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Abstract: Measuring the network connectedness of the financial system is of great importance in systemic
risk analysis, and has drawn great attention in recent years. In this paper, we apply the transfer entropy
method to analyze the volatility spillover network connectedness of the U. S. stock market. Based on the
network structure, we apply the network vector autoregression model (NVAM) and are interested in
identifying the influential firms in volatility spillover network of the financial system. In addition, by
using rolling windows, the dynamics of total volatility spillover network connectedness indices are
obtained, which shows a sharp rise at the beginning of the financial crisis, while it only fluctuates within
a controllable range in the steady economic period. The results show that transfer entropy has great
potential for understanding the correlation and information flow of financial markets.
Keywords: network connectedness; transfer entropy; network autoregression; systemic risk
CLC number: F831. 5　 　 Document code: A

1　 Introduction
Connectedness between two financial institutions and the
connectedness of network has attracted lots of interests
in recent years. Studying connectedness is crucial to
understanding market risk, credit risk, macroeconomic
risk and system risk. Recently, the multi-discipline
mathematical tools have reinforced the research on
financial networks, showing its power and potential to
analyze the microstructure of networks. At the same
time, network analysis theory has drawn great attention
in recent years, such as Refs. [1-4] . Related empirical
work, which sometimes includes banking contexts, see
for example, Refs. [5-9] . Once the connectedness
network structure is obtained, different firms in the
network may have different influence on other firms in
the network. How to identify the influence of an
institution becomes an important problem in network
analysis theory.

There are three main methods to measure the
network connectedness: Granger causality, VAR model
and transfer entropy. For the approach of Granger
causality network, Billio et al. [5] applied it to the
monthly returns of four kinds of financial institutions.
Gong et al. [10] constructed the causal complex network
of financial institution based on the Granger causality
and studied the contribution of individual financial firm

to the systemic risk. Mazzarisi et al. [11] used the tail
Grange causality test to construct a directed tail risk
network. In terms of the VAR approach, Diebold et
al. [7] established a unified framework for measuring
time-varying connectedness of major US financial
institutions stock return volatilities during the financial
crisis of 2007 - 2008, based on the variance
decomposition. Since that, the variance decomposition
based methods have been widely used in financial and
industry contexts, as in Refs. [12, 13 ] . Demirer et
al. [14] introduced the LASSO method into the high-
dimensional network of publicly-traded subset of the
world’ s top 150 banks, overcoming the drawback of
VAR model that it is limited to low-dimensional
network. Chen et al. [15] applied the VAR process with a
two-step LASSO estimation approach to study the
connectedness of Chinese financial firms. Adrian et
al. [9] proposed the method CoVaR to measure system
risk according to institutions leverage, size, and
maturity mismatch. As for the transfer entropy method,
the definition was firstly proposed by Schreiber[16], and
used in many fields, such as computer science, social
science. Kim et al. [17] used transfer entropy in financial
field on five monthly macroeconomic variables,
showing the inter-relations of the five variables inside
each country and the correlation between variables of
different countries. Gong et al. [18] also made an



analysis of stock market network connectedness by using
transfer entropy method.

In this paper, a simple and productive method
transfer entropy ( TE ) are used to measure the
connectedness of a volatility spillover network consisting
of some companies listed on a U. S. stock exchange. In
addition, a network vector autoregression model
(NVAM) is used to identify the influential firms in
terms of communication risk spillovers in the system.
To the best of our knowledge, there is no research about
the spillover of the company in financial network under
transfer entropy connectedness framework. We first
apply the transfer entropy method to build the network
connectedness of financial listed companies in the U. S.
stock market, and then use the NVAR model to identify
the influential companies in the network under transfer
entropy connectedness framework.

The rest paper is organized as follows: In Section
2, some basic concepts of transfer entropy are
introduced, and the network connectedness using
transfer entropy is developed. In Section 3, NVAR
model and settings are introduced. Section 4 depicts the
data and our empirical results. Finally, some
implications of this paper are concluded in Section 5.

2　 Network connectedness
2. 1　 Basic concepts about transfer entropy
Transfer entropy ( TE ) was firstly proposed by
Schreiber[16] to quantify the information exchange of
two systems in the information theory. It can describe
the information transfer between the nodes in a network.
Here, we apply the TE to measure the volatility
spillover connectedness between the financial firms
which is similar to Ref. [18] .

