies the condition in Lemma 3. 3① and then the
valuation of Kl(q, a, χr) is kVr by Lemma 3. 2.

Definition 3. 2　 For any s∈ZZ or ZZ / dZZ ,define
T s

p, d: = {r mod d | (r, d) = 1,
Vrs = Vs} ⊆ (ZZ / dZZ ) × (3)

Define
Tp, d: = ∩

(s, d) =1
T s

p, d .
　 　 Proposition 3. 3　 Assume that p>3d-2.

① Tp, d is a group containing {±pλ mod d |λ∈ZZ } .
② If p≡±1 mod d,then Tp, d ={±1} .
③ If 4 | d≥16 and p≡d / 2±1 mod d,then Tp, d =

(ZZ / d ZZ ) × .
④ If 3≤d≤31 and (p, d) does not satisfies ③,

then Tp, d ={±pλmod d |λ∈ZZ } .
Proof　 ① If r1, r2∈ Tp, d,then Vr1r2-1s

=Vr2-1s
=Vs .

Thus r1r2
-1∈ Tp, d and Tp, d is a group. Since V±pr =Vr

by the definition,the group Tp, d contains -1, p.
② That’s because if p≡±1 mod d,we have

Vr =
p ∓1
d

·min{r, d - r} (4)

　 　 ③ If p≡d / 2±1 mod d,then
a2i = r, a2i +1 = d / 2 ± r, if r < d / 2;

d / 2 ∓ (d - r),if r > d / 2.{
Thus Vr = ( p ± 1) k / 4 and Tp, d = (ZZ / dZZ ) × . When
4 |d≥16,φ(d)>4. Hence Tp, d does not equal 〈-1, p〉 .

④ We have already know the case p≡±1 mod d in
②. Clearly the assertion holds if p and - 1 generate
(ZZ / dZZ ) × . The rest cases are listed in Table 1.
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Table 1. Vr for d≤32, (r, d)= 1.
d ±p rH / {±1} Vr

13

3

4

5

{1, 3, 4} (8p±2) / 39
{2, 5, 6} (p∓1) / 3
{1, 3, 4} (8p∓6) / 39
{2, 5, 6} (p±1) / 3
{1, 5} (3p∓2) / 13
{2, 3} (5p±1) / 26
{4, 6} (5p±1) / 13

15 4 {1, 4} (p∓1) / 6
{2, 7} (3p±3) / 10



16 7 {1, 7}
{3, 5} (p∓1) / 4



17

2

4

{1, 2, 4, 8} (15p∓13) / 68
{3, 5, 6, 7} (21p±9) / 68

{1, 4} (5p∓3) / 34
{2, 8} (5p∓3) / 17
{3, 5} (4p±1)17
{6, 7} (13p∓1) / 34



19

7

8

{1, 7, 8} (16p±2) / 57
{2, 3, 5} (10p±6) / 57
{4, 6, 9} (p∓1) / 3
{1, 7, 8} (16p∓14) / 57
{2, 3, 5} (10p∓4) / 57
{4, 6, 9} (p±1) / 3



20 9 {1, 9}
{3, 7} (p∓1) / 4



21

4

5

8

{1, 4, 5} (10p±2) / 63
{2, 8, 10} (20p±4) / 63
{1, 4, 5} (10p∓8) / 63
{2, 8, 10} (20p∓16) / 63
{1, 8} (3p∓3) / 14
{2, 5} (p±1) / 6
{4, 10} (p±1) / 3



24

5

7

11

{1, 5} (p∓1) / 8
{7, 11} (3p∓3) / 8
{1, 7} (p∓1) / 6
{5, 11} (p∓1) / 3
{1, 11}
{5, 7} (p∓1) / 4



25

4

6

7

9

11

{1, 4, 6, 9, 11} (31p±1) / 125
{2, 3, 7, 8, 12} (32p∓28) / 125
{1, 4, 6, 9, 11} (31p∓11) / 125
{2, 3, 7, 8, 12} (32p±8) / 125

{1, 7} (4p∓3) / 25
{2, 11} (13p±9) / 50
{3, 4} (7p±1) / 50
{6, 8} (7p±1) / 25
{9, 12} (21p±3) / 50

{1, 4, 6, 9, 11} (31p∓29) / 125
{2, 3, 7, 8, 12} (32p±12) / 125
{1, 4, 6, 9, 11} (31p±9) / 125
{2, 3, 7, 8, 12} (32p∓2) / 125



