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1　 Introduction
Stochastic dominance (SD) is a method based on the
expected utility theory, which can sort stochastic
variables and reduce the effective set to help investors to
make decisions. Stochastic dominance theory was
originally proposed by Lehmann[1] . Later, Hadar and
Russell[2], Hanoch and Levy[3], Rothschild and
Stiglitz[4], and other scholars applied stochastic
dominance theory and criteria to practice. Some scholars
combined stochastic dominance with statistics to
consider testing stochastic dominance. Regarding the
test of stochastic dominance, it can be roughly divided
into two categories: comparing the distributions at a
finite number of grids, and comparing the distributions
over the whole support. For the first type of test
statistics, Anderson[5] established a test based on the t-
statistic for two independent populations. Although their
test statistic follows a normal distribution, the test power
is not high. Davidson and Duclos[6] based on
Anderson’s test, used a new method to handle finite
data. For the latter, McFadden[7] proposed the KS
statistic to test first degree stochastic dominance, but the
sample sizes of two populations are required to be

equal. Eubank et al. [8] put forward a second degree
stochastic dominance test, but the null hypothesis is that
the distribution F dominates a known distribution F0 . In
reality, both distributions may be unknown. Kaur et
al. [9] advised to use the infimum of distributions to test
the dominance relations. The advantage of this method
is that the limiting distribution of test statistic can be
given. However, the disadvantage is that if one
distribution almost dominates the other one, the null
hypothesis cannot be rejected. Schmid and Trede[10]

proposed a test for second degree stochastic dominance
and gave its critical value, but the test required one
known distribution with the monotonically decreasing
density. The strict assumption results in the narrow
scope of application. Barrett and Donald[11] presented a
test statistic based on KS and gave its asymptotic
distribution. Donaid and Hsu[12] offered a method to
improve the power of stochastic dominance test.
Estimators chosen in these papers generally used
empirical distributions. Such nonparametric methods
sometimes may have large errors. Especially, in reality,
the populations under comparison are usually of the
same nature: In economics, they can be income
distributions of several socio-demographic groups; in



finance, they can be asset return distributions. In these
cases, the density ratio model ( DRM ) provides a
semiparametric model to connect these populations.
When the density functions of populations meet certain
assumptions, we can estimate each cumulative
distribution function based on the pooled sample,
therefore this model can improve estimation efficiency
compared to that of nonparametric model[13-19] .

The DRM originated from the logistic discriminant
analysis of Anderson[20,21] . Anderson[13] formalized this
model by setting the ratio of density functions of certain
samples with similar information as the parameters
family. Owen[22,23] proposed that the empirical
likelihood can effectively handle the basic function in
the DRM. Qin and Zhang[14] showed that the DRM
could be used to solve the case-control logistic
regression problem, estimated the parameters in the
DRM using empirical likelihood, and finally gave a test
to illustrate the feasibility. Qin[24] applied the DRM to
the expected likelihood of case-control data. Keziou and
Leoni-Aubin[15] formally equated the maximum
empirical likelihood estimation of the parameters in the
density ratio model with the maximum dual likelihood
estimation. The dual empirical likelihood can be written
as a specific expression, so it is more convenient to
calculate and apply. Chen and Liu[16] gave the
asymptotic distributions of quantile estimations based on
the DRM. Zhuang et al. [25] estimated the relaxation
indexes of stochastic dominance under the DRM.
Compared with parametric models with the given
distributions, the DRM can compensate for the loss of
distribution errors and effectively reduce the risk of
misprediction of the model distributions. Meanwhile,
compared with nonparametric models, the DRM can
make full use of similar information by making fewer
assumptions, and improve the estimation accuracy.

In this paper, we use a semiparametric method to
estimate the distribution functions F and G by using the
empirical likelihood under the DRM. Based on the
resulting estimators, we propose the test statistics of
high order stochastic dominance, obtain the asymptotic
properties of the test statistics, and construct the critical
values. We conduct inferences of the test by p-value
simulation using the bootstrap method. We select
normal distributions and gamma distributions for the
artificial data simulation, and use an actual example of
stocks to illustrate the validity of our test. Simulation
studies show that our test statistics substantially improve
the estimation efficiency compared to the test statistics
based on empirical distributions.