We recall some basic concepts in the information
theory firstly. Suppose that X is a random variable with
probability distribution p(x) . Shannon[19] proposed
Shannon entropy to measure the average uncertainty of
the variable:

HI = - ∑
x∈Ωx

p(x)log p(x) (1)

where Ωx is the value space of X, and - log p ( x)
represents the information. Shannon entropy is then
used to measure how much information is needed to
identify random samples from a given discrete
distribution. The larger the Shannon entropy is, the less
information is needed.

In order to facilitate the understanding of transfer
entropy which is mentioned below, the Kullback
entropy also need to be introduced. Kullback entropy or
relative entropy, could be a measure of the difference
between these two probability distributions. It is defined
as

KI = ∑
x∈Ωx

p(x)log p(x)
q(x)

(2)

where p(x) and q(x) are distribution functions of two
random variables with same domain of definition. When
p(x) and q(x) are the same, the relative entropy equals
to 0, which indicates there is no difference between
these two distributions.

To measure the network connectedness, we should
transfer our view on the situation of two variables.
Suppose now that there are two random variables X and
Y, with the joint density function p(x,y) and the
marginal density functions p ( x) and p(y), the joint
entropy is defined as

HXY = - ∑
x∈Ωx,y∈Ωy

p(x,y)log p(x,y) (3)

　 　 In the field of finance, we usually consider the risk
of an individual firm under certain influence of some
events about the other firm or the whole financial
system, which leads us to consider conditioal entropy.
Conditional entropy is the average uncertainty of the
variable X when the information about the other variable
Y is already known. It is given by

HX| Y = - ∑
y∈Ωy

p(y)∑
x∈Ωx

p(x | y) log p(x | y) =

- ∑
x∈Ωx,y∈Ωy

p(x,y) log p(x | y) (4)

　 　 In the same way, Kullback entropy for conditional
probability is defined as follows:

KX| Y = ∑
y∈Ωy

p(y)∑
x∈Ωx

p(x | y)log p(x | y)
q(x | y)

=

∑
x∈Ωx,y∈Ωy

p(x,y)log p(x | y)
q(x | y)

(5)

where q( x,y) is a benchmark of the joint density of
(X,Y) .

The mutual information (MI) of two variables X
and Y is the information commonly shared by them, and
the well known formula is

MIXY = ∑
x∈Ωx,y∈Ωy

p(x,y)log p(x,y)
p(x)p(y)

(6)

which could be written as the difference between the
entropy of X and the conditional entropy of X given Y.

MIXY = HX - HX| Y = HY - HY| X (7)
　 　 This shows that MI is symmetric under the
exchange of X and Y, HX |Y could be interpreted as the
additional information that contained in the variable X
when the information about Y is already known, hence
the MI means the information owned by both X and Y.
From another perspective, the original definition of MI
is in connection with the Kullback entropy. The MI
could be seen as the Kullback entropy between the joint
distribution p(x,y) and the product of the p(x) and
p(y) ( i. e. the joint distribution when X and Y are
independent) . If variable X is independent of Y,
p(x,y)= p(x)p(y) and the MI equals to 0. So MI is a
measure to quantify the deviation from independence of
two variables.
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Mutual information quantifies the overlap of the
information of two variables and the statistical
independence between X and Y, but it contains neither
dynamical nor directional information. Schreiber[16]
considered the information flows through the system in a
directional way over time and derived an alternative
information theoretic measure, called transfer entropy.
Suppose that there are two series of random variables
{Xt | t = 0,1,2,…} and {Yt | t = 0,1,2,…}, Xt, the
observation of variable X at time t, is related to the past
value of variables {Xk | k<t} and variables {Yl | l<t},
in order to quantify the influence or the information
transfer from the past Y to current X, transfer entropy
from Y to X is defined as

TX←Y = ∑
xt,x(k)t-1,y( l)t-1

p(xt,x(k)
t -1,y( l)

t -1)log
p(xt | x(k)

t -1,y( l)
t -1)

p(xt | x(k)
t -1)

(8)
where xt and yt denote the observations of variables X
and Y at time t, x(k)

t-1 =(xt-1,…,xt-k) and y( l)
t-1 =(yt-1,…,

yt-l ) mean the past values of X and Y, respectively.
Actually, transfer entropy also gets inspiration from
Kullback entropy and MI. Probability p(xt | x(k)

t-1 ,y( l)
t-1 )

has extra condition y( l)
t-1 over p(xt | x(k)

t-1 ) . In the absence
of information transferring from the past Y to the current
X, the state of Y has no influence on X, that is to say,
p(xt | x(k)

t-1 , y( l)
t-1 ) = p ( xt | x(k)

t-1 ) . On the contrary, the
information flow from the past Y to the current X can be
quantified by transfer entropy. More over, the transfer
entropy takes the direction of information flow into
account due to its asymmetry property TX←Y≠TY←X . In
our next study related to the dynamic propagation of
risks to the system, it is important to measure not only
the degree of connectedness between financial
institutions, but also the directionality of such
relationships.
2. 2 　 Network connectedness based on transfer

entropy
Since transfer entropy quantifies the information transfer
from a variable to another, it is also a measure of the
connectedness between two variables. The
connectedness from Y to X could be depicted by the
transfer entropy from Y to X, which is defined as
follows:

