#5504 45 3l ¥ B8 #4 2 £ A * & 3 4 Vol. 50, No. 3

2020 /ElE 3 A JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA Mar. 2020

LB Y5 .0253-2778(2020)03-0300-12

Multiplicity of solutions to elliptic equations with exponential nonlinearities

XUE Yimin, CHEN Shouting

(School of Mathematics and Physical Science » Xuzhou University of Technology » Xuzhou Jiangsu 221018, China)
Abstract: The multiplicity of positive solutions to quasi-linear elliptic equations with exponential
nonlinearities is obtained through a singular Trudinger-Moser inequality, which is due to Ref.
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0 Introduction and main results L () _,{1‘”(9)’ when 1 << p <N,

C'"7 Q). when p > N.

Let 2 b s th bounded d inin R"
¢ ¢ @ smoo ounded dommain When p =N, it is known as the Trudinger-

(N=2), Wi (2) (p=1) be the usual Sobolev

space, a completion of C} () under the norm

" N
p Su ewl"V(n), N «:1J ea‘u‘yil d.r < o,
[l wir gy = | Vu ["dx Puew, el =t
0 Q

Then the Sobolev embedding gives

Moser embedding" ™, namely

Va<ay=Noii (1
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where wy—; denotes the area of the unit sphere in R
N, Moreover, ay is the best constant in the sense
that if @ > ay, all integrals in Eq. (1) are still
finite, but the supremum is infinite. In Ref. [ 6], Eq.
(1) was extended by Adimurthi and Sandeep to a

singular Trudinger-Moser inequality, namely

ayl
sup JR‘\, (e N

wew" N R [y (7N Y de<

ea‘\‘—(lfﬂﬂu‘.\'fl
sup ————dax << oo,

wew N, wiN @) <1 Q x|
Vo<p<l (2)
For unbounded domain, in particular for R v, it

was proved by Refs. [7-10]

W NTT N )d . o 3
;%4457——7 x < (3)

An analog of Eq. (2) in R™ was due to Adimurthi and Yang", namely for any 8 with 0<{f<N,

N N=2 Y. %
sup (e - S QBT T L <o 25
uew“\"tk\'%JR\'<\WV+ Wl Nyde<t? R k=0 k! |2 [f
Obviously Eq. (4) is reduced to Eq. (3) in the V,>0.

case 3=0. In Refs. [8,11-16], Eqgs. (3) and (4)
were applied to obtain the existence results for

quasi-linear equations of the form
N_9 N9 ( 9 )
—div(| Vu |V EVu)+ V) | u |V 'u:f‘fiﬁ
x
(5
for certain potential V: R ¥ >R and exponential
nonlinearity f: R ¥X R — R. For

problems, we refer the readers to Refs. [17-187].

similar

Let E be the function space defined by
E={u € WI‘N(RN):J \,V(I) | w |VNdx << oo
&

Motivated by recent works of Refs. [19-217,
we consider the equation
—div(] Vu |V Vu)+
V) L 1 —a a1 gy | |72 =
S (x.u)
@ |f
where p = N, 0B <IN, ¢ is a positive real

constant, A :R¥—>R is a function in E*, the dual

+ch (x) (6)

of E.,V has positive lower bound in R ", f(x,u)

. . N/(N=1)
has exponential growth like e® as |ul—>co,

and a is some positive constant. For convenience,

we denote a function {:N XR —>R as

N—2
s st

2 =, 2 &

PNk

Throughout this paper, V(x) and f(x,s) are

g(Na 5)2687

assumed to satisfy
(H) V(x)=V,>0 in R for some constant

(H) — LR Y
V() . '

(H;) There exist positive real constants a, »

a,» a» such that

‘ f(I,s) ‘<alswil _'_aZC(Nv 0(08%) ’
Vix,s) € RYXR™ .
(H,) There exist x> N such that

0 << pF(x,s) E,&AJ.\f(x,t)dz‘ <sflxss).
0

(H;) There exist positive real constants R,, M,
such that
Flx,s) <M,f(x,s), Yo € RY, s = R,.