The rest of paper is organized as follows. In
Section 2, a brief introduction of stochastic dominance
and the DRM is given. In Section 3, our test statistics
of high order stochastic dominance are proposed, the

asymptotic properties of the test statistics are given, and
a bootstrap method is developed to obtain p-values to
make decisions. In Section 4, we apply our method to
analyze two artificial examples and one actual example
of stocks. Section 5 concludes the paper.

2　 Notations and definitions
2. 1　 Stochastic dominance
Here are three commonly used dominance relations: first
degree stochastic dominance ( FSD), second degree
stochastic dominance (SSD) and third degree stochastic
dominance (TSD) . As a simple example, if the return
of the asset X in any case is higher than that of the asset
Y, we will choose the asset X without hesitation. This is
the simplest FSD relationship, but the conditions of FSD
are too strict and hard to meet in daily life. Compared
with FSD, SSD is more common, and it is aimed at the
avaricious and risk averse people. TSD is aimed at the
investors who are not only avaricious and risk averse,
but also have diminishing levels of risk aversion. Let
the cumulative distribution functions of random variables
X and Y be F and G, respectively. Now we give the
definition of stochastic dominance. Before giving the
definition, we need to make the following assumptions:
　 　 Assumption 2. 1　 Assume that:

① F and G have common support Z = [ z, z],
where -∞ <z<z<∞ ;

② F and G are continuous functions on Z, and
F(z)= G(z)= 0, F(z)= G(z)= 1.

Assumption 2. 1 is the general assumption in the
literature, e. g. Barrett and Donald[11] and Linton et
al. [26], which requires that F and G are both continuous
in support Z. The second part of Assumption 2. 1 is not
restrictive. If G(z) = F( z) = 0 on an interval [ z,η],
then Z can be defined as [ η, z] . Similarly, when
G(z)= F(z)= 1 on an interval [z-η, z], we can define
Z=[z,z-η] .

Next, we give the definition of stochastic
dominance.

Definition 2. 1[6] 　 For j≥1, F is said to dominate
G of order j, denoted by F⪰j G (X⪰j Y), if and only
if

Fj(z;F) ≤ Fj(z;G), ∀z ∈ Z (1)
where

F1(z;H) = H(z),

Fj(z;H) = ∫z
z
Fj-1(t;H)dt, H = F, G.

　 　 In order to make the concept better understood, we
give the following figures of FSD and SSD.

It can be seen from Figures 1 and 2 that the area of
F below G is always more than the area F above G. It is
worth mentioning that stochastic dominance of different
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Figure 1. F ( red line) and G (green line) satisfying FSD
relationship.

Figure 2. F ( red line) and G (green line) satisfying SSD
relationship.

orders satisfies the following relationship:
FSD⇒SSD⇒TSD (2)

But the reverse is not true. The relationship (2) implies
that we can test from low order to high order. If there is
dominance relationship in the low order case, the high
order dominance naturally exists. However, even if the
higher order dominates, the lower order may not hold.
2. 2　 Density ratio model
In this subsection, we first briefly introduce the density
ratio model. Suppose that F0, F1, …, Fm, m≥1, are
continuous cumulative distributions. These distributions
are said to satisfy the density ratio model if they are
linked through

dFk(x) = exp{θT
k q(x)}dF0(x), k = 1,2,…,m

(3)
where q ( x) is some pre-specified vector-values basis
function and θT =(θT

1 ,θT
2 ,…,θT

m) is unknown parameter
vector. We take θ0 = 0 for simplicity. Under the above
assumption, these distributions have the same support.
In this formulation, the baseline distribution F0 is
unspecified. The density ratio model is quite flexible
and includes many common distribution families: the
entire normal distribution family with q ( x) = (1, x,
x2)T; the gamma distribution family with q(x)= (1, x,
logx )T . The components of q(x) are linearly
independent and its first element is one. The choice of

q(x) can be made case by case in applications. If the
population distributions are normal-like, q(x)= (1, x,
x2 )T is a good choice, while for survival-type
observations, q(x)= (1, x, logx)T is a good choice. It
should be pointed out that the combination q(x)= (1,
x, x2, log | x | , log2 | x | )T covers a mass of distribution
families. Some papers have shown that for multi-sample
situations with the same properties, the density ratio
model has a good performance[14,16] .

Given k=0, 1,…, m, suppose nk>0 is the number
of observations from Fk, and xkj represents the jth
observation value from Fk( j = 1,2,…, nk ) . Given k,
xk1, xk2, … , xknk are independent and identically
distributed. The total number of observations is n = n0 +
n1+…+nm, and denote ρk =nk / n(k=0, 1,…, m) as the
sample proportion. We first estimate the model
parameters θ and F0 through maximum likelihood
estimation.