26

3

5

9

{1, 3, 9} (p∓1) / 6
{5, 7, 11} (23p±9) / 78
{1, 5} (3p∓2) / 26
{3, 11} (7p±4) / 26
{7, 9} (8p∓1) / 26

{1, 3, 9} (p∓1) / 6
{5, 7, 11} (23p±1) / 78



d ±p rH / {±1} Vr

27

8

10

{1, 8, 10} (19p∓17) / 81
{2, 7, 11} (20p±2) / 81
{4, 5, 13} (22p∓14) / 81
{1, 8, 10} (19p∓1) / 81
{2, 7, 11} (20p±16) / 81
{4, 5, 13} (22p∓4) / 81

28

3

9

13

{1, 3, 9} (13p∓11) / 84
{5, 11, 13} (29p∓3) / 84
{1, 3, 9} (13p∓5) / 84

{5, 11, 13} (29p±19) / 84

{1, 13} {3, 11} {5, 9} (p∓1) / 4



29

4

5

6

7

9

12

13

{1, 4, 5, 6, 7, 9, 13} (45p±23) / 203
{2, 3, 8, 10, 11, 12, 14} (60p∓8) / 203
{1, 4, 5, 6, 7, 9, 13} (45p±7) / 203

{2, 3, 8, 10, 11, 12, 14} (60p∓10) / 203
{1, 4, 5, 6, 7, 9, 13} (45p∓9) / 203

{2, 3, 8, 10, 11, 12, 14} (60p∓12) / 203
{1, 4, 5, 6, 7, 9, 13} (45p∓25) / 203

{2, 3, 8, 10, 11, 12, 14} (60p∓14) / 203
{1, 4, 5, 6, 7, 9, 13} (45p±1) / 203

{2, 3, 8, 10, 11, 12, 14} (60p∓18) / 203
{1, 12} (13p∓11) / 58
{2, 5} (7p±3) / 58
{3, 7} (5p∓2) / 29
{4, 10} (7p±3) / 29
{6, 14} (10p∓4) / 29
{8, 9} (17p∓1) / 58

{11, 13} (12p±1) / 29
{1, 4, 5, 6, 7, 9, 13} (45p∓5) / 203

{2, 3, 8, 10, 11, 12, 14} (60p∓26) / 203



30 11 {1, 11} (p∓1) / 5
{7, 13} (p±1) / 3



31

2

4

5

6

8

{1, 2, 4, 8, 15} (30p±2) / 155
{3, 6, 12, 7, 14} (42p∓22) / 155
{5, 10, 9, 11, 13} (48p±28) / 155
{1, 4, 2, 8, 15} (30p±4) / 155
{3, 12, 6, 14, 7} (42p±18) / 155
{5, 10, 9, 11, 13} (48p∓6) / 155

{1, 5, 6} (12p±2) / 93
{2, 10, 12} (24p±4) / 93
{3, 15, 13} (p∓1) / 3
{4, 7, 11} (22p±14) / 93
{8, 9, 14} (p∓1) / 3
{1, 6, 5} (12p∓10) / 93

{2, 12, 10} (24p∓20) / 93
{3, 15, 13} (p±1) / 3
{4, 7, 11} (22p∓8) / 93
{8, 9, 14} (p±1) / 3

{1, 8, 2, 4, 15} (30p±8) / 155
{3, 6, 12, 7, 14} (42p±36) / 155
{5, 9, 10, 13, 11} (48p∓12) / 155



32
7 every coset
9 every coset
15 every coset

p / 4

(p∓1) / 4



488 中国科学技术大学学报 第 51 卷



　 　 Remark 3. 1　 ① One may expect that Ts
p, d is also

a group. Unfortunately it’s not true. For instance,take
d=33,p≡±10 mod 33,then T1

p, d ={±1, ±4, ±7, ±10} .
② One can find more pairs (p, d) such that Tp, d

≠〈-1, p〉 like Proposition 3. 3③,where d is divisible
by a high power of 2. It’s conjectured that Tp, d =〈-1,
p〉 when 4 d and p>3d-2.

③ It seems that Tp, d = Tp′, d if p′≡p mod d and
both p, p′ > 3d - 2. But I do not have a proof or a
counterexample.