According to Refs, [11,14—15], we assume
throughout this paper

f(x,s) =0, V(z,s) € RYX (=022, 0) (8

It follows from (H,) that E is a reflexive
Banach space endowed with a norm

I ll g, =
1

N

<JR‘“(| Vu [N +Vw ¥ de —allull ;\j/’(R)N>

D)
where p==N and a satisfies
O<0{ <AN-,P::

| A vu Y v L 1 de
inf % - (10

WEE . u N/p
0 (J u \”dx)
R.\‘

According to Ref. [21], under the assumptions of
(H,) and Eq. (10), there holds an analog of Eq. (4),




302 P EAFHARKFEFR % 50 &
' ~an (1 —" | u \\ 1) 1

an (=P [u| N=T d 11

. E{gs\;]JR'\" (e Z:J ko |z |? x <o an

Now for any 8, 0<<8<N, we define
, (7
Ag= infl —F—T— 12
uEE.uin | w |’ d
|z [P

It is clear that A,=>0. Denote K ()= supV(x)

|xl<r

and

(N — BN o

il f N ('\ ,3)71((1): (13)
7‘

r>0 ag
where a, is given by (H;). Owing to V(x) €
C(RY, R) and (H,). one can obtain that K () >0
is continuous and M can be attained by some »=>0.

Now our main results can be stated as
follows:

Theorem 0.1 Let 0<<f<IN be fixed and M be
given as in Eq. (13). Suppose that VEC(R ", R)
and f € C(RYXR,R) satisfy (H,)~(H;s), A
and 0 << h Z 0.

following two hypotheses are satisfied:

belongs to E~ Moreover, the

N F( 9.’)
(Hy) limsup # < A, holds
uniformly for xt ER "V ;
(H;) lim inf sf (zs) e =g, >M

holds uniformly for x ER V.

Then for any a satisfying Eq. (10), there
exists ¢, >0 such that if 0<<¢<¢,, then the Eq. (6)
has two distinct positive weak solutions.

To prove Theorem 0. 1, we employ the
singular Trudinger-Moser inequality (11) instead
of Eq. (4).

our main

This is the essential difference between
of Yang'™. The

paper is organized as

results and that
remaining part of this
follows: In Section 1, we give several technical
lemmas. In Section 2, the variational frameworks
related to equations (6) is established. Finally, we

prove Theorem 0.1 in Section 3.

1 Preliminaries

In this section, we give some preliminary

analysis for our use later. Omne is a Lions’ type

lemma, the other is an embedding of the space E.
Let 0<<{B<N be fixed.
Lemma 1.1 Let a sequence {w, } CE, such

that | w, || p. =15 w, ~w, weakly in E, w, (x)—>
w, () and Vw, (x)—=>Vw,(x) for almost every x €

RN, Then, for any 0<<p<<1/(1— || w, || ¥ OVN P,

we have

CN.ax 1—B/N)P | w, |T1)

3 [ee]
SAL»IPJR‘V K dax < oo,
Proof Firstly, for any ¢ > 0, the Young
inequality yields
N N
|7«Uk |\771:‘ w, —w, + W, ‘ﬁ<
N N
Q40 | w —wo | ¥ +c() | w, |7 (14)

For any positive real constants g, v with 1/p+
1/v=1, in view of Eq. (14) and (Ref. [15],

Lemma 2. 2), we have

ENs ay(A=B/N)p | w, [F1) <

%é’(N, p2 (140 aN(l—%)P | we —w ‘%)jL

%E(N, v (o) a,\v(l—é)p | w, \%)é

— Wy H P\:jj *

CIN, p(1+0 aN(l—%)P | w,

( | wp —w, |

H Wy 7 Wo H E.a

)"+

C(N, v (o) a:\‘v(l*%)p | w, ‘%)

By using Eq. (9) and (Ref. [22], Theorem 0. 1),
one gets
H Wy H ;\:T,a-

klirp lwe | 30— lwe —w, ¥, =

Since || w, || g.. =1, it is easy to see that
lwe —w, [ Fe=1— llw, | ¥ +0(D,
where 0, (1)—>0 as k—>°o, Therefore for any 0<C
p<<1/A— | w, Il }.

positive real number ¢ and a positive real number u

YVN=D e can fix a small

close enough to 1 such that
1
1+ 0 — |lw, [N, +o, (1)) N0

0<<p <
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and that
p A+ Oay (T —B/N)p lw, —w, | g, <
an (1 —B/N).
This together with Eq. (11) gives the desired
result.
Suppose that V(x) € C(R Y,
R) and (H,), (H,) hold. Then, for any g=1 the

Lemma 1. 2

embedding E = L*(R ") is compact.

Proof Firstly, we prove that the embedding
E = L?(R ™) is continuous. By (H,) and the
Sobolev embedding theorem, one can obtain that
the embedding E = W'Y (R Y) =~ L7 (R V) is
continuous for any N <C{g < co, From the Holder
inequality, (H,) and Eq. (10), we have

J\|u|dr<
R

1
— - 1

(JR mlfﬁdﬂ V<JR\;V<x> | Vdr) ¥ <

(J‘RN Wl)uwdvr) o .