Let pkj = dF0 ( xkj ) . We have the log empirical
likelihood function[27]:

ln(θ,pkj) = ∑
k,j

log(pkj) + ∑
k,j

θT
k q(xkj) (4)

where the summation with respect to {k, j} is over their
entire ranges. The maximum empirical likelihood
estimator θ︿ is the maximum point of (4) . Keziou and
Leoni-Aubin[15] indicated the equivalence of the
maximum DRM-based empirical likelihood estimators
and the dual maximum empirical likelihood estimators
for both θ and F0 in (3) . Furthermore, Li et al. [28]

carefully compared the DRM-based empirical likelihood
and the dual empirical likelihood estimation methods
under the two-sample density ratio model, and found
that the two methods have the same point estimators for
any underlying parameters. Otherwise, compared to the
maximum DRM-based empirical likelihood method, the
dual empirical likelihood estimation has a simpler
analytical form and is easier to calculated. Therefore, in
this paper, we take θ︿ as the maximum point of the
following dual empirical likelihood function:

ln(θ, F0) = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

∑
k,j

log{∑
m

r = 0
ρr[exp{θT

r q(xkj)}]} + ∑
k,j

θT
k q(xkj)(5)

Given the maximum dual EL estimator θ︿, the fitted
values of pkj are

p︿ kj = {nh(xkj;θ
︿)} -1,

where h(x;θ) = ∑
m

k = 0
ρk exp{θT

k q(x)} . Thus, the fitted

population distribution Fk is given by
F︿ k(x) = ∑

r,j
p︿ rjexp{θ

︿ T
k q(x)(xrj)}I(xrj ≤ x) =
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n-1
k ∑

r,j
hk(xrj; θ︿)I(xrj ≤ x) (6)

where hk(x;θ)= ρk exp{θT
k q(x)} / h(x;θ), and I(A)

denotes the indicator function of event A.
Assume Fk, k = 0, 1, …, m, are continuous

population distributions satisfying the DRM. Let F︿ k

denote the corresponding estimator of Fk given by (6),
for k=0,1,…, m. For giving the asymptotic property of
n1 / 2{F︿ k-Fk}, we need the following assumptions:

Assumption 2. 2[16] 　 Assume that
① the independent random samples { xkj } nk

j=1 are
from population Fk for k=0,…, m;

② the total sample size n = ∑
k

nk →∞, and ρk =

nk / n remains a constant;
③ the population distributions Fk satisfy the DRM

with true parameter value θ∗, and ∫h(x;θ) dG0 < ∞ in

a neighborhood of θ∗;
④ the components of q(x) are linearly

independent and its first element is one.
Under Assumption 2. 2, for any 0≤r1,r2,…, rk≤

m and x1, x2,…, xk in the support of F0, n1 / 2{F︿ rj(xj)-
Frj(xj)} are jointly asymptotically k-variate normal with
mean 0 and covariance matrix

Ω = (ωri, r j(xi, xj))1≤i≤j
[16] .

The analytical expression of Ω is complex, and the (r,
s)th entry of Ω is determined as follows. Denote x∧y=
min{x,y} . Let δrs =1 if r=s, and 0 otherwise. Let

F(t) = ∑
r
ρrFr(t) .

Then, the generic form of ωri, rj(xi, xj) is
ωrs(x,y) = σrs(x,y) - 　 　 　 　 　 　 　 　 　 　 　

(ρrρs)
-1{ars(x ∧ y) - BT

r(x)W
-1Bs(y)} (7)

where
σrs(x,y) = ρ -1

r δrs{Fr(x ∧ y) - Fr(x)Fs(y)},

ars(x) = ∫x
-∞

{δrshr(t) - hr(t)hs(t)}dF(t),

and Br(x) is a length-d vector, with its sth segment
being

Br,s(x) = ∫x
-∞

{δrshr(t) - hr(t)hs(t)}q(t)dF(t) .

3　 Test statistics and asymptotic properties
Select two different continuous distributions Fr and
Fs(r≠s) from the distributions in the DRM. For the
convenience of presentation, let F denote Fr, and let G
denote Fs . To test the jth order dominance relations
between F and G, j≥1, we first formulate the null and
alternative hypotheses as follows:

Hj
0: Fj(z;F) ≤ Fj(z;G), for all z ∈ [z, z];

Hj
1: Fj(z;F) > Fj(z;G), for some z ∈ [z, z] .

