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Abstract: The data envelopment analysis (DEA) is an important data-driven method for the performance
evaluation and performance improvement of a set of peer decision making units ( DMUs), involving
multiple inputs and multiple outputs which are identified as performance indicators. However, some
performance indicators, unlike conventional DEA models with one single value, may have more than one
value because of different definitions or measurement standards referring to multi-valued indicators. In
addition, the performance indicators reflect the current status of DMUs, which ignore the goals of
decision-makers. We first propose two modified slacks-based DEA models to deal with multi-valued
indicators and provide the Pareto-optimal solution in two common decision-making scenarios, namely the
decentralized and centralized decision-making cases. Furthermore, we extend the models by
incorporating with the goals of decision-makers to help the DMUs improve their performance and get
close to the goals of decision-makers as much as possible. The slacks-based approaches and integration of
goals enhance the discriminability of the models to DMUs and provide more practical improvement for
some indicators. A case study of 22 cities in the Yangtze River delta region in China is used to illustrate
the effectiveness and practicality of our proposed models.
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1 Introduction

The data envelopment analysis (DEA), first proposed
by Charnes et al''’, is a well-known non-parametric
data-driven tool for building a composite index (e. g. ,
performance, benchmarking) of a set of homogeneous
DMUs consuming multiple inputs to produce multiple
outputs'>*'. As one of the most important evaluation
tools, DEA has been developed rapidly in both theory
and application over the past four decades'*”'. People
now pay more and more attention to the environment.
The DEA is a widely used method on energy and
environment, where it usually involves the undesirable
outputs in the researches'® | such as air pollutants. The
decision-makers usually prefer to a smaller amount of
undesirable outputs and the ways to deal with the
undesirable outputs are widely studied in existing
literatures'**/.

In DEA modeling and applications, the selection of
performance indicators (inputs/outputs) is crucial to the
robustness of the evaluation results since the evaluation

results may change with the selection of input and
output indicators'®'. Therefore, some studies on the
selection of performance indicators have been developed
in DEA literatures and have been employed in different
ways, such as the principal component analysis'' and
the aggregation method'""'. Usually, two considerations
occur in the selection of performance indicators. One is
that the data of some performance indicators may be
missing. The other is that the traditional DEA methods
assume that the inputs/outputs are respectively
independent corresponding to one value. However,
some input/output indicators may have more than one
single value in practice because of various measurement
standards or definitions; such indicators are identified as
multi-valued indicators''>’. For example, both PM 10
and PM 2.5 are selected to measure the concentration of
the particulate matter in the air. Accordingly, one
challenge in the application of DEA is to select an
appropriate value for multi-valued inputs/outputs. To
date, only a few research efforts, such as Toloo and

Hanélovd' ', have proposed selecting methods based
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on the directional distance function (DDF) to solve the
problem of multi-valued indicators.

Furthermore, the decision-makers’ goals, which
reflect their preferences for performance evaluation and
improvement direction, also play a decisive role in the
selection of performance indicators. The performance
indicators are directly related with the results of
performance evaluation in DEA methods. The multi-
valued indicators under different standards refer to
different decision-makers ’ goals. In other words,
selecting an appropriate value for a multi-valued
indicator is inevitably influenced by decision-makers’
goals, which further affects the results of performance
evaluation and improvements. Sales targets, target yield
for corporations, and air pollutant concentration limits
are common examples of decision-makers’ goals, seen
as the expected level. Such goals significantly impact
performance evaluation in real-world situations.
However, traditional DEA methods focus on
comparisons among peer DMUs to provide evaluation
and benchmarks without considering the goals of
decision-makers. To fill this gap, indirect and direct
DEA based approaches taking into account the goals of

decision-makers have been proposed'”""*'. The former
approaches replace the decision-makers’ goals with
other values such as utility. Lozano et al''®’ propose a

bargaining based DEA approach considering the utility
instead of goals to improve the performance of
inefficient DMUs, while the complicated calculation
process limits its utilization. The latter approaches
handle the decision-makers’ goals in a direct way. For
example, Stewart''”! proposes a new DEA model which
constructs new reference points with the goals of top
managers as benchmarks. Azadi et al''™® apply a goal-
directed benchmarking method for supplier selection.
Ruiz and Sirvent'’ introduce a DEA method to
generate strongly efficient targets which satisfy the
requirement of minimum distance to the goals and to the
current performance. Besides, the goals are often
established to plan the improvement. However, there
are some goals that cannot be achieved at current
production situation, referring to overly high goals, and
there are also some goals that are unambitious, which
cannot effectively guide the improvement, referring to
overly low goals'™'. The DEA targets provide the best
practices' ', Accordingly, we further incorporate the
decision-makers’ goals into our approaches to handle
the problem of multi-valued indicators.

Based on the above analysis, we build on the
following works in our current study. Following the
work of Toloo and Hanclova'™', we first tackle the
problem of multi-valued indicators by proposing
modified slacks-based models, which allows different
proportional improvement for all inputs and outputs to

obtain one suitable single value for each multi-valued
indicators. Furthermore, we incorporate the decision-
makers’ goals into the proposed models. The new
models guide the DMUs to reach points on the best
practice frontier, which are close to the goals. Our
approaches employ the absolute distance to measure the
gaps between projection points and the goals due to the
overly high/low goals in practice. To be more
practical, this work takes the realities of decentralized
and centralized decision-making cases into consideration
to expand the scope of application.

The rest of the paper is organized as follows. In
the next section, we provide preliminaries. Section 3
introduces our proposed models to deal with the problem
of multi-valued indicators and the extended models
considering the goals of decision-makers in decentralized
and centralized decision-making cases. In Section 4, we
apply our models to evaluate the environmental
performance of the cities in the Yangtze River delta
region in China. Finally, we conclude the paper and
discuss further extensions.

2 Preliminaries

In this section, we introduce notations and the
preliminaries of multi-valued indicators, the slacks-
based model, and the DDF method of Toloo and

Hanclova'?'. We first list the related notations shown
in the following Table 1, which mainly involves the
single-valued indicators and multi-valued indicators.
The notations in Table 1 help better understand our
methods.

We note the following relationship: I° U I = I,
FNl"=RRUR"=R, FRNR"= OF UF'=F,
and F* N F"'= JIn addition, we have I' C 1", R C R",
and FY C F", and respectively use the binary

variables &}, &', and 5} to denote the selected

th h

situation for " multi-valued input, r” multi-valued
desirable output, and /" multi-valued undesirable
output, which are defined as follows:
. {1 , if i"multi-valued input is selected
6 = .
! 0, otherwise
5 = {l , if r"multi-valued desirable output is selected
’ 0,otherwise
st = {1 , if /"multi-valued undesirable output is selected
/10, otherwise
(1)
We usethe following three vectors x € N, y €
M*and b € R’ to represent inputs, desirable outputs,
and undesirable outputs. Constructed by the inputs and
outputs of all DMUs, the production technology T is
defined as follows:
T=1{(x,y,b) | x can produce y and b} (2)
Denoted matricesX, Yand Bas X = [x,] =[x,
J e, Y=[0y,] =lyy,y.) e B

X

mn
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Table 1. Illustration of the notations.
Constants

n number of DMUs

m number of inputs
s number of desirable outputs
l number of undesirable outputs
P number of multi-valued inputs
Q number of multi-valued desirable outputs
U number of multi-valued undesirable outputs
|1 | number of values for the p”(p = 1,---,P) multi-valued input
\ Ry number of values for the ¢"(¢ = 1,---,() multi-valued desirable output
| F¥ | number of values for the u”(u = 1,---,U) multi-valued undesirable output
s’ number of single-valued inputs
st number of single-valued desirable outputs
st number of single-valued undesirable outputs

%, i"(i = 1,--,m) input of DMU,(j = 1,---,n)

¥ (r = 1, s) desirable output of DMU,(j = 1,*+,n)

b, f"(f = 1,+-,1) undesirable output of DMU,(j = 1,--,n)
Sets
""" I mpuset P singlevalued imputset /'  moltivalued inputset |
R desirable output set RS zlertlgle—valued desirable output RY ;r;llﬂ—valued desirable output
P undesirable output set 7 leiift_izltued undesirable I ;r;lltl—valued undesirable output
1}1’ set of all available values for the p”(p = 1,---,P) multi-valued input
R set of all available values for the ¢" (¢ = 1,++-,Q) multi-valued desirable output
FY set of all available values for the u"(u = 1,-+-,U) multi-valued undesirable output

and B=[b,] =[b,,,x,] € R . The technology
set under variable returns to scale (VRS) is given as:
T(x)={(y,b)  x=AX,y<AY,b=2AB,=0,A"e=
1} , where an vector representing intensity variable.
The VRS assumption is a broader scenario in reality
since the full proportionality assumption under CRS
assumption is not often satisfied®'’. We deal with
undesirable outputs following the strong disposability
assumption ).  The reason is that the implicit
assumption of the weak disposability is that all DMUs
use the same abatement factor, which is inconsistent
with the practice of focusing emission reduction efforts
on DMUs with less emission reduction costs'*’; some
outputs are also inappropriate for weak disposability
assumption like SO, emissions' >/

2.1 Modified slack-based model
According to the slacks-based measure (SBM) , which
is first proposed by Tone'”' and later extended to the
situation with undesirable outputs. We use the
following modified slacks-based model to measure the
inefficiency of a specific DMU, .