1

(JR\,(\ Vu [N +V) [ u | VHde) ' <

1 -y
(.. wemmdr) o llal v
Here and throughout this paper Cy,,=(Ay.,/
(An., —aVN and Ay,, is defined by Eq. (10).
Similarly, for any 1<{y<CN, we can also obtain

J\, | u deéf\(\uw\u | D dr =
R R

1 )
JV \u\d17+J\7V(1’)|u\Nd1’<
R’ R/

Vix)
{ R e SN Y
%L_\,V(w |u Ve <
(. 5] o lallon+

1

| ATu ¥ v a1 de <
V(] RrY

1

1 N
(JR.\" (V(I>)1/<N71>dl> Cn.p (7

S
Vi

Cuo ¥ ¥

where V,, is given by (H,). Consequently, we

conclude that the embedding E <> L* (R N) is
continuous.

Secondly, we will show that the embedding
E = L*(R") is also compact. Choose a sequence
of functions {u, } CE with || u, || £..<<C for any
n, up to a subsequence of {u,} which we denote
again by {u,}, we need to show that there exists
u € E such that u,—>u strongly in L*(R ") for any
g=1. Without loss of generality, we suppose

u,—~u weakly in E |

w, = u strongly in L, (RY), Vg =1 (15

u, = u almost everywhere in RV

Applying (H,), for any « >0, there exists
R>0 such that

1 -5
<J\.x- =R de) e

Therefore, by the Holder inequality and
Eq. (10), we get

J‘ e lwTuldr <
x| =

(J“ . de)] v

1

(JR»\'V(I) | u, —u |Ndar>V <

Cy.pllu, —ull g, < Ce (16)
Here and in the following, we often denote
various constants by the same C. On the other
hand, by Eq. (15), we have that u,—>u strongly in
L'(B ), where B ; is the ball with radius R.
Combining this with Eq. (16), we obtain
limsupj . | u, —u | de < C.
nco - J R
Note that ¢ is arbitrary, we get
1imJ y | w, —u | dr =0.
ncod R
For any ¢=>1, in view of the Holder inequality

and the continuous of the embedding E =~ L*(R ™)
(s=1), one has

J lu,—u |tde =
R

1 1
JR‘V | u“iu’ |? ‘ uu —u ‘q*?dx <
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1 1

(| lw—ulae) ([ T —uar) <

CdR‘\‘ | w, —u | d17>%—>0asn—>00.

This concludes the desired result.

2 Variational framework

In order to use the critical point theory, in

this section our main focus 1is variational
framework of the Eq. (6). Now, Let us define a

functional from E to R associated to the Eq. (6) as

1 . ;
]a.((u):fj (| Vu [V +V) | u |Y)de —
N R.\

%GRN‘ | u \’)dx);—
J Flx, u)
RN |z [P

k

dx*(J JJudx a7
®

| x
where F(x,s) :Jvf(x ,t)dr is a primitive of f(x,
0

s). It is easy to see that J,.,(0)=0. Moreover, by
Proposition 1 in Ref. [14] and standard arguments
in Ref. [23], we deduce that J,. () EC'(E, R).
A simple calculation gives

Jacu)s ) =
J V(\ Vu |N72VMV§D+V(I) | u \N*Zugo)d:c—
R

alla | | 1w 17 updr —

*(JRthodx (18)

for any ¢ € E. Hence u € E is a critical point of the
functional J,., (u) if and only if u is a positive
weak solution of the equation (6). Therefore, to
find the existence of positive weak solutions for the
equation (6), we just focus on studying the
existence of critical points of the functional J,. . (u)
on E. Now, we give several necessary lemmas on
functional J,..(u), which are needed in the proof
of our main result.
Lemma 2. 1 Suppose that the conditions
(H,), (H;)~(H;) are satisfied. Then, we have
(I J... (Gtu)—>—02° as t >+ ° for every
compactly supported function « EWN (R ¥)\{0};
(I ,) there exists ¢; >0 such that for any ¢ &

(0, ¢;) s we can find some r,, 9,>>0 such that J,..

(u)=9, for any u with || u || .. =r.. where r. can
be taken such that »,—>0 as ¢—>0;

(1) suppose ¢=>0, h7Z0, there exists a real
constant >0 such that inf/z]a_ (u)<<0 for any

lull g, <

t€ 0, 7).
Proof According to (H,) and (H;), there
exists a positive real constant R, such that for any

(IaS)ER\XERo 900)9 F(T75)>0 and /JF(Z'QS)<

oF (x,s)
s #, which shows

os
olnF (x,s) - &.