　 　 Barrett and Donald[11] and Donald and Hsu[12]

considered the same hypotheses. They used empirical
distributions to estimate the distribution functions F and
G. Assume X1, X2,…, XN and Y1, Y2,…, YM are
independent and identically distributed samples from F
and G, respectively. Their test statistics are defined as

S︿ EMP = NM
N + M

sup
z

{Fj(z;F
︿
N) - Fj(z;G

︿
M)}, j ≥1

(8)

where F︿ N(z) = 1
N∑

N

i = 1
I(Xi ≤ z), and

G︿ M(z) = 1
M∑

M

i = 1
I(Yi ≤ z) .

　 　 However, in applied problems, the populations
under comparison are generally of the same nature: In
economics, they can be income distributions of several
socio-demographic groups[5,6,29]; in finance, they are
often asset return distributions[30,31] . In these cases, the
density ratio model provides a semiparametric model to
connect these populations. When the density functions
of populations meet certain assumption, we can estimate
each cumulative distribution function based on the
pooled sample, therefore this model can improve
estimation efficiency compared to that of nonparametric
model[15-19] .

We propose the semiparametric test statistics based
on the density ratio model. Denote F︿ DRM and G︿ DRM the
respective estimators of F and G given by (6) . For j≥
1, we propose our test statistics as

S︿ j
DRM = n sup

z∈Z
{Fj(z;F

︿
DRM) - Fj(z;G

︿
DRM)} (9)

　 　 In order to state the properties of test statistics, we
first introduce the following lemma.

Lemma 3. 1　 On the common support set Z=[z,
z] of F and G, for any j≥1, we have

Fj(x;F) = 1
(j - 1)! ∫

x

z
(x - y) j-1dF(y), j ≥1

(10)
　 　 Proof　 Since F(z)= 0, notice that

F1(x;F) = F(x),
and

F2(x;F) = ∫x
z
F(y)dy = F(x)x - ∫x

z
y dF(y) =

∫x
z
(x - y)dF(y) .

　 　 Suppose

Fk(x;F) = 1
(k - 1)! ∫

x

z
(x - y) k-1dF(y) .

We want to prove

Fk+1(x;F) = 1
k! ∫

x

z
(x - y) kdF(y) .
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Note that

Fk+1(x;F) = ∫x
z
Fk(y)dy =

1
(k - 1)! ∫

x

z
∫
z

y
(y - s) k-1dF(s)dy =

1
(k - 1)! ∫

x

z
∫
s

x
(y - s) k-1dydF(s) =

1
(k - 1)! ∫

x

z

(x - s) k

k
dF(s) =

1
k! ∫

x

z
(x - y) k dF(y) .

By mathematical induction, the lemma is proved.
Next, we study the asymptotic properties of our

test statistics. Before giving the theorem, we introduce
the following notation. Let

Wn(x) = n1 / 2[{F︿ DRM(x) - G︿ DRM(x)} -
{F(x) - G(x)}], x ∈ [z, z],

which converges weakly to a Gaussian process W(x) in
any finite dimensional distributions under Assumption
2. 2[16] . The Gaussian process W(x) has a continuous
sample path, mean zero and covariance function

Cov(W(x), W(y)) = ωrr(x, x) +
ωss(y, y) - ωrs(x, y) - ωsr(y, x) (11)

where the ωrs are given in (7) . When x = y, we obtain
the variance function

Var{W(x)} = 　 　 　 　 　 　 　 　 　 　 　
ωrr(x,x) + ωss(x,x) - 2ωrs(x,x) (12)

　 　 Theorem 3. 1 　 Suppose that F0, F1,…, Fm are
continuous population distributions satisfying the DRM.
For any 0≤r, s≤m, we denote Fr =F and Fs =G. Let

T︿ j(·) = n {[Fj(·;F︿ DRM) - Fj(·;G︿ DRM)] -
[Fj(·;F) - Fj(·;G)]}, j ≥1.

Then, under Assumption 2. 2, we have

T︿ j(·)
w
→ Fj(·;W),

where
w
→ means converging in any finite dimensional

distributions. Especially, when j =1, F1(·;W) is the
Gaussian process with mean zero, and covariance
function
Ω1(x, y, W) = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
ωrr(x, x) + ωss(y, y) - ωrs(x, y) - ωsr(y, x) .