1 (z;n:lsl-'-

. i
s S, LS,
z ot Zle b7>’

maxp, =

m+s +1 x, -y .
stox, = X Aa tsiel  (31)
jel
y’O:Z)\jyrj_S;’rER (32)
jel
by = L Aby + S € F (3.3)
je

2,

jel

1

’
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A uSe S oSy /ojeJLelreR,feF(:s(;t; Z],\jyrja(ug)ym,reks (4.3)
JjE
The objective function is different from the model z Ay, = (1L +B)y, —M(1 -8§),),
proposed by Tone'”’ | which is also widely used in iel w1
practice'”””! and avoid the non-linear problem of the rekRig=1,-0 S (4.4)
SBM model. We see that model (3) meets the null- 2 Ab, = (1 -B)b,.feF (4.5)
joint assumption in dealing with undesirable outputs, red _ ,
which means that there can be no desirable outputs if ;Af'bﬁ < =B)b, +M(1-6,),
there are no undesirable outputs. In model (3) feF'u=1,-U (4.6)
s,, , and s, are respectively the slacks of the " 1nput Z Aby = (1 -B)b, - M(1 - 5?0) ’
* desirable output, and /" undesirable output, which jel :
are first defined by Charnes et al'®’. The p, satisfies the feF  u=1,U (4.7)
properties of unit invariance and monotonicity, which is 2 8 =1p=1,-P (4.8)
consistent with the classic slacks-based measure >’ ietll
Denote p, (s; " ,s' s, A ),iel,reRfeF,e Zg;: l,g= 1,0 (4.9)
J as the optimal objective function value of model (3). reRyl
With this notation, (0,,0,,0,,e,) is one feasible zéf”b =l,u=1,-U,
th fel“i}[

solution of model (3), where e € N" represents the o
component is 1 and the rest are 0. Then we have p, =0
since this is a maximization problem. Obviously, DMU,
is efficient if p = 0, otherwise it is inefficient, which
means that p, measures the inefficiency score of DMU, .

DMU, is Pareto-Koopmans efficient when p,” = 0.
Following the definition proposed by Scheel ™’ | if
DMU,(x,,y,,b,) is Pareto-Koopmans efficient, there is
no DMU (%, ,y,,b,) in technolody set such that x, <
xX,, ¥, =y,, and b, < b, with at least one strict

inequality. In model (3), p, = Omeans s.* = s," =
s, = 0,i e l,r e R,fe F, which indicates DMU, is
located on the efficient frontier. If a point (x,,y,,b,)
exists which satisfies x, < x, or y, >y, or b, < b, or
any combinations of these three strict inequalities, then
(x,,y,,b,) is not in the technology set and the slacks
will be negative. The negative slacks contradict
(x,,y,,b,) € Tand 5, =0, s, =0, s, =0. There is
no strict inequalities, which implies DMU (x,,y,,b,) is
Pareto-Koopmans efficient when the p, = 0.

2.2 Multi-valued measures selection based on DDF
Toloo and Hanélova'' propose the DDF model to
select suitable value for the multi-valued indicators,
presented as

maxf3
. s
2;)‘/%' <zx,,i €l (4.1)
je
z}/\jxij <zx, +M(1-6,),i e :’,p =1,-P
je
(4.2)

+

DI Y5 JELA YR

M ielS Yo p=lien i rerS Yo

8,.,8,,8, € 10,1} ,iel"reR" feF"
(4.10)
(4.11)
(4)
where M is a large positive number. Denote the 8" as
the optimal objective function value, where 8° = 0.
Constraint (4.5)ensures 8° < 1. Model (4) ignores
the slacks, which may not guarantee the Pareto optimal
solution. Besides, it does not consider the inefficiency
of inputs, thus over estimating the performance.

3 Methodology

In this section, we introduce two modified slacks-based
models to handle the problems of multi-valued input/
output indicators. Then we incorporate the decision-
makers* goals to extend the models. Our models
consider decentralized decision-making cases and
centralized decision-making cases.

3.1 Modified slacks-based models without goals in

the presence of multi-valued indicators

3.1.1 Decentralized decision-making case without goals
In the decentralized decision-making case, DMUs make
decisions independently of each other. Therefore, each
DMU is evaluated by using its own preferred standards
referring to specific value of multi-valued performance
indicators. Here, we define p! for a specific DMU, as
follows .

A=0,jelielireRfelF

s 8» 81;

DIPILKIS

q9= lrERW Yo feFS Y

Fy 3

u=1feFM fo

Py =

S+P+S*+Q+S" +U
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which measure the inefficiency of the DMU, through the
ratio of slacks and the original value of input/output
indicators, and p) = 0. The following model (5) is
applied to yield the maximum improvements for DMU, ,
given the p,.

maxpM
s. L. ZAx =, —s,,i€el (5.1)
jel
Z)\,.x,.. <ux, -s, +M(1-8),
jel
el'p=1,-P (5.2)
ZAI,x =y, —s, -M(1-8),
jel
el!p=1,-P (5.3)
ZAjy,j =y, +tstrek (5.4)
jel
Z/\jylj g./yro +Srt) +M(l _5:4))’
jel
reRZ’,q= 1,---Q (5.5)
DAy, =y, ts, - M(1-8),),
jel
re RM q =1,---Q (5.6)
ZJ/\jbﬁ  —Spaf € F (5.7)
JE
ZAbﬁ\b —s, +M(1-8)),
feFlu=1,-U (5.8)
ZlAjbﬁ =b, -s, —M(1-8)),
JjE.
feF' u=1,-U (5.9)
Yo =1p=1,+P (5.10)
iE’j}I
Y8, = 1,g= 1,0 (5.11)
rER{y
28, =1lu= 1,-U (5.12)
/EFW
8,,8,,8, € 10,1} ,i eI",
reR" feF" (5.13)
A=,
jel
AjsSisSnss, =0,jeJielreRfelF
(5.14)
(5)

where M is a large positive number. (In our application
M is set equal to 10°). In model (5), the inequalities
ensure that the appropriate value of multi—valued input/
output indicators can be selected for DMU,. To be

specific, for the multi —valued inputs, &, = 1 means
Z)tx X = S, , and Zijijan—s;,sothatthe

jel jel

1 = x, — S, W isfi
constraints Ay o . are always satisfied for

jel
DMU, , that is, the 1
Otherwise, &, = 0 implies that the ;" input indicator is
abandoned. Analogous meanings are applied to multi—

* input indicator is selected.

valued desirable outputs and multi —valued undesirable
outputs.

Let
p(S) " (S;:lsu/;]" ’S:E*RSUR;)I ’st*ﬁ‘suf‘” ,6; Al” 6, =kRVI ’51; *ﬁ" )
denote the optimal objective functlon value of model
(5). DMU, is identified as efficient if p®* = 0;
otherwise, it is inefficient. Also, we respectively obtain
the selected values for multi-valued inputs, multi-valued
desirable outputs, and multi-valued undesirable outputs
when &7y = 1, &5y = 1, and
Additionally, for any inefficient DMU, , the targets of
inputs, undesirable outputs, and undesirable outputs can
be expressed as follows.

b * _
rery = L.

X, =x, —s. el

Xy = X, s, %80 21,1) =1,-P

Yo = Yt T € R 6)
Yo = Vo *s, %8 r e Rlg= 1,0
bfzzbfn_ e P

by = by, =5, %8 fe Flu=1,-U

Then, in order to demonstrate the advantages of
our model, we also use the model (3) to deal with the
multi—valued indicators. We can see that our proposed
model (5) deals with multi—valued indicators problem
to obtain the inefficiency score of the evaluated DMU
with one time calculation. Accordingly, model (3)
must be solved K times to find the optimal combination
of multi —valued performance indicators to ensure the
maximum improvement for each DMU, where K =

F
|[IAE ]'[ [RY | * ]'[ |F"|; that is, K is the
p=1
number of comblnatlons of multi—valued indicators with
each such indicators taking one of the respective value.
Specifically, model (3) can be converted into
model (7) to obtain the inefficiency score of DMU, by
solving the k" (k = 1,---,K) e Kcombination of multi
—valued performance indicators.