~

os s
Now we integrate the above inequality from
R, to p on both sides on s to get F (x,s) =
F(x,R,)
domain Q. Therefore, for any (x,s) €02 X[R,,
©o), there exists a positive real constant b, such

that F (x,s) =b, s*. According to (H,), also

s*. Suppose u is supported in a bounded

notice that f (x,s) is a continuous function, for
any (x.,5) €0 X[0, R,], there exists a positive
real constant b, such that F(x,s)=—>0,. Thus,
for any (x,s) €N X[0, ), we know that F(x,

s)=by s* —b,, which implies

1 .
]a,((tu):*j (| Veu |V +V) | tu |V)de —
(9]

N
%(JQ | tu |’)dx> . *JQ %dx *(Jﬂhtudx <
g, b gy
N Tz
bgj ;dxfufj hudx.
o | x|? 0
Observing that x>>N =2 and 6, >0, we have
Jooo Ctu) > — o as ¢ > + <o, From the

aforementioned discussion, it is obvious that the
conclusion is also suitable for J, («). Hence,
property ( I ,) holds.

Now, applying (Hg;), we deduce that there
are two positive real constants ¢ and ¢ such that
for |s|<<8, x€RY, then

Qg—7o) | s |V
| Flx,s) |< -~

On the other hand, owing to (H;), when
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|s| =6, we have

[s] N
F(x’3)<J (altwil#_agg(]\[’ aotﬁ>)dt<
0
a1|S‘N+ (N i)‘ <
N CJ,ZC s QoS S |

cs.n (ECN, aog%)) | s | ¥,

a as
where ¢y, N>8 NCN s ans V1) Jré\*\

any (x,5) € R VX R and by applying the above

Then for

mentioned two inequalities, one can write that

Ay—o) |5 |V
F(x,s)ﬁi‘AEAA%GJQLL*-%
CE(N. ays¥1)) | 5 |V a9

Next we will show that

de < C llu | X3

J \u\‘\HE(N,ao\u|%)
RN | x |7

(@A)

Therefore, we suppose u " is the Schwarz

rearrangement of |u |. It follows from Theorem 2. 1

in Ref. [11] (Hardy-Littlewood inequality) that

dr <

J. u INTEN @ | |51
R\

| |F

SN @ w5
[l T
R | x|
Let a positive real number
N 1/N
Y > 2( ) [l xRy, (22)
W N-—1

For any positive real constant ¢, ¢, d, d’
with ¢ >1, 1<<d <<N/B, 1/c+1/c"=1, 1/d +
1/d’=1, by the Holder inequality, we have

x| N+1 .S
(N, N=1)
J [ w™ |¥7'¢ ag | u’ | e <
|z <y

e

N
% | N+ ey lu™ INCT
‘ u ‘ e’
J der <
lxl<y

e

N 1

M- 1
g ca, lu |N—I — o =
e ¢ 1 7d
<Jm<:y | x |# lel<y | & P4

1

<J ‘u* |<A\+1>dex>“ <
lz|<y

e

1

<JR‘V | u” | (N+Dc'd’ dx) od

Adding Eq. (11) and the continuous
embedding E =~ L* (R Y) (N<C¢g<{o°) in Lemma

1.2 and choosing || « || .. small enough such that

cao | u |l ¥.0<<an» we obtain

de <

. N
J |u* |NHC(]\],0(0|u'x |\7*1)
|z <y

e
Cllu [l 35 (23)
where C depends only on N, 7, 8. By Eq. (22),
the radial lemma and the continuous embedding
E—=LY""(RY) (see Lemma 1. 2), we can deduce

that for some positive real constant C

N
oy ¥ N-+1 N’ * N—1
|z[=y

| |*

(N, a, | u” (y) ‘ﬁ)
Ly |7

(ealz) )

| v |? |7 |L‘VH(RN)<CHMH N

| e e <
x| =y

@24

It follows from Eqgs. (21), (23) and (24) that

Eq. (20) holds. In fact, Eq. (12) implies for all
u€E,u0, 0<f<N

o < e, o
RV | x |?
Also by (H,), we have

1
1 N
[ w |l vgy, = <JR\" WV(I) | u \“\dx) <

1

0

1 ! ~
(J ,(|VM\N+V(1')|u\‘N)dx> <
]R‘\

1/N
0

CN.,/)