　 　 Proof　 First, we need to show that for any j≥1,
T︿ j(·) = nFj(·; {[F︿ DRM - F] - [G︿ DRM -G]})

(13)
The case j=1 is obvious. For j=2, note the fact that

F2(z;F) = ∫z
z
F(t)dt = ∫z

z
F1(t;F)dt.

Consequently,
F2(z;F

︿
DRM) - F2(z;F) -

[F2(z;G
︿

DRM) - F2(z;G)] =

∫z
z
F︿ DRM(t)dt - ∫z

z
F(t)dt -

[∫z
z
G︿ DRM(t)dt - ∫z

z
G(t)dt] =

∫z
z
{[F︿ DRM(t) - F(t)] - [G︿ DRM(t) -G(t)]}dt =

F2(z;{[F
︿
DRM - F] - [G︿ DRM -G]}) .

　 　 Now assume that when j=k, k>2, we have
Fk(·;F︿ DRM) - Fk(·;F) - [Fk(·;G︿ DRM) - Fk(·;G)] =

Fk(·;{[F︿ DRM - F] - [G︿ DRM -G]}) .
Thus, when j=k+1,

Fk+1(z;F
︿
DRM) - Fk+1(z;F) -

[Fk+1(z;G
︿

DRM) - Fk+1(z;G)] =

∫z
z
{[Fk(t;F

︿
DRM) - Fk(t;F)] -

[Fk(t;G
︿

DRM) - Fk(t;G)]}dt =

∫z
z
Fk(t;{[F

︿
DRM - F] - [G︿ DRM -G]})dt =

Fk+1(z;{[F
︿
DRM - F] - [G︿ DRM -G]}) .

Therefore, (13) is proved.
Next, it is easy to see from (10) that, for any j≥

1,
T︿ j(z) = n Fj(z;{[F

︿
DRM - F] - [G︿ DRM -G]}) =

Fj(z; n {[F︿ DRM - F] - [G︿ DRM -G]}) =
Fj(z;Wn) (14)

Under Assumption 2. 2, it is known from Chen and
Liu[16] that Wn weakly converges to the Gaussian process
W in any finite dimensional distributions. Since Fj is a
continuous function, it can be seen from Continuous
Mapping Theorem[32] that Fj(z;Wn) weakly converges
to Fj(z;W) . Especially, when j = 1, F1(·;W)= W.
From (11), we have known that, W is the Gaussian
process with mean zero and covariance function

Ω1(x, y, W) = 　 　 　 　 　 　 　 　 　 　 　 　 　 　
ωrr(x, x) + ωss(y, y) - ωrs(x, y) - ωsr(y, x) .

Then, this theorem is proved.
Finally, we construct the critical values for our test

under the density ratio model, and discuss the
asymptotic power properties of the test. For the null
hypotheses Hj

0: Fj(z;F)≤Fj(z;G), j≥1, we use
S︿ j

DRM = n sup
z∈Z

{Fj(z;F
︿
DRM) - Fj(z;G

︿
DRM)}

as the test statistics. We consider the test based on the
decision rule of the form “reject Hj

0 if S
︿ j
DRM> cj”, where

cj is some critical value. Let α be some desired
significance level (say 0. 05 or 0. 01) . We introduce the
following notion:

Sj = sup
z∈Z

Fj(z;W) .

For any j≥1, we choose the critical values cj satisfying
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PP (Sj > cj) = α.
　 　 The following theorem presents asymptotic power
properties of our test.

Theorem 3. 2 　 Suppose the same conditions as in
Theorem 3. 1, and cj is a positive finite constant. Then,
for j≥1, we have

(i) if Hj
0 is true, then

lim
n→∞

PP (reject Hj
0) ≤ PP (Sj > cj) = α (15)

　 　 (ii) if Hj
1 is true, then

lim
n→∞

PP (reject Hj
0) = 1 (16)

　 　 Proof　 For j≥1, under the condition that the null
hypothesis Hj

0 holds, we have
S︿ j

DRM ≤ sup
z∈Z

T︿ j(z) + sup
z∈Z

n {Fj(z;F) - Fj(z;G)} ≤

sup
z∈Z

T︿ j(z) .

From Theorem 3. 1, it is known that T︿ j(z)
w
→Fj(z;W) .