L

m+s+1 =1,
oSy ISy
IR WS
=ty r=1p
10 S

.
_ - . S Mk
s.t. x, = Z/\jxij ts,,0el’ Ul

jel
| (7)
S Mk
DAy, —s,re RRUR

jel

= Z‘;/\jbﬁ +s,.f e FPUF™"
JE

DA =1,

jel
A =0,5,=20,s,=0,5,=0,¢€]
In model (7), "™, R™  and F"™respectively
represent the set containing the selected multi - valued
input/ desirable output/ undesirable output indicators in

maxp,, =
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the k"(k = 1,---,K) combination. In addition, m =
S"+P,s=S"+Q,andl= S" + U denote the number
of inputs, the number of desirable outputs, and the

number of undesirable outputs, respectively. By
calculating model (7) K times, we obtain the optimal
objective function value p,(k = 1,---,K) for each
Assume p,,(s; " ,s, " ,s; " ,A7) =  max

k=1,.,K

p. ; that is, the ¢"(¢ = 1,---,K) combination is
selected. DMU, is identified as efficient if p,, = 0.

Theorem 3. 1 Denote the optimal objective

function value of model (5) and the optimal objective

function value of model (7 ) with multi-valued

performance indicators in k" (k = 1,---,K) combination

as p* and p'” " respectively, then it satisfies p>* =

combination.

max{p,f” ke K.

Proof We assume the optimal objective function
value of model (5) is
P(S) ' (si_:lsulﬁl ’S:RSUR;)I sS/T:FSuF" ,8; K]” 6, *R” ,8[) Pt ).
Let the optimal solution of model (7) be the d”,d € K
combination of the multi — valued indicators, that is
p"" = max{p\”* k € K} . The optimal solution of
model (5) with 8§ = 1,0 e I", &8 =
R"and 8" = 1, f e F" referring to the selected
multi-valued indicators is also a feasible solution to
model (7). We get the p»* < p{”* since model (7)
is a maximization problem.

Then we assume the [, R"™ ,6 and F™
respectively indicate the set of selected multi — valued
inputs, multi-valued desirable outputs, and multi-valued
undesirable outputs in the ¢",¢ e K combination.
Assume the maximum optimal objective function value
of model (7) isp” " (57" ,s" ,s; " ,A) with p" =
The solution of model (7)
liel™, 8" =1,re R",
and 5}”* = 1, f e F"™is also feasible solution to model
(5). Weget p* =p 7" = max{p”"
model (5) is maximization problem.

If the optimal objective function value of model(7)
is zero in all combinations of selected multi — valued
indicators, the optimal objective function value of the
model (5) is zero, according to Theorem 3.1, p* =
max{p.”* k € K| . In addition, when the optimal
objective function value of the model (5) is equal to
zero, the DMU is Pareto—Koopmans efficient. Through
model (5), we get the selected value of multi—valued
inputs/outputs with binary variables equal to one. Then
the combination of selected multi—valued input/output is
feasible solution to model (7), and we have the
maximum optimal objective function value of model
(7) since p®* = max{p” ",k € K|. When the
objective function value of model (5) is zero, the
objective function value of model (7) is zero under all

1,r e

max{p" "k e K} .
incorporating with 8" =

,k € K| since

the different combinations of selected multi — valued
indicators. According to the discussion in Preliminaries,
p'”" = 0is a Pareto—optimal solution, that is the DMU
achieve Pareto—Koopmans efficient when p’* = 0. To
sum up, our proposed model (5) is easier to calculate
the performance of DMUs through one time calculation
in the presence of multi—valued indicators.

However, model (5) is a nonlinear programming

problem. Model (5) can be converted into a linear
programming model following the way of Cook et al'*’ ;
The detailed transformation process is shown in
Appendix A.
3.1.2 Centralized decision-making case without goals
In the centralized decision-making case, all DMUs are
controlled by central decision-makers. The central
decision-makers make decisions from an overall
perspective rather than any individual DMU’ s point of
view. In other words, all DMUs are assessed by using
one consistent standard on performance indicators,
which is selected by the central decision-makers.

In the case of centralized decision-making, we
want to achieve the overall maximum improvements
with one consistent set of input/output indicators for all
DMUs. The model (8) is introduced and is shown as

n
M
max Z P,
t=1

ZA,-,xij =w,-s,,tejiel’ (81)
jel
DA, S, —s, +M(1-8),
jel
teljiel ,p=1,-P (8.2)
DA, =, —s, - M(1-8),
jel
teJjell,P=1,-P (8.3)
Z;A/lyrj =Yt rl’t e J,re R <84)
JE
DAYy Sy, sy M1 =8)),
jel
t E],reRZ’,q= 1,---Q (8.5)
ZJAjtyrj 2yrt ts _M(l _62)9
_]E
te]re jl,q= 1,---Q (8.6)
ZAﬁb,, by —s,,telfeF  (87)
zj)\ﬂbﬁ <b, —s; +M(1-8),
JE
tel]feF u=1,-U (8.8)
X;Aﬂbﬁ = b, —s, —M(1 _5;)’
JE
telfeFlau=1,-U (8.9)
25;': l,p=1,-P (8.10)
LEII‘V
2.8 =1g= 1,0 (8.11)
reR;}’
Y& =1lu=1,-U (8.12)
feFM
8,8,8, € 10,1} ,i e I",
reR" feF" (8.13)
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Z)\ﬂ =1, €], )\j,,si;,s:,,sf; =0,t,je J,iel,reRfeF
il (8.14)
(8)
where
- P TS + Q + Qy b
s 5,6 Mo S, 5,6
(Z;Jrzzg ;+22L+Zﬂ Zﬂ)
M iers Xig  p=lier) Yy rekS Yn q=1rerl Yn feFS b ferM b
.= el (9)

measures the inefficiency of each DMU and p! =0,1 €
J. A DMU belongs to the reference set if A, > 0,
where A, ,¢,j € J are the intensity vectors. In addition,
all the DMUs have the same value on the binary
variables  §;] W and & EF;,refemngto one
consistent standard.

Note that each evaluated DMU selects its preferred
input/output indicators in model (5), whereas model
(8) wuses the same performance indicators for all
assessed DMUs. The different selected standards lead to
different performance evaluation results for the DMUs.
Here, we discuss the relationship between models (5)
and (8).

Theorem 3. 2 The optimal objective function
value of model (8) denoted as p"® * is no greater than
the sum of optimal objective function values of model
(5) for each DMU denoted as p">* 1 e J, that is

M'(8) * M(5) *
p < Zp :

Proof Assume that the optimal objective function
value of model (5) is p"** for DMU, , and the
optimal objective function value of model (8) is p" ™~

Then, the solution for DMU, with p"®* obtained
from model (8) is a feasible solution of model (5).
Since the maximization problem of model (5), we have

plr = pM'(g)* Therefore, considering all DMUs, it

is plain that zpw(sn > prs) — pM”(8)* .

t=1 t=1

The model (8) has an advantage in computation
faced with multi-valued indicators, which selects
suitable value for multi-valued indicators in one time
calculation for all DMUs. Besides, model (8) can be
similarly transformed into a linear programming model ;
Appendix B gives the details.

In conclusion, comparing with the method of
Toloo and Hanclova“” , we propose the slacks-based
models to deal with multi-valued indicators, which
consider the inefficiency of all inputs and outputs and
can obtain Pareto solution. Besides, we consider the
performance improvement and guide the adjustment of

5"
re R}y

|

et

reRS

<2

ielS 0

fyy

p=1 zel" Xip ro

S+P+S*+Q+S" +U

inputs and outputs.
3.2 Modified slacks-based models with goals in the
presence of multi-valued indicators
In real-world practice, the selection of inputs/outputs
may depend on the decision-makers’ preferences ™ .
Goals such as the five-year economic development plan
in China, the expected sales in a company, and the
concentration limit on PM 10 represent the preferences
of decision-makers. Goals are often set in organizational
planning, which should not be ignored in performance
evaluation and improvement'” >’ As a result, the
goals may affect the selection of the multi-valued
indicators and thus influence the performance evaluation
results. Therefore, the goals of decision-makers should
be considered. However, the goals set by the decision-
makers may be unachievable or unambitious in
practice'"’. Besides, the established goals may not be
on best practice frontier. The DEA method provides the
best practice frontier, which can be seen as the
benchmark for the inefficient DMUs'"7'. Accordingly,
the DEA method can be used to guide the target setting.
Therefore, we extend the above proposed slacks-based
models by incorporating decision-makers’ goals. To be
specific, our proposed models consider the best practice
benchmark and decision-makers’ goals at the same
time, which aim to find targets on best practice frontier
as close as possible to decision-makers’ goals for
DMUs. In this section, we unfold from two cases,
including decentralized decision-making and centralized
decision-making, to illustrate the effect of decision-
makers’ goals.
3.2.1 Decentralized decision-making case with goals
We first take into account the goals from the perspective
of decentralized decision-making. Based on model (5),
we provide model (11) to help DMU, move towards the
best practice frontier and closer to decision-makers’
goal simultaneously. In this work, the objective
function related to goal p? is as follows:

¢ I, g s 19
cyy Ly Wy s
g=lrerlM Yo fers Oy u=1fepM fo

S'+P+ 5"+

(10)
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which measures the inefficiency about the goals for
DMU, , representing the gaps between the targets

(projection points) and the goals, and p¢ = 0. The
| s, | s&" [ and |s§ | in p# respectively represent the
deviations between input targets and goals, desirable

output targets and goals, undesirable output targets and
goals, where the targets refer to the projection points on
the effective practice frontier and the goals refer to the
decision-makers’ goals.