/N | u H E.a-
0

This together with Eqgs. (19), (20), (25) and
the Holder inequality leads to

1
Ja.‘(u):NHuH B —
J de*ej hudx =
RN ‘x ‘ﬁ RN

1 N /Iﬂ—rj | w |V
N ol .. N o dx

Cllull B ¢ Al LT ®RY) | a |l LNRY) =
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e _
. Il
Cy. ;
# | a |l E.a a1l 5wy, =
0
T N— ~ N
H u H E.a(m H u H }:!.al —C H u H ]}U( -
«C
\thHl\I(R)) (26)

Notice that >0, then there exists a small
enough real constant » =0 such that

T T
—
NAﬁ =N,

Also notice that 1720, for small enough =0,

N @27

first of all we choose r, such that

T N ZEC\
ZN/\r«;rer th Hl =1 RY) »
then we let
((:\ '
v = 1,,1\,/) Lu [l 55 Y
0

From Eq. (26) and the above two equalities,
we derive J,.  (u)=9, for any u with || u || g..=7r.
and r.—>0 as ¢>0. Thus, property ( [ ,) is true.

By the standard method bases on variation,
we may suppose that v is a weak solution of

—div(] Vv [N EVu) 4+ V() | v [V —

allv H,(R\ lv | ?v=ch inR".

Let us observe that A =0, then ¢ |gvhvdx =

vl ¥.>0. For any t >0, we know that

d . .
Eja.((tu) =N o ¥, —

J' f(x, tv)
RrY

| > |?

vdx *<J Jhvdz.
=
This together with f(x, 0) =0, we obtain

d
E]a. (1) ],2,<C0. Using continuity yields there is

d
EJQ,((tU)<O for any t € (0, 7).

0, we have J,.. . (twv)<<O0 for any t €

>0 such that

Since J,..=

(0, ), which ends the proof of property ( I ;).
In order to obtain the min-max level of the

functional J,..(u), we recall the function sequence

of Moser

(logn) "N, if | = |< =,
n

M,(x. r)=—+ 1og‘ |
WN-] X
ognyrs oy <l l=r
07 lf|I|>r9

where wy—, is given by Eq. (1). Let M, (x, r)=

M, (s )/ I M, |l ¢.. I M, [ e.=1
and M, € E with its support in B (0).

Lemma 2.2 Suppose that V(z) &€ C(R "N, R)
and the condition (H;) holds. Then we have

HA/\/IH<I’ r) H gn<

m(r) ((N—1!
=

Obviously,

1+

N _
logn ' +o,,(1)>

a H M},(Ia r) H }\,rfR,\") ’

where m (r) = max|,|<,V (x) and o, (1) >0 as

n—>oo,
Proof By a simple calculation, we have

f\,<| VM, (x, ) [¥)de =
o

1 1
J ~dxr =1

a)‘\«fllogn rRY ‘]_ ‘;\
and
J UM, (e ) [V de =
R
J oz T
zl=5 WN-—1
N
<log 4 )
J N
_ — " dr=
T<ipl<r  wn—logn
r\ " (logn) N 1 ((N—DI B
<;> N logn( NN ! +0'1(1))_
1 ((IN—D!
logn< NV r +071(1>).

Here we have used the integration by parts.

Consequently, we get
I M, (xs r) 1., =
J U VM, G ) [NV M, @ ) Y de —
"
a H M11(17 r) H ;\:’{’R\'> <

m() ((N—1)!
1+ ( N

rN—+o, (1)>—
logn

a | M, (x| ET{’R.V)-

Lemma 2.3 Suppose that the conditions (H,),
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(H;), (H,), (H;) and (H;) are satisfied. Then
there exists a positive integer n such that
N —Bax ) N—1
N «a, )
Also for the aforementioned n, there exist

“and 0"

1
r[r{)/etox]a(tM,,) < N(

two real constants ¢ such that, for any &

[0, ¢"), we have

N — ,8 an M
max] .. (IM,) < ( < ao) 5
Proof Since the functionals J, («) and J,... (u)

in Ref.

inequalities in the lemma are trivial.

are smaller than those [ 15 ], the
Next, we will prove an analog of (Ref. [15],
Lemma 2. 4) as follows:
Lemma 2.4 Suppose that {u, } CE and the

conditions (H;)~ (H;) are satisfied. if {u,} is a

Palais-Smale sequence of J,.., that is

hm] (u,)=cinE (28)
and

limJ @ (u,) =0in E* (29)

n-—>co

Then, there exists a subsequence of {u, }
(still denoted by {u,}) and u € E such that u,—~u
weakly in E, u,—>u strongly in L*(R ") for any

=1, and

( ’ 71> ol N
flx Tﬁ »f|(1 |u3) strongly in L'(R ),
x x L
Flx,u,) F(x,u)

strongly in L' (R "),

.
| |F | x|

Vu,(x) = Vulx) almost everywhere in R V.