Proposition 3. 4　 Assume that d≥3 and p>5d-2.
If p≡±1 mod d and Tr ( a) ≠0, then Kl(q, a, χ)
generates QQ (μdp)H,where

H =

〈τ -1, σ-1〉,if χ( - 1) = 1 and χ(a) = 1;
〈σ-1〉,if χ( - 1) = 1 and χ(a) = - 1;
〈τ -1〉,if χ( - 1) = - 1 and χ(a) = 1;
〈τ -1σ-1〉, if χ( - 1) = - 1 and χ(a) = - 1;
{1}, if χ( - 1) = - 1 and χ(a) ≠ ± 1.

ì

î

í

ï
ï
ï

ï
ïï

　 　 Proof　 We may assume that χ =ω-(q-1) / d . Denote
by Mr the M in Lemma 3. 3 for s = ( q - 1) r / d. By
Lemma 3. 3 and Proposition 3. 2, we have

(q - 1)Kl(q, a, χr) ≡ 　 　 　 　 　 　

ωMr(a)g(Mr)g(Mr +
q - 1
d

) +

∑
k-1

i = 0
ωMr+pi(a)g(Mr + pi)g(Mr +

q - 1
d

+ pi) ≡

ωMr(a)g(Mr)g(Mr +
q - 1
d

) +

CπkVr+2ωMr(a)ω(Tr(a)) mod PkVr+3 (5)
where C is a constant prime to p.

By Lemma 3. 1①,we have
τwσt Kl(q, a, χ) = χ(t) -w Kl(q, t2a, χw) =

χ(ta)w Kl(q, t2a, χ -w) (6)
If τwσt fixes Kl(q, a, χ),then Vw =V1 . Thus w=±1 by
Proposition 3. 3②. If w = 1,χ( t) -1 Kl(q, t2a, χ) =
Kl(q, a, χ) and we have

χ(t) -1ωM1(t2a) ≡ ωM1(a) mod P.
This forces χ(t) -1ωM1(t2)= 1 and then

χ(t) -1ωM1(t2a)ω(Tr(t2a)) ≡
ωM1(a)ω(Tr(a)) mod P.

Since ω(Tr(a))≠0,we have ω( t2 ) = 1, t = ±1 and
χ(t)= 1.

If w=-1,χ( ta) -1 Kl(q, t2a, χ)= Kl(q, a, χ)
and we have

χ(ta) -1ωM1(t2a) ≡ ωM1(a) mod P.
This forces χ(ta) -1ωM1(t2)= 1 and then

χ(ta) -1ωM1(t2a)ω(Tr(t2a)) ≡
ωM1(a)ω(Tr(a)) mod P.

Since ω(Tr(a))≠0,we have ω( t2 ) = 1, t = ±1 and
χ(ta)= 1. The result then follows.

When Tp, d equals 〈-1, p〉,we can determine the
generating field of Kl ( q, a, χ),where a∈ FF ×

p and

p k.
Theorem 3. 1　 Assume that 3≤d | (q-1),p>5d-

2,a∈FF ×
p and p k. If Tp, d =〈-1, p〉,then Kl(q, a, χ)

generates QQ (μdp)H,where

H =

〈τp, τ -1, σ-1〉,if χ( - 1) = 1 and χ(a) = 1;
〈τp, σ-1〉,if χ( - 1) = 1 and χ(a) = - 1;
〈τp, τ -1〉,if χ( - 1) = - 1 and χ(a) = 1;
〈τp, τ -1σ-1〉, if χ( - 1) = - 1 and χ(a) = - 1;
〈τp〉,if χ( - 1) = - 1 and χ(a) ≠ ± 1.

ì

î

í

ï
ï
ï

ï
ïï

In particular,this holds for d≤31 with p≢±(d / 2-1)
mod d if 4 |d.

Proof　 If τwσt fixes Kl (q, a, χ), it also fixes
τrKl(q, a, χ) = Kl ( q, a, χr ) . Thus Vwr = Vr by
Equations(5), (6) and Proposition 3. 2. Then w∈ Tp, d

and w ≡ ±pλ mod d for some λ. For w ≡ pλ, by
Lemma3. 1②,we have

Kl(q, a, χw) = Kl(q, a, χpλ) =
Kl(q, apλ, χ) = Kl(q, a, χ) .

Similar to the proof of Proposition 3. 4, if Tr(a)≠0,we
have ω(t2)≡1 and then t=±1,χ(t)= 1.

For w≡-pλ,by Lemma 3. 1②, we have
Kl(q, a, χ -w) = Kl(q, a, χ) .

Similarly,if Tr(a)≠0,we have t=±1 and χ(ta)= 1.
The last claim follows from Proposition 3. 3④.