We want to achieve maximum improvement,
which maximize p! defined in Section 3.1.1 and get
closer to the goals, which need to minimize p¢ . Then
the model incorporating with the goals is as follows;

M
maxp,

minp}
s.t. (5.1 -5.9)

DAx, =gl s iel (11.1)
> Ax, $gfuj—]si' +M(1-8,),iellp=1,-P
- (11.2)
DAa, =g, -5 —M(1-8,),iel',p=1,P
~ (11.3)

ZA,y,,- =g, +sre R (11.4)

Z/\y,, < 8. +sg* +M(1-8,),reR q=1,-0Q

(11.5)

Zl\fxij 2gm + Sf: M(l _Si{,) r e R I’Q
jel

(11.6)

2)‘/'[7//‘ =g, —si SeF (11.7)

2)\,'17// $é’/o sh + M(1 —5;0) JeF  u=1,-U
jel

(11.8)

DAb, =gl -5 -M(1-8,) feFlu=1,-U
jel

(11.9)

DA =1,

jel
A =05, = 0,s, = 0,s, =0,
jelJielreRfelkF,
st si freei e I,r e R f € F (11.10)
(11)
The model involves two objective function. It can

be written as max(p! -—p?) when the model is

N

calculated. The p”in model (11) is the same as that in

model (5) due to the same aim, and g ,i €1, g, ,r €
R and gf”b . € F are the goals of inputs, desirable
outputs, and undesirable outputs, respectively. The
goals for each indicator can be determined by the
decision — makers depending on administrative policies
and the local situation. We can change the values of
g, gland gﬁ for different DMUs to set corresponding
goals. We can also set the same goals for DMUs with
the same values of g}, g’ , and g; for all the DMUs
based on the need of reality. When we consider the two
objective functions, the inefficiency scores for DMU,
should represent these two aspects, which is defined as
p?” = p +p¢. Function p® aims at minimizing the
distance from the targets to the decision—makers’ goals,
which is expressed by absolute distance. In other
words, model ( 11 ) simultaneously generates the
maximum improvement to the efficient frontier for the
inefficient DMUs and helps DMUs to get closer to the

goals. The projected point of DMU, obtained from
model (11) is as follows:
# _ I X gmE S
Xig = Z)‘jxij =%, =8, = &, ~8, el
jel
*o_ — Xk x X ¥
xio - Z/\]xl] - xio - *Bio - gin m 610 ’
jel
iel'p=1,.P
® _ + % g+ % S
Yo — ZA]yr]_ yr0+sro gro+sr0 rER
jel
* _ + y gtk y
Yo = XAy, = ¥, b, 58 = g, +slT w8
jel

r e R;W,q =1,---Q

* _ I b g g S
by, = )y Aby = by =5, = g, =8, S EF
jel
= = — < F bx b ®
by = 2 Mby= by =5t w8 = g - s %8

jel

feR ' u=1,-U
(12)

In addition to improving the input/output, the
results also guide the targets setting.

Note that model (11) is a nonlinear programming
model. We transform model ( 11 ) into a linear
programming model based on the way of Cook et al'* ;
details are in Appendix C.

3.2.2 Centralized decision—making case with goals
We now put forward our model for the centralized
decision—making case. We define the p¥ for each DMU
as follows:

| s&” P 18t g |56t |8 |58~ |54 51’
( it + + + I L St Ao Ef
¢ _ Lezl‘s Xy Pz;l ielll Xy rezlxS Y qg‘l reR) Yn fgs bjt ME‘I/”;” i (]3>
i (S +P+S"+0Q+5S" +U)
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It implies the gaps between the targets ( projection
points) and the goals for DMU,,: € J.

Based on model (8), we propose the following
model (14), which encompasses the decision—makers’
goals, given the p® and the p!” defined in Section 3.1.2.

n

M

max Zp,
t=1
n

min pr’
=1

s.1.(8.1-8.9)
DAx; =g —speliel  (14.1)
IZJ/\/, g S g —sy +M(1-8Y),
” tE]LE]) p=1,-P (14.2)
DA =g s - M-8,
" tel,ie Iy,p =1,--P (14.3)
DAy, =g +s5pelreR (14.4)
jZJ/\ﬁy,,- Sg +s M1 -9),
"~ telJreR ,g=1,-0Q (14.5)
SNy, =gl s - M(1-8),
"~ teJ,re R‘:’,q =1,-Q (14.6)
;)\ﬁbﬁ =g —si el feF  (147)
j;)‘ﬁb,} <g -5 +M(1-8),

teJfeF u=1,,-U (14.8)

Z/\jtbf =g —sf —M(1-85)),
telfeF u=1,-U (14.9)

(8.10 - 8. 13)

DA =lael]

jel

=0,s, =0,s, = 0,5, =0,t,
jelJielreRfelkF,
sh 84 s freeyt € Ji e I,r € R,f € F (14.10)
(14)
We use the similar way in Section 3. 2. 1 to
represent the objective functions of model (14). The

n

objective function can be represented as max( Y. p'
t=1
n

2 p%) in the calculation process. We define the overall
1=1

inefficiency score for each DMU as p” = p" +pf .1 €
J The model provides a consistent standard for all the
DMUs, as required by centralized decision-making
case. By solving model (14), the optimal objective
function value is obtained as

(20)*( + g-

P Sjtelgulw 5serR§UR”’ ,JnguFPI ,sjleﬁulwa
g+ % y ok b * *

S/ I‘EASUR”’S] fEI”UI‘VI, _]LEIW’ JrER”’ JfeFM s )7

¥

where j € J, The binary variables (&7, & cpy,

8 ;ry),J € J have same values for all DMUs. The

relationship of the performance between the
decentralized and centralized decision-making cases, as
Theorem 3.2 stated, is changed after considering goals,
which indicates that the goals impact the performance
measurement and improvements.

We use similar way to transform this nonlinear
programming model to a linear programming model for
the ease of calculation, giving details in Appendix D.

In conclusion, comparing the method of Toloo and
Hanélovd'?', we further propose the slack-based
models with the integration of goals in presence of
multi-valued indicators. The models get Pareto solution.
Besides, we consider the adjustment of inputs and
outputs, and the guidance of targets setting according to
the solution of our models.

4 Application to cities in the Yangtze
River delta (YRD) region

The Yangtze River delta (YRD) region, locating at the
strategic hub of China’s “Belt and Road” plan, plays
an important role in China’ s economic development'*’.
The strategic concept of “ Yangtze River delta
Integration” was first proposed in 1982 and becomes a
national strategy. The cities in the YRD region carry out
extensive cooperation and use the same rules and
regulations for management in some field. Increasing
attention is paid to energy conservation and
environmental protection in China, and the cities in the
YRD region are significant for China to convert to a
green economy. Therefore, in this
proposed models are wused on the environmental
performance evaluation and improvement for the cities
in the Yangtze River delta (YRD) region of China in
2017.

4.1 Dataset

Referring to prior studies , we select capital , labor,
and energy consumption as three inputs. GDP ( Gross
Domestic Product) and GVA ( Gross value added) are
two commonly used desirable outputs to assess economic
development "' . We define the multi-valued desirable
output as economic development, including GDP (v, )
and GVA (y,) , which are also used by Toloo and

[12]

section, our

[34,35]

HanClovda'™'. For the undesirable outputs, we chose
S0, emissions and NO, emissions'***"' . Furthermore , we
consider the particulate matter since the serious air
pollution situation exists in China. There are two
standards for particulate matter in the atmosphere
reflecting air quality; PM 10 and PM 2.5, which are
line with the aforementioned definition of multi-valued
indicators. Primary and secondary concentration limits
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Table 2. Input/output indicators

Input/output Variables

Units

Energy consumption: Total electricity consumption — x,

Labor; Number of employed persons at each year’s end «;

Capital : Total investment in fixed assets X,

Single-valued 100 million kwh

Single-valued 100 million RMB

Single-valued 10 thousand people

Economic development: GDP ¥y Multi-valued 100 million RMB
Desirable outputs
Economic development: GVA ¥, 100 million RMB
""""""""""""""""""""""""""""""""""""" Pariculate matier; PMIO b Multivalued  um'
Particulate matter; PM2.5 b, /um’
Undesirable outputs
NO, emissions by Single-valued /um’
SO, emissions b, Single-valued /um’
Table 3. Cities in Yangtze River delta.
Provinces/ municipalities Cities
Jiangsu Nanjing, Zhenjiang, Yangzhou, Changzhou, Suzhou, Wuxi, Nantong
Zhejiang Hangzhou, Huzhou, Shaoxing,Ningbo, Jinhua, Taizhou
Shanghai Shanghai
Anhui Hefei, Wuhu, Chuzhou, Maanshan, Tongling, Chizhou, Anqing, Xuancheng
Table 4. Descriptive statistics of the data.
Energy consumption  Capital Labor GDP GVA PM 10 PM 2.5 NO, SO,
Mean 432.38 3589.85 377.36 6808.42  65%4.50 73.65 46.69 40. 45 14.82
Median 303.30 3228.95 312.90 4736.15  4509.89 76.00 45.00 40.00 14.50
Min 61.21 714.59 76.49 624.35 621.42 54.00 32.00 22.00 7.00
Max 1526.77 7246. 60 1372.65  30632.99 30122.98 93.00 60.00 52.00 27.00
S.D. 395.45 1859.34 276.62 6751.48  6579.56 10. 85 7.41 7.18 4.30

for PM10 and PM2. 5 are set in China’ s Ambient air
quality standard GB3095-2012. Our example uses a
multi-valued undesirable output measure for particulate
matter, including PM10 (b,) and PM2. 5 (b,) “*'*'.
Table 2 summarizes the input/output indicators.