In addition, u is a weak solution of Eq. (6).
Proof Observing (H,) and Eq. (8), we
obtain for some >N
0 pF(xhu,) <u,f(x,u,) (30)
Next, we suppose that {u,} is a Palais-Smale

sequence of J,... Then, from Eqgs. (17) and (28)

it follows that

1 : :
]Q_‘(u”):fj (| Vu, |VHV@) | u, V) de —
]\] JR’\

Gl o a)

F(rq u,)
—————dx —¢| _hu,dx =
e N
1

Uy J Flxs u,)
R\

N | u Ewa B dx —

| =

eJ th,,,dx —c asn —> °O,
&

Multiplying both sides of the last equation by

#» we have

N pnFlxsu,)
B, g, -] AT

; x —
L |f

,u(J Vllu,,dx =pc+o,(1) (31D
R

where 0, (1) —>0 as n—>°0, Also from Egs. (18)
and (19), we get for any o € F

<]/a E(M,,)’§0> :JR\(| Vu” ‘Nf2vu,1v§0+
Vix) | u, |V

N-p p—2 -
LfR\:)JR\, L u |7 P u,pda

u,o)dx —

allu,

odx *(J Jhedr =0 asn —> oo
R

(32)
this together with Eq. (18) gives
| Jacu,)s o) |<a,llolle..YVo€EE
(33)
where a,—>0 as n—>c°, Choosing ¢ =u, in the last

inequality, we can conclude that

—(JR\,(‘ Vu, |V +V) | u, |V)dx —

a8, [ T 17y +

SR

E.a

S (s w,)
J udx +(J hu,de < a, || u,
RN ‘I ‘,? RN
34
We have by combining Eqgs. (30) , (31) and

(34)

(& =1) i< (& =1) las D2+

J’ w,f(xsu,) —p Flx,u,)
d.r S
RN | = |#
plelta, llu e+
=D Ihllres lu, vy

where y >N, p=N, N=2 and 1/p +1/p =1.

Hence | u, || g.. is bounded, which together with
Eq. (31) yields

- F(x, u,)

o T

for some constant C. Thus Eq. (34) yields

ou, (e, uy,)

e

| > |?

de << C (35

de << C (36)
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By Lemma 1. 2, up to a subsequence, u, >u
strongly in L*(RY) for some « € E and any ¢=>1,
which means that u, = u almost everywhere in
RY. Since u, f(xs u) /lxz|P €L (RY), it
follows that

lim dx =0.
porpoo

J Sz, uw)
ll>p | x |?
Let C be the constant given in Eq. (36).
Again by (H,) and Eq. (8), we have
flxsu) =0, uf(x,u)=lul| f(x,|ul).
Then, for any given (>0 there exists K>C/«
such that

J f(x, u)dx <
lul =K

|z |7
IJ uf(x, u) C
— wirew < S 7
KJiu=x | x| dl\K<6 (3D
Similarly we have
( AN 71)
J Slas D,
lu 1=k | |

IJ w,f(xy u,)
KV, 1=K

For any x €R "N and |u, ()| <<K ., according
to (H;), there is a constant C, depending only on
K such that | f(xsu,) | <Colu, V' Since
o, [NV |2 |P=>]u N1/ [2|? strongly in L' (RY)

C
dI<E<( (38)

| > |?

and u, > u almost everywhere in R ¥, it follows

’

from the generalized Lebesgue’ s dominated

convergence theorem that

( T n)
limJ fil “ dx
wreod [, <K

I

:J f(x, u)dx,
lu|<K

|7
that is, for any given ¢ >0 one can take some

positive integer n, such that when n>n,

i (xy u,) s,
\J fix “ dI_J fi(r ?)dx | <<e.
lu, | <K lu, | <K | x "9

This together with Egs. (37), (38) and f(x,
u)=0 leads to

|J\;f(x, u,,)dl__J \(f(x, u)dx <
R R

| [*

|z |? |z [?
( " 7,) ' T
‘J S(x ug da‘*J f(a Zj)dIH’
w, |=K | x |' lu, | =K \ x |'
( ) n) ’ "y 1
‘J fxbf dx*J JAE: u)dl‘<
lu, <K ‘l‘ "g lu, | <K |T ‘,@
(‘a ,,) " ’ ’
| flre ) dr + | Loy
lu, | =K \ x |’3 lu, | =K \ x |’