CX←Y = TX←Y .
Now consider a network consisting of N nodes, which
are indexed by i=1,…,N. Similarly, the connectedness
structure of the network can be described by a
connectedness matrix {Aij}N×N, with

Aij = Ci←j,
where i and j denote the nodes of the network. When
refer to the connectedness matrix, there are a few points
to note here. Since the directional connectedness has

orientation, Cij and Cji represent the connectedness of
the opposite directions separately, and Cij ≠ Cji . In
addition, if i= j, Cii =0. Because the nature of transfer
entropy is the information difference, which is the
subtraction between the information about future
observation X gained from past joint observations Xt-1

and Yt-1 and information about future observation X
gained from past observation Xt-1 only. Thus, it is
natural that X will not provide extra information to
itself.
2. 3　 Total network connectedness
Inspired by the definition of directional connectedness,
the total network connectedness can be obtained by the
connectedness matrix { Aij }N×N . Intuitively, total
network connectedness can be achieved by summing
over all systems and is given by

C =
∑
N

i≠j
Aij

N
(9)

　 　 In this equation, all terms in the matrix are added
together, and the summation is divided by N, which can
be used to measure the volatility spillover connectedness
of the whole financial system.

3　 Network vector autoregression model
When the financial crisis occurs, companies in the
market are generally affected because they have
mutually beneficial business relationships. Illiquidity,
volatility, insolvency, and losses can quickly propagate
and risk is passed from one firm to the others. Although
most of the companies in the market are involved in the
risk transmission process, different types of companies
have different positions in the risk transmission process.
Financial institutions such as banks, insurance
companies are likely to provide liquidity directly to the
market which may have greater influence on the market.
Therefore, we adopt a network vector autoregression
model (NVAM) to quantitatively analyze the influence
of different types of companies in the risk transmission
process of the market, and use a parameter to describe
the influence of the companies. Employing the transfer
entropy, we obtain the weighted and directed
connectedness matrix A={Aij} ∈RR N×N, where Aij =Ci←j

and Aii = 0. In addition, define Ω = {ωij}∈RR N×N to be
the row-normalized connectedness matrix, where ωij =
n-1
i Aij and ni =∑

j
Aij, namely the out-degree of node i.

Now consider N individual firms in the financial system,
and denote Yit, i=1, …,N, the daily log-return of firm
i at time t and let Yt = (Y1t, …, YNt )T . In addition,
assume for each node, a p-dimensional covariate is
obtained as Zit = (Zi1t, …, Zipt )T . Then, we consider
the following NVAM,
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Yit = ∑
N

j = 1
dj ωijYjt -1 + ZT

it -1γ + it (10)

where γ= (γ1,…, γp)T∈RR p is the nodal coefficient,
and it is the noise term. Note the parameter dj

associated with firm j reflects the average multiple of
risk spillovers transferrring from firm j to other firms.
Therefore, the parameter d = (d1, d2, …, dN)T can be
interpreted as spillover influential powers of the firms.

Let D=diag(d1,…, dN) ∈RR N×N and Zt =(Z1t, …,
ZNt)T∈RR N×p . One could rewrite the model (10) as

Yt = ΩDYt -1 + ZT
t -1γ + t (11)

where t =(1t,…, Nt)T∈RR N is the noise vector. The
model is motivated from the network autoregression
model (NAM) of Zhu et al. [20], where they applied the
model to study the social network and considered the
contemporaneous covariates, and we consider the lagged
values as covariates to study the financial risk
connectedness network. The model (11) is also similar
to the spatio-temporal model dicussed by Dou et al. [21],
which is defined as

Yt = D1ΩYt -1 + D2ΩYt -2 + t (12)
where Dk = diag (dk1, …, dkN)∈RR N×N ( k = 1,2) are
diagonal matrices. However, the parameter dki is
interpreted as how much the node i is influenced by
other nodes, which could not directly quantify the
spillover influential powers of each firm. Our model, on
the other side, can help to identify the system influential
firms that have a significant impact on risk transmission.