The data is collected from the China Statistical
Yearbook, Urban-level Statistical Yearbook, and Urban
Environment Bulletin. Based on the YRD urban
agglomeration development plan released in 2016, 26
cities are included in the YRD region. Because of data
availability, Yancheng, Taizhou, Jiaxing, and
Zhoushan are excluded. Table 3 presents the provinces/
municipalities and their constituents. The data statistics
description is reported in Table 4. There are gaps among
the cities shown in the line “S.D.” of Table 4.

4.2 Results and analysis
We set the same goals for 22 cities in both decentralized
and centralized decision-making cases for easily

calculation and comparison. In order to illustrate the
effect of decision-makers’ goals, the values of goals are
obtained following the way of Ruiz et al"*’. The goals
of inputs, the goals of desirable outputs, and the goals
of undesirable outputs are respectively set as xj —(x -
x};‘i" )72, vy +(yyt -y ) /2, and by - (b)Y —b};‘i" )/2,
where x;', y;', and b respectively denote the average

th

value of the ;" inputs, average value of the r" desirable

outputs, and average value of the f" undesirable

outputs; y,;*, x;" , and b;}‘i" respectively denote the

. 1
maximum value of the r"

desirable output, minimum
values of the i" input and minimum values of the f"
undesirable output. The initial values of the decision-
makers’ goals are listed in column 2 of Table 10.

On the one hand, under the decentralized decision-

making case, the frequency of selected multi-valued

1
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Table 5. Frequency of selected multi-valued
indicators in decentralized case.

With goals

Without goals

Y1 Y2 b, b, Y1 Y2 b, b,
9 13 11 11 11 11 16 6

Table 6. Frequency of selected combinations of
multi-valued indicators in decentralized case.

Without goals
%.YI by J {r, ’b2} {9,0, ! U’zabzf {J'l by J %yl ,b, } %yz Wby J U'z ,bz}

3 6 8 5 8 3 8 3

With goals

indicators and the change of the selected combinations
of multi-valued indicators, obtained from models (5)
and (11), are respectively shown in Tables 5 and 6.
We can identify the indicators that need improvements
through the frequency of selection. The higher the
frequency of being selected, the poorer performance of
most cities on this indicator. For instance, the most
frequently selected indicators is PM 10 ( b,) (16 times)
if considering the goals, which means most cities need
pay more attention to the PM 10 ( b,) in view of the
current level and targets setting. On the other hand, in
the centralized decision-making situation, all cities are
evaluated with the same standards, i.e. , they have the
same selected combination of the multi-valued
indicators, that is, {y,,b,} and {y,,b,| obtained from
model (8) and model (14), respectively.

By solving models (5), (8), (11) and (14), the
inefficiency scores of 22 cities are obtained and reported
in Table 7. Considering the situation without the goals,
we draw the following conclusions. Firstly, less than
60% of the cities are efficient, whose inefficiency score
equal to zero. It means that some cities are still
environmentally inefficient, which calls for more efforts
and management  strategies in  environmental
improvement in the YRD region. Secondly, some cities
such as Changzhou, whose inefficiency score under the
centralized decision-making case (0.2043) is lower than
that under the decentralized decision-making case
(0.2146 ). Besides, it is clear that the average
environmental performance in the centralized decision-
making case is lower than that in the decentralized
decision-making case, as seen in the last row of Table
7; this result is consistent with Theorem 3. 2, and
implies that characteristics of some cities may be ignored
in the centralized decision-making case. Thirdly, under
the same decision-making case, there are inter-city gaps
in the environmental performance in the YRD region,
which is consistent with the initial judgment in our

Table 7. Inefficiency scores of the cities.

Without goals With goals
Cities
Decentralized Centralized Decentralized Centralized

Nanjing 0. 0000 0. 0000 0.4261 0.4288
Zhenjiang 0. 0000 0. 0000 0.6336 0.6336
Yangzhou 0. 0000 0. 0000 0.5975 0.6152
Changzhou 0.2146 0.2043 0.5439 0.5723
Suzhou 0. 0000 0. 0000 0.3970 0.4095
Wuxi 0.1716 0. 1466 0.4758 0.4480
Nantong 0.1063 0.1063 0.5194 0.5194
Hangzhou 0.1681 0. 1659 0.4420 0.4222
Huzhou 0. 0000 0. 0000 1. 0450 1.0537
Shaoxing 0.1903 0.1775 0.5703 0.5764
Ningbo 0.1439 0.1388 0.4509 0.4842
Jinhua 0. 0000 0. 0000 0.8879 0.8879
Taizhou 0. 0000 0. 0000 0.7428 0.7651
Shanghai 0. 0000 0. 0000 0.4507 0.4509
Hefei 0. 0000 0. 0000 0.5388 0.5558
Wuhu 0.1133 0.1019 0.9809 0.9814
Chuzhou 0. 1404 0.1397 1.7634 1.8052
Maanshan 0.2187 0. 1807 1.7275 1.7468
Tongling 0. 0000 0. 0000 2.9084 3.0638
Chizhou 0. 0000 0. 0000 5.0454 5.0542
Anging 0. 0000 0. 0000 1.9454 1.9770
Xuancheng 0. 0000 0. 0000 2.4571 2.4933
Average 0. 0667 0.0619 1.1614 1.1793

descriptive analysis in Table 4. Take the decentralized
decision-making situation as an example, where the
largest inefficiency score is 0.2187 (Ma’ anshan) and
the lowest inefficiency score is 0 (such as Nanjing) in
Table 7.

Considering the situation with goals, the
environmental performance results obtained from models
(11) and (14) are shown in columns 4-5 of Table 7.
We conclude the following results to illustrate the effects
of goals. Firstly, compared with the case without goals,
the higher inefficiency scores mean worse environmental
performance due to the additional constraints of the
goals. However, using goals avoids the problem that the
performance evaluation under the centralized decision-
making case is always higher than that under the
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6.0

Inefficiency scores

Citie
——&—— without goals

with goals

Figure 1. Inefficiency scores for cities under centralized
decision-making case.

decentralized decision-making case without goals, e. g. ,
Nanjing, Changzhou. Secondly, considering goals
enhances the discriminability of the models on DMUs.
For example, under the centralized decision-making
situation, there are more obvious differences among
cities, where the gap between the maximum and
minimum inefficiency scores is 4. 6447 and 0. 2043
respectively, seen in Table 7. The environmental
performance gaps among cities are better distinguished,
seen in Figure 1. Cities with more advanced economies
often have a better environmental performance, as
exemplified by Nanjing, Suzhou, and Shanghai.
Besides, some DMUSs such as Hefei that are classified as
efficient when there are no goals can be distinguished
after considering the goals. Besides, Suzhou have the
best performance with the lowest
inefficiency score, which may be attributed to
impressive economic development, and its economic
level ranks among the top in China. However,
Chizhou, as a less developed city, has the worst
environmental  performance with the maximum
inefficiency score, i.e., 5.0454 and 5. 0542 respectively
under decentralized and centralized decision-making
cases. The developed cities often pay more attention to
the environment, which accords with the reality of China.

We then discuss the differences across provinces
according to the regional division in Table 3. First,
under decentralized decision-making case, provincial
capitals such as Nanjing and Hefei ( excepting
Hangzhou) are environmentally efficient. The reason
for the low environmental performance of Hangzhou
may be that more human activities increase pollution
( undesirable outputs ). In addition, the capital of
provinces often has a better environmental performance.
Hefei, the capital of Anhui, has abetter environmental
some cities in other

environmental

performance compared with
provinces, such as inefficiency score 0. 5558 versus

Table 8. Average inefficiency scores of 4 provinces/municipalities.

