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Biharmonic submanifolds with mean parallel curvature on M"™ (¢) XR
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Abstract: Let M" be an n-dimensional submanifold with parallel mean curvature H of product

space form M” (¢) X R, where M" (¢) is a space form with constant sectional curvature ¢. By

using the method of Simons inequality, a series of results are obtained.
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0 Introduction

A harmonic map ¢ between two Riemannian
manifolds (M, g) and (N, h) is defined as a
critical point of the energy function

17 ,
E() =] | dg "V,
2 M

In 1964, Eells and Sampson'! suggested a
natural generalization of harmonic map is a critical

point of the bienergy function
1
Ep) =] e Fav,,
2w

where ¢ (¢) = tr Vd¢ is the tension field that
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vanishes for harmonic maps. The Euler-Lagrange
equation for the bienergy functional is given by
7, () =0 which was derived by Jiang"*®',

7, () = Az () — tr(R" (d¢,z(¢p))dy) s
where 7, (¢ ) is the bitension field of ¢. A =
tr(V¥) ! =1r(V?V?Y—V¥%) is the rough Laplacian
defined on sections of ¢ ' (TN) and R” is the
curvature tensor of N, given by R"(X.Y) Z =
[V&,Vy]Z—VixnZ.

Biharmonic submanifolds of different ambient
spaces have been intensively studied in the last

decade, in particular for real space formst ',
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complex space formsH''*

[15]

or Sasaician space

forms Naturally, the next step has been the
study of biharmonic submanifolds of product
spaces form of constant sectional curvature. This

subject has already been started by several

authors. In Ref. [16], Ou and Wang studied the
biharmonicity of constant mean curvature surfaces
in product space S* X R. Abresh and Rohsenberg
in Refs. [17], [18] and Alencar, do Carmo and
Tribuzy in Ref. [19] studied the case of constant
mean curvature surfaces in product spaces of type
M?XR , where M? is a simply connected surfaces
with constant sectional curvature ¢. In the very
recent paper, Fetcu, Oniciuc and Rosenberg”
proved a gap theorem for the mean curvature of
certain complete proper-biharmonic parallel mean
curvature submanifolds. In Ref. [ 21 ], Roth
proved a necessary and sufficient condition for
biharmonic submanifolds in product spaces. This
paper is devoted to the study of biharmonic
submanifolds in a product space form. We find a
Simons type integral inequality for submanifolds
with parallel mean curvature vector as well as
some relevant conclusions.

Theorem 0. 1 Let M" be the n-dimensional
biharmonic submanifold in product space form
M" (c) XR (¢<<0). If the mean curvature vector
of M" is parallel, then M" is minimal.

Theorem 0. 2 Let M" be the n-dimensional
biharmonic submanifold in product space form
M"” (c) XR (¢>>0). If the mean curvature vector
of M" is parallel and S<<\(n—|T|*)¢, then M" is
minimal.

Theorem 0. 3 Let M”" be the n-dimensional
biharmonic submanifold in product space form
M"(c)XR (¢=0). If the mean curvature vector
h of M" is parallel and S,#(—|T|*)c, then M"
is minimal. Where S, is the square of the second
fundamental form of M" with respect to h.

Theorem 0. 4 Let M" be the n-dimensional

compact biharmonic submanifold in product space

form M™ (¢) XR delete (¢=0). Then we have

3 1
J {(2n2+n—\ T \2)H2c—0—8[?S—O—HS7—

M"

e+ (142w | T \ﬂ}de,n = 0.

Theorem 0. 5 Let M" be the n-dimensional
compact biharmonic submanifold in product space
form M” (¢) X R (¢<<0). If the mean curvature

vector of M”" is  parallel and S<

2

3[2716*(271+1)C\T|2], then M" is totally
. 2 2

geodesic, or SZ? [2nc— Cn+1Dcl|TI*].

1 Preliminaries

Let M" be an n-dimensional connected

submanifold immersed in M=M" (¢) X R , where
M" (¢) X R is the Riemannina product of M™ (¢)
and R with the standard metric {,>. Let p be the

codimensional of M" in M, i.e. p=m+1—n. We
choose a local orthonormal frame field {e,, =,
e,i, s the dual frame are {w;s "5 w,;, ), such
that {e,,***,e,} are tangent to M", and {e, >
¢,.,} are normal to M". We use the following
convention on the range of indices unless otherwise
stated:
1<A.B,<ntp; 1<i,jho
n+1<aByysr < n+p.
Hence, the second fundamental form [l and

of M" are defined,

< n;

the mean curvature H
respectively, by

=20 Qw, @e,» H=|h ‘:%Z“‘“

aiej

We denote by ¢ the coordinate on R and hence

9, == 1is the unit vector field in the tangent bundle

ot

TM which is tangent to the R -direction. We can

decompose 9, as?*#,

9, =2 Tie, + 2.

Using the formulas of Gauss and Weingarten,

we get
T,-,j = Zh7j7]a s Nai — ZhZTj-
a J

As it is well-known, the Gauss equation of
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M" is given by
Riyu =c(8040, — 840, +T,T:dy +
T, T8, —T.T:8, —T,T.8,) +
DV sk — hyhe) (D

The squared norm of the second fundamental

> (h%)*, and R the

asisj

form is given by S =

normalized scalar curvature of M”. Then is from
the Gauss equation, we have the following well-
known relation

R=cnn—D+2n—1|T|*]+n"H*—S.

The Codazzi equation, Ricci equation and Ricci

identity on M" are given, respectively, by

ey —hiy =1.(T,0% — Tid,) (2)

R.z Z(h,kh hehs;) (3)
and

R — hy = Zh,,uR,m” +

th,R,,,,k, + EILI,RM, 4
Lemma 1. 1 Let M” be the n-dimensional

submanifold in product space form M” (¢) X R.
Then M" is a biharmonic submanifold if and only if

M" satisfies the following conditions.