4　 The partial Gauss sums
In this section,we will study the partial Gauss sum
g(q, a, χ): = ∑

xxδ = a
χ(x)ζTr′(x) ∈ QQ (μdp), a ∈ FF ×

q ,

where δ:x xq is the non-trivial element in Gal(FF q2 /
FF q),Tr′(x)= TrFFq2 / FFq(x)= Tr(x+xδ) and d | (q2 -1) is
the order of χ. The notations ω, v, g are defined as in
Subsection 2. 1, but q is replaced by q2 .

Lemma 4. 1　 We have
① g(q, a, χ)= χ(a)g(q, a, χ) .
② g(q, a, χp)= g(q, ap, χ) .
③ When d is even,we have

g(q, a, χd / 2+1) = χ2(a)g(q, a, χ),
where χ2 is the quadratic character on FF ×

q .
Proof 　 We substitute x by xδ = a / x or xp

respectively, then ① and ② follows. If xxδ = a, then
χd / 2(x)= ω(q-1) / 2(a)= χ2(a) and ③ follows.

Similar to Section 3, we may assume that χ =
ω-(q2-1) / d since we are interested in the generating field
of g(q, a, χ) .

Lemma 4. 2　 We have a Fourier expansion
(q - 1)g(q, a, χr) = 　 　 　 　 　 　 　 　 　

∑
q-2

m = 0
ωm(a)g((q + 1)m + q2 - 1

d
r) .

　 　 Proof　 Write a =αq+1 =ααδ for some α∈FF ×
q2,then

we have
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∑
q-2

m = 0
ω(q+1)m(α -1x) = ∑

q-2

m = 0
ωm(a -1xxδ) =

0,if xxδ ≠ a;
q - 1,if xxδ = a.{

Thus
(q - 1)g(q, a, χr) = (q - 1)∑

xxδ = a
χr(x)ζTr′(x) =

∑
q-2

m = 0
∑
x∈FF×

q2

χr(x)ω(q+1)m(α -1x)ζTr′(x) =

∑
q-2

m = 0
ωm(a) g((q + 1)m + q2 - 1

d
r) .

　 　 We will consider the cases d | (q±1) respectively.
4. 1　 The case d |(q-1)
Proposition 4. 1 　 Assume that d | (q-1) and p>2. If
Tr(a)≠0,then g(q, a, χ) generates QQ (μdp)H,where

H = {τwσ ±1 | w ≡1 mod d1}
and d1 |d is the order of a(q-1) / d .

Proof　 We have
g(q, a, χr) = ω-(q-1)r / d(a)g(q, a,1) (7)

and
(q - 1)g(q, a, 1) ≡

1 + ω(Tr(a))g(q + 1) mod P3 (8)
by Lemma 4. 2. Since

τwσtg(q, a, χ) = ∑
xxδ = at2

χw(xt -1)ζTr′(x) =

χ -w(t)g(q, at2, χw) (9)
if τwσt fixes g(q, a, χ),we have

χ -w(t)ω-(q-1)(w-1) / d(a) = 1.
Thus we have

ω(Tr(t2a)) ≡ ω(Tr(a)) mod P.
If Tr(a)≠0,then t = ±1 and χ( t)= ω-(q-1) / d( tq+1)= 1.
Then w≡1 mod d1 and g(q, a, χ) generates QQ (μdp)H .
4. 2　 The case d |(q+1)
We need the following lemma to obtain the P-adic
expansion of g(q, a, χ) .

Lemma 4. 3　 Let s be a positive integer less than
(q - 1) / 2. Let sj, δj, M, V be the notations as in
Lemma 3. 3. Assume that | (p-1) / 2-sj | >3 for all j;
s0≥2 and not all δj are same.

① The valuation v(g((q+1)m+s)) is
· minimal: m=M,v=V;
· secondly minimal: m=M+pj,v=V+2.
② The valuation v(g((q+1)m-s)) is
· minimal: m=M+s,v=V;
· secondly minimal: m=M+s+pj,v=V+2.
Proof 　 By the assumptions, p ≥11 and sk-1 ≤

(p-9) / 2. Then s<(p-7)pk-1 / 2 and

M = ∑
δ j = 1

(p - δj -1 - sj)pj ≤∑
k-2

j = 0
p1+j < 11

10
pk-1 .