Without goals With goals

Provinces
Decentralized Centralized Decentralized Centralized

Jiangsu 0.3170 0.3149 0.5820 0.5709
Zhejiang 0.4216 0.4195 0.7655 0.7314
Shanghai 0. 0000 0. 0000 0.4507 0.4726

Anhui 0.5080 0.5075 2.2531 2.2673

Yangzhou’s 0. 6152, as seen in column 5 in Table 7.
Second, unbalanced environmental performance exists in
YRD region according the average inefficiency scores
for different provinces, shown in Table 8. Taking the
centralized decision-making case as an example,
Shanghai has the best environmental performance, and
Anhui has the worst environmental performance. The
results are more direct, seen in Figure 1. The cities in
the right part of the graph with large fluctuations belong
to Anhui province. Compared with other provinces or
municipalities in YRD region, the reason behind the
situation may be less-advanced economy in Anhui, and
the government pays more attention to economic
development rather than the environment. This result is
not find in the case without goals, which implies the
important role of goals. Besides, there are gaps among
internal cities in Anhui province. Therefore, Anhui
province needs to improve its environmental
performance and it is necessary to adopt environmental
policies tailored to local conditions for different cities.
The environmental inefficiency scores indicate
these cities have the potential
environmental performance by adjusting their input/
output. We consider the situation with goals and the
adjustments of input/output can be obtained from
models (11) and model (14). Taking Ma’ anshan as
an example, the adjustments of input/output indicators
are listed in Table 9. There are some differences in the
selected indicators, which affects the degree of
improvement of input/output indicators, such as the
adjustments for PM 10 (b, ) with 9.9 in decentralized
decision-making case, and PM 2.5 (b,) with 0. 62 in
It means Ma’

to enhance the

the centralized decision-making case.
anshan needs to pay more attention to the governance of
PM 10 (b, ), which reflects the short board of Ma’
anshan in environment. However, from the centralized
decision-making case, the selected PM 2. 5 (b,) is
short board for most cities in YRD. In short, for the
purpose of supporting decision-making, it is useful to
comprehensively consider different decision scenarios
and the effect of goals.
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Table 9. Adjustments of input/output indicators for Ma’ anshan.

With goals
Initial values
Decentralized Centralized

5] 455.03 0 0

S5 3896. 30 612.43 379.93
s5 281.70 0 0

s 6618.42 699.07 /

5 6241.54 / 1176.56
st 73.00 9.9 /

s 47.00 / 0.62
st 41.00 6.7 0.49
st 17.00 3.8 3.17

[Note] “/” means unselected indicators.

Setting suitable goals is a common policy to guide
the environmental governance. Take the cities Nanjing,
Jinhua, Shanghai and Hefei as examples, which are
identified as efficient DMUs under the case without
goals and are respectively located in Jiangsu, Zhejiang,
Shanghai, Anhui, corresponding to the regional division
of Table 3. Unlike the situation without goals,
considering goals distinguishes these DMUs, and it
guides the targets setting for these cities, as shown in
Table 10. For inputs and undesirable outputs, the less is
the better. The negative adjustments show that the goals
are unachievable based on current situation, and it is
more reasonable to set a higher value of goals. The
positive adjustments show that the lower value of goals
are suggested. In light of Table 10, for example, we
take the SO, emission (b, ) as an example. The
negative adjustments for Nanjing (-15.77) means that
the goal of decision-makers on SO, emission ( b,) is
currently unreachable, and higher value of the goal is
suggested. However, for Jinhua (2.23), the positive

adjustment means that lower value of goal is suggested.
The analysis results for desirable outputs are contrary
since the more is the better. The negative adjustments
mean the goals are too high to reach currently and lower
value of goals are more appropriate; the positive
adjustments imply that it suggests to set higher value of
goals. For instance, negative adjustments for Nanjing,
Jinhua, Hefei under the centralized decision-making
case indicate that the goals on GVA( y,) need to be set
lower value. However, the goals on GVA ( y,) for
Shanghai with a positive adjustment under the centralized
decision-making case is overly low and higher value of
goal is suggested.

In conclusion, our approach evaluates the environmental
performance and guides the improvement in the presence
of multi-valued indicators, and further provide the
insight in incorporating with decision-makers’ goals.
Given the aforementioned analysis, the environmental
performance of cities has room to improve in the YRD
region; the cities need pay more attention to energy
conservation and environmental protection policies, and
prevent  short-sighted goals which ignore the
environmental protection. Besides, the decision-makers
can keep the whole picture of the centralized and
decentralized decision-making cases in mind to support
decisions on the environmental protection. Furthermore,
adjustments in the environmental policies should be in
line with the situation in each city due to gaps among
the YRD cities, and the cities need to learn from
successful practice and strengthen inter-provincial
cooperation to achieve an integrated development strategy
according to the practice. Additionally, apart from the
environmental protection regulations and laws,
appropriate goals should also be correlated with
environmental protection efforts.

Table 10. Adjustments of goals for four cities.

Nanjing Jinhua Shanghai Hefei
Goals
Decentralized Centralized Decentralized Centralized Decentralized Centralized Decentralized Centralized

" 246. 80 -310.16 -310.16 -90. 88 -90. 88 -1279.97  -1279.97 -49.29 -49.29
sz 2152.22 -4062.98  -4062.98 -48.30 -48.30 -5094.38  -5094.38  —4199.21  -4199.21
Sf3 226.93 -230.67 -230.67 150. 44 150. 44 -1145.72 -1145.72 -311.17 -311.17
Sfl 18720.71 =7005. 61 / / / 11912.28 / -11717. 66 /
sz 18358.74 / =7004.97 -14474.45 -14474.45 / 11764.24 / -11551.03
i, 63.83 / / / / / / -16.17 /
57:2 39.35 -0.65 -0.65 -2.65 -2.65 0.35 0.35 / -16.65
553 31.23 -15.77 -15.77 2.23 2.23 -12.77 -12.77 -20.77 -20.77
s§ 10.91 -5.09 -5.09 0.91 0.91 -1.09 -1.09 -1.09 -1.09

[Note] “/” mean unselected indicator.
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5 Conclusion

Unlike the traditional DEA methods considering single-
valued performance indicators, in this work, we first
propose two modified slacks-based models to select a
suitable value for the multi-valued indicators. Then we
further incorporate goals into the proposed models.
Aiming for more practicality, our proposed models
consider two cases of the decentralized and centralized
decision-making. Using an empirical example of 22
cities in the Yangtze River delta region in China, we
demonstrate the applicability and practicality of our
models.

To sum up, our models make the following
contributions to the literature on multi-valued indicators
in DEA. First, the new models not only provide insight
into performance measurement, but also guide
adjustments on input/output indicators and targets
setting. Secondly, our models with the goals
demonstrate that the performance evaluation and
improvements are more in line with the expectations of
decision-makers. Third, comparing with the modified
SBM model, our models are easier to deal with multi-
valued indicators through one time calculation. Fourth,
our models are practical considering the goals of
decision-makers in both the decentralized and centralized
decision-making cases, which provide multi-faceted
support for decision-makers.

This study can be extended as follows. First, the
goals in this work are virtual values calculated from the
original inputs/outputs data set. The goals are usually set
by the interaction among decision-makers, considering
many factors such as polices, prior performance in
practice and are usually established before the
performance evaluation. Future research can use the
actual existed goals in specific practices. Besides, our
models guide the targets setting, and the projection
points obtained from our models can be set as new goals
for the next production period according to the practical
need. Second, our models assume that all the DMUs
and all inputs/outputs of each DMU have goals. In
reality , some indicators have no explicit goals; for these
indicators, our models can be modified by removing the
corresponding constraints of these indicators on goals.
Third, besides the environmental performance
evaluation, the models can also be used in other fields
based on the actual need.
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Appendix A

We first propose the Proposition 1, which is useful for converting the model to a linear programming model. The
Proposition 1 is as follows.
Proposition 1  For each DMU, ,; € J, the following inequalities hold

Osz;Sbﬁ,0$s;$r’25}x{yrt€,0$sf VfeFreR,iel (A. 1)

y U ’

Proof For a specific DMU, under VRS, we have b, —s, = 0 because of the constraints Z Aby = b, —s,,

jel

by, =0, s, =0, and A, > 0. Similarly, we have v, = s; = 0. Besides, it obtains maxy, > DAy, =y, +sh =

fo
0 because of the 2; A=

J€
The specific process of converting into a linear programming model is as follows. We use the z} ,i € I'', z,

P ro %

reRand 7} fe F) to replace the variables s.8;,, 5.8, , and s,5;

"o ro~ro 9 fo o

which cause the nonlinear problem. Then
the objective function p!” is rewritten as

DIERD D T R NI T Wb I

LEIS i0 LEI"I 7 rERs rERVI ro feFS b u= leF”
S’+P+SR+Q+SF+U
We get the mixed—integer linear programming problem (MILP) model (A.2).

maxp,’
s.t. (5.1 -5.14)
0=z <8 x, € [‘T’,p= 1,---P (A.2.1)
0<s, -z, < (1 -6;)xy,i EI p=1,-P (A.2.2)
0<z <0 m ax%y”},reRq ,q=1,---0Q (A.2.3)
0<s -z <(1-8 )max{y"% 3’,q= 1,--Q (A.2.4)
O$zﬁ, SfObﬂ,, e Fy,u— 1,---U (A.2.5)
0<s, -z, < (1 -8,)by.f e Fﬁ’,u_ 1,--U (A.2.6)
)\I,,O/O,s,u 0,5, =0,jeJ,iel,reRfeF

2“ro

=0,z, = O,zfn O, el,reRfeF
(A.2)

Proposition 2 Model (A.2) is equivalent to model (5).