‘J flxy u,) )
lu, | <K

I

J‘ | ASIROFNNPP
u, <K

I

) =

which yields
( T 7,) ’ Y
hmj EASILITIN :J RASIICNN
G B |I ‘; RN |I ‘:
Noting also that f(x,u,)=0, we obtain
) J | f(xy u,) — f(xu) |
lim| _ ‘
n—coJ RV |1,' ‘3
Thanks to (H;) and (H;), there exist two
positive constants ¢;, ¢, such that F(z, u,) <
cilu, 1N+ e f (s u,). Thus, by Eq. (39),

Lemma 1. 2 and the generalized Lebesgue’ s

dr =0 (39

dominated convergence theorem, we get

) J | F(xs u,) —F(xy u) |
lim .
R

IR

dx =0.

n—>co

Next by applying the proof of (Ref. [11 ]Eq.
(4.26)), we derive
Vu,(x) = Vulz) almost everywhere in R~
and

‘ vun |}\572vunA ‘ vu ‘N’*Zvu Weakly 1n

(L¥1(RY)Y,
Letting n—>°° in Eq. (32), we get

JV(\ Vu [ VuVe+V) | u |V Pup)de —
R

allall g, T 17 upde —
Sz, w) J B
JJR’V W@dl € R‘Vh,ngI —O
for any ¢ €C; (R "), which is dense in E. Thus u

is a weak solution of Eq. (6).

3 Proof of Theorem 0. 1

In this section, we are ready to prove
Theorem 0. 1 by applying the mountain-pass
theorem without the Palais-Smale condition. It
suffices to prove that the functional J,.. has two
distinct critical points in E.

Proof of Theorem 0. 1 First of all, we will
prove that the equation (6) has a mountain-pass
type weak solution. Suppose that ¢, is given by
(I,) of Lemma 2.1, and ¢*, 8" are given by
Lemma 2. 3. According to ( [ ;) and (1,) of

Lemma 2. 1, for ¢ € (0, ¢;), one can easily find

that J,.. (u) € C' (E, R), J... (u) =0, for
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| wll g.=r. and inf,,, MS/\;J&,( (e)<<O0 for t €
(Ov T).
without the Palais-Smale condition in Ref. [ 23],

Then, by the mountain-pass theorem

there exists a sequence {v, } CFE such that

limJ,. (v,) =c, inE, limJa«(v,)=0in E"

n-—>co

(40)
= inf,ermax,e, ... (u) =9, >0 is a
minimax value of J,. ., with
r={y e C(o.1]. E) ., y(0)=0, y(1)=e}.
Then for any ¢ €
(0, ¢;), by Lemmas 2. 3 and 2. 4, we obtain that

here ¢,

Take ¢, =min {¢;, ¢ }.

. 1 N*ﬁa:\] N .
O<(,,,<N<Tg> 8 (41)

and that up to a subsequence, v, converges weakly
in E to a weak solution u, of Eq. (6).

Second, we will show that the Eq. (6) has a
local minimum type weak solution u,. Suppose
that r, is given by ( I ;) of Lemma 2. 1. Then it
follows from (1 ,) of Lemma 2.1 that J,,  (u)=
9. >0 for || u |l g..=r., and that

limr, =0 42)

n—>co

Hence there exists some ¢; € (0, ¢,) such that

for e€ (0, ¢3)

r. < (7 7)ﬁ (43)

From (H;) and (H,),we get
Flrsu <a, |u |+
i w3
a lu L E(Nv el B2 (5—) )
(44)
If [|wlg.<r., we have
w w5 < (1= Ean.
Then, if || « || z..<<r., by the last inequality,
Eq. (11) and Ref. [15], Lemma 1.1, we get that
F(x, u)/lz|"is bounded in L* (RY)NL'(R ™).
Therefore J,.. has lower bound on B, ={u € E:

e || o..<<r.} . Itis obvious that E,{ CE is convex

and J,..€C'(E, R) has lower bound on E,(. It

follows from Ekeland’ s variational principle/*!

that there is a sequence {u, }CE,' such that
limJ. (u,) =c := inf/ J. (u)inE,

e Ll g, -

limJ @ ¢(u,) =0in E~ (45)

n-—>co

Then, by combining ( I ;) of Lemma 2. 1,
Eq. (44), Lemma 1. 4 and the Holder inequality,
we get that ¢,<<0,
J Flx, w
&N

ENk

lim  sup dx =0,

0wl g =r,
lim sup J hudx =0,
0 ul Eoa =T, RV

which means thatlime, = 0.