Thus
M + 2δ0 - 1 + pi + pi′ + s <

(11
10

+ 2 + p - 7
2

)pk-1 + 2 < q (10)

　 　 Denote by gq the Gauss sum with respect to FF q .
① If m+s≥q,then

v(g((q + 1)m + s)) = v(gq(m + s - q)gq(m + 1)) =
v(gq(m + s - 1)gq(m + 1)) .

Since s-2 has same δi sequence as s,by Lemma 3. 3,the
valuation is

· minimal: m=M+2δ0-1,v=V+4δ0-2;
· secondly minimal: m=M+2δ0-1+pi,v=V+4δ0;
· thirdly minimal: m =M+2δ0 -1+pi +pi′,v = V+

4δ0+2.
But by (10), these three cases do not happen and

the valuation is at least V+4.
If m+s<q,then
v(g((q + 1)m + s)) = v(gq(m)gq(m + s)) .

By Lemma 3. 3, the valuation is
· minimal: m=M,v=V;
· secondly minimal: m=M+pi,v=V+2.

The result then follows.
② If m<s,then

v(g((q + 1)m - s)) = 　 　 　 　 　 　
v(gq(m - 1)gq(m + q - s)) =
v(gq(m′)gq(m′ + s - 2)),

where m′=m+q-s. Since s-2 has same δi sequence as
s,by Lemma 3. 3, the valuation is

· minimal: m=M+2δ0-1+s,v=V+4δ0-2;
· secondly minimal: m =M+2δ0 -1+s+pi,v = V+

4δ0;
· thirdly minimal: m=M+2δ0-1+s+pi+pi′,v =V+

4δ0+2
by (10) . But m<s,these three cases do not happen and
then the valuation is at least V+4.

If m≥s,then
v(g((q+1)m-s))= v(gq(m-s)gq(m)) .

By Lemma 3. 3, the valuation is
· minimal: m=M+s,v=V;
· secondly minimal: m=M+s+pi,v=V+2.

The result then follows.
Proposition 4. 2　 If p>7d-2,then the valuation of

g(q, a, χr) is kV2r .
Proof　 If r≡0, d / 2 mod d,then V2r = 0 and the

order of χr is at most 2,which divides q-1. Thus the
valuation of g(q, a, χr) is zero by (7) and (8) .

If r≢0, d / 2 mod d,by Lemma 4. 1① and the fact
that V2r =V-2r,we may assume that 1≤r<d / 2. Write

q2 - 1
d

r = sL + qsM,

sL = (d - r)q - r
d

,

sM = rq - (d - r)
d

.
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Then

s = sL - sM = (d - 2r) q + 1
d

= ∑
k-1

j = 0

bj +1p - bj
d

pj,

where bjpj≡2r mod d with 0≤bj≤d-1. By Lemmas
4. 2, 4. 3 and

g((q + 1)m + q2 - 1
d

r) =

g((q + 1)(m + sM + 1) - 2r q + 1
d

),if 1 ≤ r < d
4
;

g((q + 1)(m + sM) + (d - 2r) q + 1
d

),if d
4

≤ r < d
2
,

ì

î

í

ï
ï

ï
ï

the valuation of g(q, a, χr) is kV2r =kVd-2r .
Definition 4. 1　 Let p>7d-2 be a prime prime to

d.
T′p, d: = ∩

(s, d) =1
T2s

p, d = {r mod d | (r, d) =1,

V2rs = V2s,∀(s, d) = 1} ⊂ (ZZ / dZZ ) ×,
where Ts

p, d is defined as Equation(3) .
Proposition 4. 3　 Assume that p>7d-2.
① If d is odd,then T′p, d = Tp, d . If d is even,then

T′p, d ={r | r mod d / 2∈ Tp, d / 2 } . Thus T′p, d is a group
containing 〈d / 2+1, -1, p〉 .

② If p≡±1 mod d,then T′p, d ={±1, ±(d / 2+1)} .
③ T′p, d =〈d / 2+1, -1, p〉 if and only if

Tp, d / (2, d) = 〈 - 1, p〉 .
　 　 ④ If -1 is a power of p mod d,then T′p, d =〈d / 2+
1, p〉 if d / (2, d)≤31.

Here,d / 2+1 appears only if 4 |d.
Proof　 Note that (d / 2-1, d)= (d / 2-1, 2) = 1

holds only if 4 |d.
① follows from the definition directly. ② follows

from ① and Proposition 3. 3②. ③ follows from ①.
For ④,p≢±(d / 4+1)mod d / 2 if 4 | d / 2≥16. Then the
result follows from ① and Proposition 3. 3④.