Proof The single-valued indicators are the same for model (A.2) and model (5), so we only discuss the
multi-valued indicators. For simplicity, we presume one multi-valued input, one multi-valued desirable output, and
one multi-valued undesirable output, which indicates P= 1, 9 = 1, and U= 1. We assume that J, = l,a € I, o =1,
¢ceR';and 8 = 1,d € F!, which means that we select the a" value for the multi-valued input, ¢" value for the
multi-valued desirable output, and d" value for the multi-valued undesirable output, respectively. Then, the objective
(Zi"'si;}"'zi L0+Zsjo S(lu

ierS X0 X ersYo Yo o jers b/o bd()
ST+1+8+1+8 +1
multi-valued input are 2} Ax,y S %, =S, 2; AjX =X, = S, z; Ay S =5, +Mi#ae 1", and z‘z Ajx =
J€ JE JE JE
x, —s, —M,i # a e I'. By Proposition 1, we have 0 <s, <ux,,i € I]'. The constraints of the multi-valued

Lo
+ + M
Yo t S0 3 2/\jyrj sy, ts, +M,r#c e Ry; and
jel

function of model (5) is py = . The corresponding constraints for

<

desirable output are similar; Y, A Vi < Ve TS0, Y A i =
jel jel

E}Ajyrj =y +s' —M,r#c eR). By Proposition 1, we get 0 <s' < rtrgx%y I,r € R). For multi-valued

JE

undesirable output, we have 2 Aiby < by, =54, z Aby =b,, —s,, ZAjbﬂ Sby—s, +Mf#d e F!', and

rt

0

D Ab;=b, - Mf;édeFw We get O\sju\b JeF) fromPr0p0s1t10n1
jel

. M y M W
In addition, sincez; = s.96. ,i € [ =58 ,reR a el

w09 P 5 m ro~ro q 5

" :
and z/O = 5,0 o,fe F. , we have z,, = s,

u ao ao
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y

c e R1 ; and z), = s, ,d € F'. The objective function of the model (A.2) is then rewritten as p, =

z;‘(} = Sl(),
+ + - -
( Z Sty Seo | S de)
iers X xlO rE[\’S Yo Yo feFS b/O bjO

il rS s laS 1 , which is equivalent to the p” in model (5).
+1+S8+1+8"+

We first prove the same objective function between model ( A. 2) and model (5). Then we focus on the
constraints of two models. We get the relevant constraints of model (A.2). The constraints of the multi-valued inputs
are ZijWSxW—s;O,Zij(,jax(w— O=s, =x,0=<x,,and Zijij$xiu—3;+M,i#aEI‘?’,Z)\MB

jel jel jel jel

x, —s, —-M,i#a el 0<s, <x,,i # a € I'. For the multi-valued desirable output, the constraints are
ZAjyrjsmerS;’ zAfyrjamersm’Ogs;smaX%ycz}’OsmaX%yrt} 7and2)\jyljsym+s:n+M7r#ce
jel je ’ te] o7
R, YAy, =y, +s, -Myr#ceR', and0<s) <max{y,|,r#ce R'. When it comes to the multi-valued
jel tel]
undesirable output, the constraints are 2)\,-17,1]- <b, —s,, Zijdj =b, —s,, 0 =5, =b,, 0=<b,,
jel jel
- M - M - M
and E;A_,bﬁ <b, -s, +Mf#deF, E;Ajbﬁ =b, -s, ~Mf#deF' 0<s, <b,f#decF These
JE€ Jj€

constraints are also the same between the two models. Therefore, we have Proposition 2. When there are more than
one multi-valued input/output, the analysis is in a similar way.

Appendix B

Similar to the method in Appendix A, we transform the nonlinear programming model (8) to MILP model (B.1).

We employ z,i € I, 2 ,r Rw and 2\ f e F " to replace the variables 5,87, s, 8 and sﬂéb , respectively. We

it » P e 9 fi
t
(L + 3 2 DD IS Iy DI
1
iers X P= LEI” it reRS Yr q= lreR”yrt jEFSb u=1yferM /t

,t € J. Then the

M
assume stands for
P S+P+S*+Q+S8" +U

model (B.1) is written as
maXEpr’
t=1
s.1. (8.1 -8.14)
0=z <&« te]ze[},p l,---P (B.1.1)

it i 115

0<s, -z, < (1 =-6)x,,t € J,ie ;I,p 1,---P (B.1.2)
O$zi}$5im3x§yn} te]reRgl,q_ 1,--Q (B.1.3)
0<s -z, <(1-98) maX%y”f te]rERq ,q= 1,0 (B.1.4)
0<z, <8b,,telfeFlu=1,U (B.1.5)

0<s, -z, < (1 -8 byt el feFlu=1,-U (B.1.6)

Aiysy, 20,5, 20,5, =20,j,0e Jiel,reRfeF
z, /O,Z” /O,z;’? =0,ielreRfeF
(B. 1)
Proposition 3 Model (B. 1) is equivalent to model (8).
Proof The proof process is similar to that in Proposition 2.

Appendix C

We first propose the Proposition 4, which can be used in the process of converting into a linear programming model.
Proposition 4 For any DMU,,j € J , the following constraints hold.
g —maxix P58 < gf —min{xij} ,Jel
jel jel

v

mln{yrjé -g <s <maxly —g,reR
je jel
b - b .
g ~ max{b/j} Ssp S g - S_réljn{bﬁ% JeF
(C.1)
Proof Under VRS assumption, since 2 A, = gi — s and mln 2 Ay < max% j} ,i € I, we have

12 1
jel jel
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g - max{xlﬁ s g - mln{x-} ,i € I. Analogously, we get min%yrj} —g s < max%yrj} -g.,reR

jel jel jel jel

— y b - b

because of z Ay, = g +sf andmljn Z)\yrj < majlx%y.} ,7 € R. We also have g; - r]_r;ajlx%bﬁ} Ssf S g -
min{bﬁ},fe F due to ZAfbﬁ= gf—sf andmm% fj Z/\b \mdxi ﬂ}feF
iel PR . oo, ~

Then the detail of converting into a linear programming model is as follows. We make the following conversion
for input/output indicators |s¢ |= wu, +wv,, s = u, —v,; | 5= u, +v,, s =u, —-v,; and | sg | =

o _ . o .
ug, + vfo, sp, = ufo U respectlvely The p can be rewritten as

2 (u,, +v, 21) ]z (u,, +: z (u, tv, 2 z (u, + Z ”fo”fo 22 (u;, + bffo &

g _ il X iell reRS Y0 rER” Yo feFS ‘/0 u=1feFM o

Po S’+P+S“+Q+S”+U
Because of (u, +v,)8,, (u, +v,)8, , and (u, +wv,)8, , the model is still nonlinear, we utilize the method in
Appendix A. We replace u, *6;, , v, *8; ,u, *8, ,v, *6, ,u 61’ and v, *6 with 2\, z,, 2, 2., zf”u" and zf”u" ,

respectively Then we rewrite pi as
m ‘u v bu
2 (u,, +v, 2 2 Z (u, 2 Z "t 2) N 2 u/U +le 2 Z z/0 +z/0
g ielS Yio zelw Yio reRS rerl Yo feFs b/o u=1yfecph bjO
Po S+P+SR+Q+SF+U '
For the sake of simplicity, we employ UB;, , LB;, UB’ LB{U, UBf".O , and LB ,to respectively represent the g —
~ g, minly,| ~ g, g ~minib;| , and g, ~ max|b,| for DMU, according

min{x, |, g, - r]_rg;x{x,-,-% , glgjx{yr,-%

jel

toProposition 4. Then the constraints are rewritten as

LB, <s¢% = u, —v, <UB;,iel
LB, <s¢ = u, —v, <UB,,r e R (C.2)

LB, <si = u, -v, <UB, .feF
Then we express model ( C. 3) utilizing Propositions 2 and 4 as follows, given p* and p! in model (A.2).
maxp,’
minp?
s.t. (5.1 =-5.9)
Z)‘j%‘ =g - (u, —v,),l € P

jel
Y Ax, =g, ~(u, —v,) +M(1-8,)iel,p=1,-P
jel
Zijlj Bg; - (uio _Uiu) _M(l _61),L’ € I;I!p = 19.”P
jel

— Y _ S
2])\/9,17_ gro+<ur0 Uro)’rER
Jje

Z)\yr] \grn + (um _1}m> +M(1 _ain)7r € R;/I7q = 1’”.0

ZM =g+ (u, -v,) ~M(1-8),reR ,q=1,-Q

jel
Z)‘jbfj = g;o - (ufn _”fn),fe F
jel
27)\_,-17_,_7 Sg_;lin - (ufo _Ufb) +M(1 _5,12{,)’][6 Fy,u =1,-U
Jje
2)\ ngo_(uf_vﬁ,>_M(l_(sjb-o>’f‘e F';I/l’u: 1’-..U
(5. 10 -5.14)
(A.2.1 -A.2.6)
S, *LB, <z, —z, <&, * UBLO,L € ]‘U p=1,-P
(1 -6,)LB;, < (u, —v,) - (an” <(1-8,)UB,,iel ,p=1,-P

6, *LB,, <z, - 5’ *UB),,r € R ,qg=1,--Q
(1 -6,)LB;, < (u, —v,) - (zi;‘ —z,) < (1-8,)UB,,r e R/,q=1,-Q
8, *LB;, <z -z <&, *UB, fe F u= 1,---U
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(1 =8,)LB;, < (u, —v,) = (5 —z7) < (1 -8,)UB,, fe F),u=1,-U
/\jBO,'BOS /Osf =0,jeJ,iel,reRfelF

z, =0,z =0 zf =0,iel,reR,feF
w = 0,20, =0,z 5 =0ielreRfelF
=0,0, =0,u, Bo,vm =0,u, 20,0, =0,iel,reR,feF
(C.3)

Proposition 5 Model (11) is equivalent to model (C.3).