>0

Suppose u, — u,

weakly in E. Let us now substitute ¢ =u, — u,

into Eq. (33)
J UV, 1Y Vu, Viu, —uy) +
&
V) |, [N, (u,y —uy))de —

allu, | fﬁf\»Jva Ly |7, Cuyy — wp)de —

(u, —u,)dx —

J' Sz, u,)

RV |1, ‘,‘?

(J h(u, —u,)dx —> 0 as n —> oo,
R\

This fact, together with Eqs. (43), (11),

Lemma 1.2 and the Holder inequality leads to

So that
JR\" ( Vu, IN*Vu,Vu, —uy) +
Vi) | u, M %u, (u, —uy)dxe —
allu, |l &?R-QUJ‘RV lw, | 2u,(u, —u,)de —0

as n —> <O (46)

It follows from u,—u, weakly in E that
J V(\ Vu, |V *Vu, V< u, —u,) +
.

V) | us |V PusCu, —uy)))dae —

allw, | i?{fRQ)J N | wy |7 PusCu, —uy,)dae — 0
R

as n —> ©° 47

Subtracting Eq. (47) from Eq. (46), applying

(D in Chapter 10 of Ref. [25], we can deduce that
| w,—u, || ¥.,—>0 as n—>oo. Then u,>u, strongly
in E. Also notice that J,. . («) € C'(E, R), one
can easily find that J,. . (u,)=c. and Ja& «(u,) =0,

Therefore, by Lemma 2. 4, it follows that u, is a
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weak solution of Eq. (6).

Finally, we will verify that two weak

solutions u; and wu, are distinct. Suppose by

contradiction that u;=u,. It follows from Lemma

1.5 and the Holder inequality that

limJ Vh"u”d:c :J thzdl‘ (48)
R R

n—>co

By Lemma 2.4, we also have

1imJ : F(x, v,,)dl:J \ Flx, u,)
R R

o |? | |F

dx (49)

n—>oo

Substituting Egs. (48) and (49) into Eq.
(40), we have
lim o, 2, =+
" Flx, uy)
JR\ de JF(JR‘thng (50)
Similarly, we can also obtain
lim -, |3, e+
SN
" F(x, uy)
Jo T

This together with Eq. (50) and lim || u, —

n—co

dx +(J Jhundx.
R

w, | ¥.=0 gives

limC v, [ Yo — lu, [ ¥.)=NC, —c)

n—>oc

GD
It follows from Eqgs. (41) and (42) that there
exists ¢, € (0, ¢;) such that if 0<<c<l¢,, then

1 (N—Bayx\ "
0<e,—e < () (52)
¢ ¢ N N  «a,

For convenience, we denote
PU”

h,=-—7—:

H Uy H E.a
Uus

hy

(w3 + N, —e)™
From Eq. (51) and v, ~u, weakly in E, we
have h,—h, weakly in E. Note that
N
j E(N» ao‘vn‘ﬁ)
R\

| 2

dr =

| x

dx.

N N
J‘ C(Ns ao o, 152 T h, 5D
RY \ x | 8

This together with Egs. (51) and (52) yields

A= o < (1= £y

lim || o,

n—>co

Then it follows from (Ref. [15], Lemma 2. 1)
and Lemma 1. 1 that (N, alu YN V) /2] #is
bounded in L* (R V) for some ¢ >1. By (H,),

we have
| f(xyv,) [<ay | o, [N +a,8 (N, ay | v, \%)

Moreover by the continuous embedding E >
L?(RY) for any p=1, it follows that f(z,v,)/
|z |? is bounded in L% (R ¥) for some ¢, >1. So

by Lemma 1. 2 and the Hélder inequality,
we obtain
Sflzsv,)
\ J (o, —uda | <
Y| x|
f(f’ .Un)
H T 5 H L% (RN) H Uy — Uz H L% (RY) »
|z |

where 1/g,+1/q;=1. In view of Eq. (48) and the
last inequality, by similar proofs of Egs. (46) and
(47), we get

J V(\ Vo, [N Vv, V(v, —u,) +
R
Vi) | v, |V v, (v, —uy))dax —

allv, | E"gi,JR\, o, |70, (v, —uy)dae =0

as n —> ©° (53)

and
J \,(| Vu, |V *Vu,V (v, —u,) +
)
V) | us |V Puy (v, —uy))de —

allu, | i?ﬁR?Q)JRN Lus |7 us (o, —up)dae =0

as n —> ©° (54)
Subtracting Eq. (54) from Eq. (53) and
applying (I) in Chapter 10 of Ref. [25], we can
deduce that
li)l;I} v, —us | ¥.. =0,

n

which together with Eq. (51) implies
Cw =C..
This yields a contradiction since c¢,, >0 and

c.<0.
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