4　 Empirical study
4. 1　 Data description
The U. S. stock market is the most developed and the
largest stock market in the world. It has the
characteristics of large scale, mature market,
standardized operation and stable stock price. Because
of these advantages, our main analysis focuses on
publicly traded U. S. financial institutions listed on the
U. S. exchanges. The selected companies are listed in
Table 1, which include 6 banks, 4 insurance
companies, 4 broker-dealers and 4 others. All of them
have a large market capitalization and play a leading
role in their respective industries. The sample covers the
period from January 2005 to December 2014. This
period involves the 2007 - 2009 global financial crisis
which has caused huge losses and injuries to the global
market, many big companies failed and millions of
people have lost their jobs.

We use volatility rather than stock price index to
depict the connectedness, because volatility represents
risk, it can indicate the risk connectedness between
different financial institutions. We use daily range-based
realized volatility. That is, following Garman and
Klass’s work[22], we estimate the daily volatility as

Table 1. The selected financial institutions in U. S. stock markets.

Banks

Bank of America Corp (BAC)

JP Morgan Chase & Co (JPM)

M&T Bank Crop (MTB)

Suntrust Banks Inc (STI)

PNC Financial Services Group (PNC)

Commercial Inc (CMA)

Insurance
companies

American International Group (AIG)

AFLAC Inc (AFL)

Allstate Corp (ALL)

AON Corp (AON)



Broker-dealers

E Trade Financial Crop (ETFC)

Goldman Sachs Group Ins (GS)

Morgan Stanley Dean Witter & Co (MS)

T Rowe Price Group Inc (TROW)



Others

Schlumberger Ltd (SLB)

Coca-Cola Co (KO)

3M Co (MMM)

International Business Machines Crop (IBM)



σ2
it = 0. 511(Hit - Lit)2 - 　 　 　 　 　 　 　 　 　

0. 019[(Cit - Oit)(Hit + Lit - 2Oit)] -
2(Hit - Oit)(Lit - Oit)] - 0. 383(Cit - Oit)2

(13)
where Hit, Lit, Oit and Cit are the logs of daily high,
low,opening and closing prices for stock i on day t,
respectively. Range-based realized volatility is nearly as
efficient as realized volatility based on high-frequency
intra-day sampling, yet it requires only four readily
available inputs per day, and it is robust to certain forms
of microstructure noise[23] . Table 2 summarized the
descriptive statistics of the daily range-based realized
volatility of each firm.

Then, the model of measuring connectedness is
given by

Cij = ∑
σit,σ(k)i,t-1,σ( l)j,t-1

p(σi,t,σ(k)
i,t -1,σ( l)

j,t -1)·

log
p(σi,t | σ(k)

i,t -1,σ( l)
j,t -1)

p(σi,t | σ(k)
i,t -1)

(14)

　 　 The selection of parameters k and l is of great
importance to the accuracy of the estimation of transfer
entropy and connectedness. If the historical length of
the target variable k is too short, the transfer entropy
may be overestimated, because the influence of the past
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Table 2. Descriptive statistics of daily volatility series σit of
U. S. stock market.

BAC JPM MTB STI PNC CMA

min 0. 275 0. 303 0. 244 0. 258 0. 221 0. 245

max 34. 12 17. 75 19. 84 27. 58 37. 57 22. 48

SD 2. 353 1. 681 1. 609 2. 432 1. 951 1. 984

AIG AFL ALL AON ETFC GS

min 0. 225 0. 296 0. 231 0. 274 0. 378 0. 295

max 99. 62 29. 33 21. 037 19. 29 34. 47 23. 36

SD 3. 908 1. 838 1. 483 1. 027 2. 718 1. 647

MS TROW SLB KO MMM IBM

min 0. 341 0. 341 0. 383 0. 183 0. 236 0. 206

max 53. 15 27. 41 13. 61 7. 916 19. 32 7. 974

SD 2. 662 1. 635 1. 234 0. 665 0. 836 0. 760
[Note] The AIG has the largest standard deviation during the sample
period, while the KO has the smallest standard deviation during the sample
period.

of the target on itself may not be totally conditioned
out. If the historical length of the target variable is too
long, the transfer entropy may also be overestimated due
to insufficient multi-dimensional sampling. On the
contrary, for the source variable, selecting a short
history may underestimate the transfer entropy, because
we may not fully consider the influence of the source
variable’s past on the target variable. In this paper, we
set k and l to 1 based on the efficient market hypothesis
and random walk behavior of stock prices.
4. 2　 Dynamic total volatility spillover connectedness
We use a rolling window method to construct a dynamic
total volatility spillover connectedness index. Thoughout
the paper, the width of rolling window is set to 1 year.
Since the rolling window becomes wider, the time
interval of dynamic changes of total volatility spillover
connectedness becomes shorter and the scope of dynamic
changes becomes smaller. Therefore, the rolling time
window should not be too wide and 1 year is
reasonable.