Since Sj =supz Fj(z;W), we have

lim
n→∞

PP (reject Hj
0) = lim

n→∞
PP (S︿ j

DRM > cj) ≤

P(Sj > cj) = α.
Part (i) is proved.

Next, we prove the second part. If the alternative
hypothesis is true, there exists some z∗∈Z such that

Fj(z∗;F) - Fj(z∗;G) = δ > 0.
Thus,
S︿ j

DRM = sup
z∈Z

{T︿ j(z) + n [Fj(z;F) - Fj(z;G)]} ≥

T︿ j(z∗) + n δ, j ≥1.
It follows from Bahadur representation of DRM-based
estimator[16] that

sup
z∈Z

| F︿ DRM(z) - F(z) | = Op(n
-1 / 2),

and
sup
z∈Z

| G︿ DRM(z) -G(z) | = Op(n
-1 / 2) .

From (14), note that
T︿ j(z∗) = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
Fj(z∗; n {[F︿ DRM - F] - [G︿ DRM -G]}), j ≥1.

Hence, when n goes to infinity, |T︿ j(z∗) | < ∞ and n δ
tends to infinity. It yields that

lim
n→∞

PP (reject Hj
0) = 1.

Then, this theorem is proved.
The inequalities in ( i) imply that the tests will

never reject more often than α. Moreover, the result in
(ii) implies that the tests are capable of detecting any
violation of the full set of implications of the null
hypothesis.

4　 Simulation results
Although in the previous section, we construct the
critical value cj for the test, the value of cj is difficult to
obtain since the complex form of Fj ( z;W) . In this

section, we conduct inferences of the test by p-value
simulation using the bootstrap method. First, we select
normal distributions and gamma distributions for the
artificial data simulation. Then, we use the actual
example of stocks to illustrate the validity of our test.
4. 1　 Bootstrap hypothesis tests
Assume that {X1, X2,…, XN} are independently and
identically distributed samples from F, and {Y1, Y2,…,
YM } are independently and identically distributed
samples from G. Define the pooled samples as {X1, X2,
…, XN; Y1, Y2,…, YM } . The detailed steps of the
bootstrap approach are as follows:

Step 1 　 Compute S︿ DRM from the original sample
{X1, X2,…, XN; Y1, Y2,…, YM} .

Step 2 　 Draw the samples {X∗
1 , X∗

2 ,…, X∗
N }

from the pooled sample {X1, X2,…, XN; Y1, Y2, …,
YM} with replacement and draw another samples {Y∗

1 ,
Y∗

2 ,…, Y∗
M } in the same way.

Step 3 　 Use the samples in Step 2 to compute
S︿ ∗

DRM . Repeat Step 2 K times to get {S︿ ∗
DRM,1, S︿ ∗

DRM,2,…,
S︿ ∗

DRM,K} .
Step 4　 Get p-value from p︿ =k / (K+1), where k is

the number of S︿ ∗
DRM,i≥S︿ DRM, i=1,2,…,K. For a given

significance level α, if p︿ < α, then reject the null
hypothesis.

In addition, about the selection of critical value cj,
we can use the quantile instead. Sorting the K times
bootstrap samples from small to large, we get

S︿ ∗
DRM,(1) ≤ S︿ ∗

DRM,(2) ≤ … ≤ S︿ ∗
DRM,(K) .

For the given significance level α, the 1-α quantile of
the statistic S︿ DRM can be estimated by S︿ ∗

DRM,([K∗(1-α)]),
where [ . ] denotes the rounding function. We can also
compare cj with S︿ DRM for the statistical inference.

Repeat Steps 1-4 B times, and record the number
of p︿ <α as b. When the alternative hypothesis holds, the
rejection rate is b / B, which is used as test power in the
simulation of this paper.
4. 2　 Two sample normal distributions
In the simulation of normal distribution, we select some
different parameter settings for comparison. Under the
DRM model, we choose the basis function of normal
distribution as q(x) = (1,x,x2 )T . We set the sample
size to be N =M = 200. The numbers of repetitions are
K= 300 and B = 500. Table 1 gives several different
situations. F and G in Table 1 represent the choice of
distributions, and Hj

0: Fj(z;F)≤Fj(z;G), for all z∈
[z, z], j=1,2, 3, represent the null hypothesises in the
case of jth order; Hj

1: Fj(z;F)>Fj(z;G), for some z∈
[z, z], j = 1,2, 3, are the corresponding alternative
hypothesises for jth order.
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Table 1. The dominance relationship of two normal distributions.
Design F G H0

(1) H1
(1) H0

(2) H1
(2) H0

(3) H1
(3)

1a N(2,32) N(2,32) √ √ √

1b N(2,32) N(2,42) √ √ √

1c N(2,32) N(3,52) √ √ √
[Note] √ means that the hypothesis is valid.