Proposition 4. 4 　 Assume that p >7d -2. If p≡
-1 mod d and Tr(a)≠0, then g(q, a, χ) generates
QQ (μdp)H,where

H = 〈τ -1, σ-1〉, if a ∉ FF ×2
q or 4 d;

〈τd / 2-1, τ -1, σ-1〉,if a ∈ FF ×2
q and 4 | d.{

　 　 Proof 　 We may assume that χ = ω-(q2-1) / d . The
cases d=1, 2 is shown in Proposition 4. 1 and we may
assume that d≥3.

Denote by Nr =
q2-1
d

r+(q+1)Mr such that v(Nr)=

kV2r is minimal. Then by Lemma 4. 3, the valuation is
secondly minimal if and only if m=Mr+pi for some i,in
which case,the valuation is kV2r+2. By Lemma 4. 2, we
have

(q - 1)g(q, a, χr) ≡

ωMr(a)g(Nr) + ∑
k-1

i = 0
ωMr+pi(a)g(Nr + (q + 1)pi) =

ωMr(a)g(Nr) + ∑
k-1

i = 0
ωMr+pi(a)g(Nr + (q + 1)pi) =

ωMr(a)g(Nr) + CπkV2r+2ωMr(a)ω(Tr(a)) mod PkV2r+3

(11)
　 　 Note that χ(x)= 1 for any x∈FF ×

q since d | (q+1) .
By Lemma 4. 1, we have

g(q, a, χ -r) = g(q, a, χr),
g(q, a, χd / 2 ±r) = χ2(a)g(q, a, χr) .

　 　 If τwσt fixes g(q, a, χ),then by (9), V2w =V2 .
Thus w≡±1, ±(d / 2+1)mod d by (4) . If τ±1σt fixes
g(q, a, χ),we have

ωM1(t2a) ≡ ωM1(a) mod P.
This forces ωM1(t2)= 1 and then
ωM1(t2a)ω(Tr(t2a)) ≡ ωM1(a)ω(Tr(a)) mod P.

Since Tr(a)≠0,we have ω(t2)= 1 and t=±1.
If 4 | d and w = d / 2±1,we have χ2(a)= 1 and σt

fixes g(q, a, χ) . Since Tr(a)≠0,we have t =±1. The
result then follows.

Theorem 4. 1 　 Assume that d | (q+1),p>7d-2,
a∈FF ×

p and p k. If Tp, d / (2, d) is generated by p, then
g(q, a, χ) generates QQ (μdp)H,where

H = 〈τp, σ-1〉, if a ∉ FF ×2
p or 4 d;

〈τd / 2+1, τp, σ-1〉,if a ∈ FF ×2
p and 4 | d.{

In particular,this holds if d / (2, d)≤31.
Proof　 If τwσt fixes g(q, a, χ),it also fixes

τr g(q, a, χ)= g(q, a, χr) .
Thus V2wr =V2r by (9), (11) and Proposition 4. 2. Note
that -1 is a power of p modulo d. Then w∈ T′p, d and
w≡pλ or (d / 2+1)pλ mod d for some λ. For w≡pλ,by
Lemma 4. 1②,we have

g(q, a, χw) = g(q, apλ, χ) = g(q, a, χ) .
Similar to the proof of Proposition 4. 4, if Tr(a)≠0,we
have ω(t2)= 1 and then t=±1.

For 4 |d and w≡(d / 2+1)pλ mod d,by Lemma 4. 1
②③, we have

g(q, a, χw) = χ2(a)g(q, a, χ) .
Thus χ2(a) = 1 by (11) . Similarly, if Tr(a)≠0,we
have t=±1.
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两类扭 Kloosterman 和的生成域

张神星∗

中国科学技术大学数学科学学院中科院吴文俊数学重点实验室,安徽合肥 230026
∗通讯作者. E-mail:zsxqq@ mail. ustc. edu. cn

摘要: 研究了扭 Kloosterman 和 Kl(q, a, χ) 和部分高斯和 g(q, a, χ) 的生成域. 我们要求特征 p 相对于 χ
的阶 d 充分大,且系数 a 的迹非零. 当 p≡±1 mod d 时,可以确定这些特征和的生成域. 对于一般的 p,当 a
落在底域中时,提出了一个关于 (p, d) 的组合条件以得到生成域.
关键词: Kloosterman 和;指数和;分圆域;代数数
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