The result of the dynamic index is presented in
Figure 1, where we can divide the graph into four
economic periods. The first period starts at the begin of
2005 and ends in the middle of 2007. Although the
connectedness of the financial system is low at the begin
of 2006, it rose sharply following the Fed’s unexpected
decision to tighten monetary policy in May and June
2006. Then, following the collapse of several mortgage
originators in the USA, connectedness continued to rise
rapidly, and during the liquidity crisis of August 2007 it
reached a peek. During this period risks and shocks

Figure 1. The dynamic total volatility connectedness index of
U. S. market based on transfer entropy. Note: We obtain the
dynamic index using rolling window. The width of rolling
window is set to be one year.

continue to gather and eventually trigger the financial
crisis. The second period starts at the end of 2007 and
ends in late 2010. This period contained the 2007-2009
financial crisis, from Figure 1, although the total
volatility spillover connectedness index declined when
the U. S. government used the USD 700 billion
Troubled Asset Relief Program (TARP) to inject capital
into the major U. S. banks in the months after the
Lehman bankruptcy on September 15, 2008. However,
we can see that this index stay at a high level most of
the time during this period. It means that the linkages
between the corporations have a significantly increasing
during the financial crisis, and long-term high total
connectedness index means the financial crisis of 2007-
2009 was long-lasting. The third period starts at the
early 2011 and ends in the late 2012, with the Italian
and Spanish sovereign debt crisis in 2011. The dynamic
total volatility spillover connectedness increase sharply
again. The fourth period is the rest of the sample
period. With the government’ s intervention and the
introduction of economic policies and various measures
to save the market, the entire financial system has
gradually stabilized. The dynamic total volatility
spillover connectedness indices declined.
4. 3　 Spillover influential powers based on NVAM
Based on the connectedness matrix obtained by transfer
entropy, and the network vector autoregression model,
we obtain the estimation of the dynamic spillover
influencial powers (SIFP) of each firm. The results are
shown in Figure 2. From this graph, we can see that
banks except MTB usually have large SIFP during the
2008-2009 financial crisis, while insurance firms have
relatively large SIFP to other firms in most of the sample
period. AS for the broker-dealers, they usually have
low SIFP during the crisis period, but have relatively
high SIFP during the steady economic period. The
potential reason maybe that people are willing to invest
part of their assets in securities companies in the period
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Figure 2. The dynamic spillover influential powers of each firms based on NVAM. Note: We obtain the dynamic index using rolling
window. The width of rolling window is set to be one year.

of stable economy, but they will redeem a lot of these
assets in the period of crisis, which leads to the low
SIFP of broker-dealers during the crisis period. The
other firms usually have low SIFP during most of the
sample period.

5　 Conclusions
This paper applies transfer entropy on the analysis of
volatility transfer between different firms in the U. S.
stock market. In addition, a network vector
autoregression model is employed to identify the
influential firms that transfer volatility spillovers in the
system. For the total network connectedness, it is
evident that the connectedness shows a sharp increase
when subject to financial crisis, while it only fluctuates

within a controllable range in absence of crisis. As for
the influential firms, it suggests that the banks usually
have large SIFP during the crisis period. Thus, the
government’ s assistance to financial markets, such as
injecting capital into major banks or providing loans,
would be helpful to reduce total volatility spillover
connectedness and prevent or remit the systemic
financial crisis.
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网络向量自回归模型在波动性溢出分析中的应用
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摘要: 如何度量金融系统的网络连通性是系统风险分析的重要内容,在近年受到广泛的关注. 本文采用传递熵

方法分析了美国股票市场的波动性溢出网络连通性. 基于构建的网络结构,我们应用了网络向量自回归模型

(NVAM)并且感兴趣的是识别在金融系统构成的波动溢出网络中具有影响力的公司. 此外,本文采用滑动窗

口方法得到了总波动性溢出网络连通性的动态变化规律,该指标在金融危机初期急剧上升,而在经济稳定时期

仅在可控范围内波动. 结果表明,传递熵在帮助理解金融市场的相关性和信息传递性上具有较大的潜力.
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