Figure 3. Estimation of distribution functions F (red line) and
G (green line) under the density ratio model.

Figure 4. Estimation of functions F2 ( z;F) ( red line) and
F2(z;G) (green line) under the density ratio model.

Figure 5. Estimation of functions F3 ( z;F) ( red line) and
F3(z;G) (green line) under the density ratio model.

　 　 In the special case 1a, the two distributions are
always the same, no matter what value of j. For the
remaining cases 1b and 1c, we will infer the dominance
relations based on the distribution plots, and then give
the rejection rates of the tests. We take the case 1c as
the example. First, we present the distribution function

plots of 1c for F and G under the density ratio model,
as shown in Figure 3. From Figure 3 we can see that
there is a crossover between the two distributions, so
there is no first order stochastic dominance between F
and G. Secondly, we want to judge whether there is
second order stochastic dominance between the two
distributions. We give the plots of

F2(z;F) = ∫z
z
F (t)dt

and
F2(z;G) = ∫z

z
G(t)dt,

as shown in Figure 4. From Figure 4, we can see that
the two functions still have intersecting parts. F and G
should not have second order stochastic dominance
relationship.

Finally, we discuss whether there exists third order
stochastic dominance. Figure 5 shows the plots of

F3(z;F) = ∫z
z
F2(t;F)dt

and
F3(z;G) = ∫z

z
F2(t;G)dt.

From the figure, we find that there is a crossover
between the two functions, so there is still no third
order stochastic dominance relationship.

Now we give the rejection rates under different
orders. EMP represents the test statistic under empirical
distributions; DRM represents the test statistic under the
density ratio model. The numbers j = 1, 2, 3 in
parentheses in the table indicate the jth order
dominance. From Table 2, we can see that in the case
of rejecting the null hypothesis, the rejection rates under
the density ratio model are greater than those under
empirical distributions. In the case of accepting the null
hypothesis, the rejection rate should tend to 0, and the
rejection rates under the density ratio model are smaller
than those under empirical distributions. These all
indicate that our test statistics under the density ratio
model have better performance than the test statistic
under empirical distributions.
4. 3　 Two sample gamma distributions
The DRM not only performs well in the case of common
normal distributions, but also in the case of gamma
distributions. We generate data from gamma
distributions with the density function
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f(x;α,β) = βαxα-1exp( - βx) / Γ(α), x > 0,
where α is the shape parameter and β is the scale
parameter. For the same null and alternative
hypothesises as Subsection 4. 2, the sample sizes are N=
M = 200. Different from the normal distributions, the
basis function for gamma distributions is chosen to be
q(x)= {1,x,log(x)}T . The numbers of repetitions are
K = 300 and B = 500. The symbols in Table 3 have the
same meanings as those in Table 1. Next, we take the
case 2b as the example. It can be seen from Figure 6
that there is an intersection between the two

distributions, and there is no phenomenon that one
distribution is always above the other distribution.
Hence, there is no first order stochastic dominance.

Table 2. Rejection rate of two normal distribution, α=0. 05.

Design EMP
(1)

DRM
(1)

EMP
(2)

DRM
(2)

EMP
(3)

DRM
(3)

1a 0. 086 0. 052 0. 068 0. 060 0. 052 0. 048
1b 0. 74 0. 82 0. 34 0. 42 0. 04 0
1c 0. 84 0. 92 0. 518 0. 622 0. 14 0. 37

Table 3. The dominance relationship of two gamma distributions.

Design F G H0
(1) H1

(1) H0
(2) H1

(2) H0
(3) H1

(3)

2a Ga(9,6) Ga(9,6) √ √ √

2b Ga(9,6) Ga(2,1) √ √ √

2c Ga(9,4) Ga(2,1) √ √ √
[Note] √ means that the hypothesis is valid.

Figure 6. Estimation of distribution functions F (red line) and
G (green line) under the density ratio model.

Figure 7. Estimation of functions F2 ( z;F) ( red line) and
F2(z;G) (green line) under the density ratio model.