D @Rk F Rk ) =0, V] {
asisk

DRt — D) hERLRY €D
ik 8

vijok

cin—| T |*) Dht =0, Ya
Let Ala Azs"',AM be (7’1 X n)-

symmetric matrices (m=>2), then

DIr(AA, —AAD? — D (rA A ) 2 =

asf} asf}
“(DJtrAD)

Let M" be the n-dimensional

Lemma 1. 2

Lemma 1. 3
submanifold in product space form M” (c¢) X
R. Then

2> [tr(A, A2 —tr(AJAD)] —

asf
D r(AA)) = 252 (6)
a.B
DItr(A A tr(A ) tr(Ay) =0 )
a3
SVr(AA) tr(A,) =— HS* (8)

@

Proof From Lemma 1.2, Eq. (1) is clear.
DItr(A A tr(A D tr(A ) =

ap
D (23 0nionk,) =0
B k

Lym

For fixed a, we have h§, =1¢5,,. According to

Cauchy-Schwarz inequality, we have

tr(A? A,J—E(A )k,
JZ(A )? Z(A ) (he,)? <

JZ(AZ)Z2(Af§4)22<k,m}(h<km}”)2 =
k M
tr(AZ) Jir(AD .

Then
| DItr(AZA) tr(Ay) | <

a3

JZ(Ztr(AiA,g) ) S A <

B a 8

«/2 [ 20t (AD Jir(AD ] SeA )t =
B a 8

HS~.
Egs. (6)~(8) Q.E.D.

2 Proofs of Theorems

Proof
Since the

Let’ s prove the Theorem 0. 1 first:

mean curvature vector of M" is

parallel, then
Dht =0, D ht, =0

Multiplying Zh‘;m, on the both sides of the second
M

expression in Eq. (5) and summing up with respect

on a, we obtain that

0= > heihbhsh?, — o —| T |*) ¢ D h%he, =

@ Beijokom aviom

DO hiohe) —
ek « i
(n—| T ‘2)62<2hi)

According to ¢ <<0, then H*=0, then M" is
minimal.

Proof
the proof of Theorem 0.1, we get

=20 (20" —
jok B i
n—| T \2)62(2h7,>
D (DRI D0 gt ) —
jk B i a

"=~ (n—| T ") cH.

Proving Theorem 0. 2. Similarly to
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= T |7 e > (D0n%)
H*[S—m—| T |"c].
From S<<(n—|T|*¢, it follows that H*=0.
Proof Now we prove Theorem 0. 3: Suppose
M" is not a minimal submanifold, then h 7 0.

Choosing e, 1, //h , we have

Eh”“- Dot =n | h |
Zh?,- =0, Ya % n+1.

Since M" is a parallel mean curvature submanifold,

from Lemma 1.1 we have

Zhrﬂrlhrﬂrlh?k :0’ a # n +1 {

ik

Zh:zIJrlthrl W —| T |P)e Zh:z+l —0, 9)
ijik

Va#n+1
From 7270 and Eq. (9) we get

Z(h’“ P—(n—| T [De.

So S, = (n — | T 1*) ¢, which results in a
contradiction,

Proof In the proof of Theorem 0. 4: Taking
the covariant derivative with respect to j on the
both sides of the first expression in Eq. (5), and
summing up with respect to j, we have

D @RSk A 2hih, kG, Rk ) =0
ayisjok

Then we get

D hGhiy, =—— Z Bhéhy 4+ hih ) =

avisjok al]k

= Z Reh® +Roh%u) + D) hoh%, (10)

al]/ avisjok

From

—A(H )= D) (hehy Fh%h%.) (D

@ik

and from Eq. (5), we have
D hihty = 2 tr(ADtr (A tr(A,A,) —

aviijok a.f

(n—| T |*)cH? 12
Substituting Eqgs. (8), (9) into Eq. (7),

we have

3 A
SRt = ——ACH?) +
asisjok 4
Dtr(ADtr(ADtr(AA) — (n —| T |?) cH?
a. B

(13

From Eqs. (1)~(4), (5) and (10), we obtain

—ASJr A(H )= >0 (h%)? +

aviijk

Ztr(Aa)tr(A,g)tr(AaA,g) ——| T ") cH® +

a8

2> [tr(A, A2 —tr(AJA?)] —
af

E(tr(A Ap)? +3nczh,,H T.T, —
ZH‘W]‘, — 2nc 2 hhs T, T; +
Qyivj ok

nc E h,?jh’,ﬂ]nr]ﬂ + = TI|*>eS—cn*H*+

afeinj
Dtr(AZA) tr(Ay) (14)
a8
From Lemma 1. 3 and Eq. (14) we have

1 3 , f R
SAS+ TAHD = (| T [ eH — 8" +
(n—| T |)S — HS” — 2en’ H® —

2ncS | T |"4+neS=cH* [— (n—| T |*)—2n"]+
! ) 3
S {*HS7 +2nc— (1 4+2n)c | T \Z*?S} .
Since M" is compact, we get

J denta—l1 \2>H2c+s[%s+Hs%—
m"

2nc + (A +2n)e | T \ﬂ}de =0

Proof The last we prove Theorem 0. 5.
From Theorem 0. 1, we know M” is minimal.

Since M" is compact, from Theorem 0. 4, we have
| s Es-zncﬂwzmc T \2} AV, =0
Noting

<%[zm—<1+zn>c T )],

we know M" is totally geodesic, or S =

2
g[ch*(lJan)c\TV].
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