Proof Following the proof process of Proposition 2, we mainly focus on the multi-valued indicators and assume
that the model has one multi-valued input, one multi-valued desirable output, and one multi-valued undesirable
output, which indicates P = 1, Q = 1, and U = 1. We also assume that §, = l,a € I'; 8, = 1l,c € R; and
8" =1,d € F)'. We only need to verify the part about goals because of Proposition 2. The objective function about

do

goals of model (11) is

u, +v u, tv u, +ov u, tov u, +uv, u, +v
s Ot n) () s () Gt s G ) | (i * )
iclS X X 40 reRS Yro Yeo feFS b fo b,
SS+1+8 +1+8" +1
The corresponding constraints about goals for multi-valued inputs are Z Ax, < g, ~ S, Z Ax, =g, — S,
jel jel

X _ & . M x
Zijingw % +M,L7éae[l,and2)\jxij2gw

jelJ jel
$$7 = u, < UB;,,i € I)'. For multi—valued desirable outputs, the constraints on goals containing Z Ay, <

o Lo Lo
iel
y g+ M y e+ _ M
gw+sw, Z)\Iyq/gw+sw, ZAjyrj$gm+sw +M,r # ¢ € R} and Z/\jy,jzgm+sm M,r #c e R;.
jel jel jel
Based on Proposition 4, we get LB, <" = u < UB,,r € R‘” . For multi-valued undesirable outputs, we

ro ro

have ZAJ.bdj < g -5, zAj.bdj =gl - s ZAb <g, -5 +Mf#deF', and Z})\jbﬁ =g -5 -
JE.

-5 = M,i # a e I]'. By Proposition 4, we have LB} <

M.f ;é d e F'. We get LB <si = u, - UB;O, e F)' from Proposition 4.
In addition, since z}“ = u,, * 8}, ,z' = v, *SfU,L ell'; 2= u,*8,,z20= v,%8,,re Rl'; and z, =
82} ,zfn = 5}0, e F)', we have u, = 2" v, = z2',aell'; u,=2"w,=2",ceR);and u, = z(biz,
vw =z .d F . The objective function about goals of model ( C. 3) can be rewritten as
2 (u, +v,) (u +v,) Z (u, +v,) (um +u,) Z (uﬁ) +1;f0 (udo +1)d0)‘
ielS X X 40 reRS Yro Yeo feFS bfo b,

which is the same

9

S'+1+8" +1+8" +1
as that of model (11).
We now discuss the relevant constraints about goals in model (C.3). The constraints of multi-valued inputs are

x _ - X & > 4 - —_ = X &7 & T = - < v
z )\/ aj = 8o <u“uo Uuo) 8o Sao » z ijaj = 8w (uuo Uuo) 8o Sao » LB Sao Uy Vo UBuo ’

jel
andz)\/xijggjo_(uio m) +M= gw Si)7+M’i#aEIllw’ z/\jxijag':o_(uio_vio -M= g?‘o—siﬁ_M’
jel jel
i#ael, LB, <s% = u, —v, <UB,,i#a el Forthe multi-valued desirable outputs, the constraints are

Y — = y g+ § — - Y g+ ¥ N — u
Z /\]yq = gco + (u’co v('o) - gco + sLO ’ Z A/ycj = gco + (uco v('u) - g('o + Seo ’ LBL‘O = ‘Sco - uco v('u = UBL ’
jel jel
¥ — = o) s M ¥ _ — = o gt _
and Z A/yr] = gm + (u’ru 1)70) + M - gm + ‘Sro + M’r ;é ¢ €& Rl ’ Z A]yr] = gro + (um vm) M - gm + Sm
jel jel

" :
M,r #c e R, LB, <& =

ro

u, —v, < UB',r #c¢ € R)'. When it comes to the multi-valued undesirable output,

the ConStraintS Contain 2 /\jb = grla (udn - v(ln) = g(bla - SZ(: ’ 2 )\]bﬂ = grbia - (udo - Uria) = g’r)la - Sf’ir: ’ LBfla =
jel jel

o _Udn = UBfla ’and ZA}bﬁgg;n _<uﬁ; _Uﬁ;) +M: gj[io _Sj“fz; +M’f;éd € F]”’ zAjbijg;n _(ufa -

jel jel
v,) —M= g, - s, —M,f#d e F' LB" Sy, = U, T, S B;o J#d e F!'. We prove that both the constraints
and the objective function about the goals are the same in the two models. Therefore, combining with Proposition 2,
we have Proposition 5. When there are more multi-valued inputs/outputs, the analysis process is analogous.

g-
Sdo

:ud
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Appendix D
We consider the DMU,,z € J under centralized decision-making case. We assume that | s |= u, +v,, & =
wy ~ v, | 5= w, v, 8= u, -v,, | s = u, +v,and 5§ = u, - v,for input/output indicators. The pf

can be rewntten as

2 Z 2 (u;, +v, Z (u, +v, 2 2 (u, +v, 2 uﬂ+1/ﬂ 22 u/,-l[;v

1 1
iers %y P e Xy rerS  Yn 7 v ery Yn feFs fy w=1fcrl I

S+P+§+0+8"+U
xu xv yu yv bu by X x ¥ y b b
We use z;', z z z Z and z; to represent u, *6;, v, *8;, wu,*68,, v,*0,, u,*8 and v, *5;

it it t 9

respectlvely Then, we express p¥ as

(u, +v,) 0 (' +2)) i, (' +2z) (ug +vy) (2 +z))
DIECRULED D MRS JEALLNS D) oy )y oy el
ield x:[, LEIW LI reRS rl I’ERM yrl feFS ft u=1fefM ft

S'"+P+S*+Q+S"+U
Then, using Propositions 3 and 4, we rewrite the model as follows, givenp" in model (B.1) and p* .
max :l:]pfw
. n gn
mlnzlzlp[
s.1. (8.1 -8.9)
ZA/[U_ _(uit_vn)’tejaiE[S
jel
x x . M —
2 Ay S gl = (=) # MO =8t e Jiie ffp=1,P
JE
x x . M —
2 Ay =g = (uy = 0) ~ M=)t e Jiehfp= 1P
JE
YNy = & +(u, —v) el rekR
jel
Ty, <e+(u, —v) +MA=8) 0 e Jr e Rlg= 1,0
Z]A,t g =g+ (u, —v) ~M(1=8),telreR ,g=1,Q
JjE
2 Ab; =g - (w —v)te)fe
jel
szjtbﬁ = ;) - <uft _vﬂ) +M<1 _6_)]:’)’t € -]afe Fz/l’u_ 1"“U
JE
szjtbﬁ = ;) - <uft _vﬂ) _M(l _6_)]:’)’t € ]afe Fz/l’u_ 1"“U
JE
(8.10 - 8.14)
(B.1.1 -B.1.6)
6, * LB} <z - ’;”<5x*UBf,te],iEIM,p— 1,---P
(1 -6)LB; < (u, —v, —(zw < (1 -6/)UB; te]zel,,p— l,---P
8 *LB <z' -2 8’*UB’ teJoreR ,q=1,-Q
(1=8)LB; < (u, ~v,) —<z“' )< (1-8)UBtelre Rq q= 1,0
& *LB] <z —z/ <6, *UBj,t € Jf e F,u=1,-U
(1 =8B < (n, —v,) = (' - = (1 -5 UB! 1 < J,fe Flu=1,-U
A, =0,s, =0,s) =0,s, =0, e J,jelJielreRfeF
z, =0,z /Ozf];?(),i el,reRfeF,ie]
v =022 =0 z/b»,”,zﬁ” =0,ielreRfeF,te]
u, =0,v, =20,u, 20,0, 20,u, 20,0, 20,1 e [,re R,fe F,t €]
(D. 1)

Proposition 6 Model (D. 1) is equivalent to model (14).
Proof The process is similar to that of Proposition 5, seen in detail in Appendix C.
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