　 　 In Figure 7, there is a partial region at the left end,
where the function F2 ( z; F ) is above F2 ( z; G) .
Therefore, we can infer that there is no second order
stochastic dominance between the two distributions.

Figure 8 shows that the plots of
F3(z;F) = ∫z

z
F2(t; F)dt

and

Figure 8. Estimation of functions F3 ( z;F) ( red line) and
F3(z;G) (green line) under the density ratio model.

F3( z;G) = ∫z
z
F2( t; G) d t

still have an intersection area, so there is no third
order stochastic dominant relationship.

From Table 4, we can see that the rejection rates
under empirical distributions are very close to those
under the density ratio model. However, when rejecting
the null hypothesis, the rejection rates under the density
ratio model are slightly larger; when accepting the null
hypothesis, the rejection rates under the density ratio
model are slightly smaller. This phenomenon shows that
our test statistics under the density ratio model are
relatively more effective than the test statistics under
empirical distributions.
Table 4. Rejection rate of two gamma distribution, α=0. 05.
Design EMP(1)DRM(1) EMP(2)DRM(2) EMP(3)DRM(3)

2a 0. 06 0. 052 0. 054 0. 048 0. 056 0. 052

2b 0. 99 0. 996 0. 92 0. 98 0. 87 0. 90

2c 0. 89 0. 96 0 0 0 0
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Figure 9. Estimated distribution functions of DVN (dashed)
and NOV (solid ) under the density ratio model.

Figure 10. Second order function estimates for DVN (dashed)
and NOV (solid) under the density ratio model.

4. 4　 Real data example
Finally, we will apply our method to the real data
example of stocks. In recent years, the topic of stocks
has become more and more popular. Using the
stochastic dominance method to compare the strength
and weakness of two stocks is an effective method. We
select two stocks from Devon Energy Corporation
(DVN) and National Oilwell Varco (NOV) over the
last three years (2017-2019) for analysis. The reason
for choosing the two stocks is that their closing prices
are not much different, and it is difficult to determine
the pros and cons. We scale the data due to the large
magnitude of the data in the likelihood estimation. The
null hypothesis is taken as DVN ⪰ NOV. Sample sizes
are N =M = 753, and the number of repetitions is K =
300. The basis function of the density ratio model is
selected as q ( x) = (1, x, x2 )T . Now, we give the
distribution function plots of two stocks under the
density ratio model.

From Figure 9, we can see that there is no first
order stochastic dominance between the two stocks, but
there may exist second order stochastic dominance.
Next, we give the second order function plots of two
stocks under the density ratio model.

It can be seen from Figure 10 that the second order
function plot of DVN is always below that of NOV,
which means that in the second order case, DVN

dominates NOV. In addition, the value of the test
statistic in second order case is -4. 62 × 10-4, which
falls into the 95% confidence interval ( - ∞,4. 17 ×
10-2], and the p-value is 0. 52. These all show that we
cannot reject the null hypothesis, so we can infer that
the stock DVN is second stochastic dominant the stock
NOV. For risk averse people, we would recommend the
stock DVN.

5　 Conclusions
In this paper, we propose a semiparametric method to
test high order stochastic dominance relations between
two different populations. We introduce the test
statistics based on the DRM and prove their asymptotic
properties. A bootstrap method is developed to obtain p-
values for making decisions. The normal distributions
and gamma distributions are selected for artificial data
simulation. Simulation studies show that our test statistic
substantially improves the estimation efficiency
compared to the test statistic based on empirical
distributions. Finally, we apply our method to an actual
example of stocks. A topic for further work is the
extension of our method to test almost stochastic
dominance relations. Another possible application of the
current inference framework is to test factional stochastic
dominance, for example, stochastic dominance of order
1 + γ, for 0 < γ < 1, which is related to stochastic
optimization.
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密度比模型下高阶随机占优的假设检验
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摘要: 在经济学、医学等领域,如何比较两个分布的占优关系一直是人们关注的话题. 通常会比较平均值或中

位数. 然而,具有更高均值的总体可能并不是最优的选择,因为它也可能具有更大的方差. 随机占优为这个问题

提供了一个很好的解决方案. 那么,如何检验两个分布之间的随机占优就值得讨论. 本文研究了密度比模型下

高阶随机优势的检验统计量. 此外,给出了检验统计量的渐近性,并使用自助法获得 p 值从而做出决策. 模拟结

果表明本文提出的检验统计量具有较高的功效.
关键词: 随机占优;密度比模型;自助法;经验似然
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