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Abstract: The COVID-19 pandemic has caused severe public health and economic consequences around
the world. It is of great importance to evaluate the impact of the COVID-19 pandemic on the economy,
especially the stock market. To this end, we proposed to use several state-of-art sparse principal
component analysis (PCA) methods for the stock data of the CSI 300 index from February 1, 2019 to
February 1, 2021. To show the influence of the outbreak of the COVID-19 pandemic, we divide this
period into two periods, i. e. , before and after January 1, 2020. Based on this division, we attempted to
extract the principal components and construct portfolio accordingly. The results show that the proportion
of principal components representing the market declined after the outbreak. For the constitution in the
first two principal components, the important stock sets are substantially different after the outbreak. The
stocks from the health care sector start to play an important role in the portfolio of the CSI 300 index after
the outbreak. Compared with the CSI 300 index, the first two principal components from the sparse PCA
methods can obtain higher returns with a much smaller set of stocks in the portfolio. In conclusion, the
outbreak of the COVID-19 pandemic led to changes in both proportion and constitution of the principal
component of the stocks in the CSI 300 index.
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1　 Introduction
1. 1　 Background and data description
The COVID-19 pandemic from the end of 2019 not only
poses a serious threat to human life and health, but also
causes major losses to the global economy. In order to
control the pandemic, quarantine measures have been
gradually adopted around the world, some economies
have been temporarily shut down, and financial markets
have also fallen into a state of continuous decline. As
known, the stock market is a barometer of the
economy. The stock price not only fluctuates with
changes in the economic cycle, but also indicates the
economic development situation, and its fluctuations
may lead to a recession in the real economy. For
example, after the outbreak of the COVID-19
pandemic, on the first day of the opening of the
Shanghai and Shenzhen markets, 3188 stocks in the two
markets fell by their limit.

Figure 1 shows the CSI 300 index, an index
compiled from the most representative 300 stocks in
Shanghai and Shenzhen A-shares with large scale and

good liquidity. It can be seen that it dropped down
7. 88% on February 3, 2020, and experienced several
major fluctuations during the COVID-19 pandemic
period.

It is of great interest to to evaluate the impact of
the COVID-19 pandemic on the Chinese stock market,
especially the CSI 300 index, one of the most important
benchmarks in the A-share market. However, the CSI
300 index contains 300 stocks from various fields, and
the correlation between them is complicated, so it is
difficult to analyze them. Thus it is essential to perform
some dimension reduction to the 300 stocks and find out
the difference before and after the outbreak of the
COVID-19 pandemic.
1. 2　 Literature review
Principal component analysis (PCA) is one of the most
popular technique to reduce the dimension, and has
been well studied in the fields of statistics and finance,
such as portfolio management[1] . By converting stocks
into a new set of uncorrelated principal components that
represent uncorrelated risk sources, PCA can reduce the
complexity of stock portfolios. PCA allows us to



Figure 1. The CSI 300 index portfolio from January 1, 2019 to February 1, 2021.

determine the stocks that can be used as a representative
of the entire data set, thereby finding the number of
stocks that are sufficient to diversify the portfolio.

Due to the large number of stocks, the principal
components ( PCs) derived from PCA consist of all
stocks and it is hard to explain the effect of each stock.
To address this issue, sparse version of PCA has been
proposed by controlling the number of the variables in
the PCs.

The first class of approaches are based on ad-hoc
methods by post-processing the PCs obtained from the
standard PCA. For example, Cadima and Jolliffe[2]

proposed a simple thresholding approach by artificially
setting the loadings with absolute values smaller than a
threshold to zero. Vines[3] considered simple principal
components by restricting the loadings to take values
from a small set of allowable integers such as 0, 1, and
-1. Although these methods are simple to operate, the
sparse PCs obtained usually have large errors. In 2013,
Ma[4] proposed an iterative thresholding sparse PCA
algorithm based on the QR decomposition. It overcomes
the drawbacks of simple thresholding by iterative
update, and thus has better performance in both theory
and numerical experiment. As the authors stated,
however, the convergence of the algorithm is not
guaranteed.

In recent years, more involved approaches have
been presented. These methods usually impose
regularization on different PCA formulations. A classic
perspective is that PCA finds a set of directions
( technically, a linear subspace ) that maximizes the
variance of the data once it is projected into that space.
Jolliffe et al. [5] developed the Simplified Component
Technique-LASSO (SCoTLASS) algorithm for finding

sparse orthogonal loading vectors by sequentially
maximizing the approximate variance explained by each
PC under the l1-norm penalty on loading vectors.
d’Aspremont et al. [6] proposed a direct sparse PCA
(DSPCA) method, to obtain sparse PCs by solving a
sequence of semi-definite program relaxations. In 2008,
Journée et al. [7] formulated the sparse PCA problem as a
nonconcave maximization problem with l0-norm or l1-
norm sparsity-inducing penalties. They showed that the
problem can be reduced into maximization of a convex
function on a compact set, and developed a
computationally efficient gradient method for finding a
stationary point. Inspired by the greedy method for
solving the combinatorial problem[8], d’Aspremont et
al. [9] proposed a greedy heuristic algorithm to solve a
new sparse PCA semi-definite programming problem. In
2013, Croux et al. [10] proposed to use a grid search
algorithm to derive a sparse version of PCs and achieved
desirable results. The eigen decomposition formulation
of PCA also relates PCA to the singular value
decomposition ( SVD ) of data matrix. Shen and
Huang[11] used SVD to calculate the low-rank matrix
approximation of the data matrix under various sparsity-
inducing penalties, and applied it to the sparse PCA
problems ( sPCA-rSVD ) . This method uses least
squares linear regression and simple threshold rules, so
it is relatively easy to implement.

Alternatively, the PCs can be interpreted in
geometric as the closest linear manifold approximation
to the observed data. Based on this, Zou et al. [12]

formulated the sparse PCA problem as a regression-type
optimization problem and imposed constraint on the
coefficients via a combination of l1- and l2-norm
penalties. PCA can be also reformulated as a maximum
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likelihood solution to a latent variable model, called
probabilistic PCA[13] . For example, Sigg and
Buhmann[14] modified the expectation maximization
approach of probabilistic PCA to encourage sparsity or
non-negativity to the loading factors.

In this article, we aim to investigate the structural
changes of the index stocks before and after the outbreak
of the COVID-19 pandemic. To this end, we collect the
constituent stock data in the CSI 300 index from the
Wind database ( http: / / www. wind. com. cn / ), and
propose to apply sparse PCA techniques as well as the
classic PCA method to the index stocks data. We also
examine the performance of different sparse PCA
methods in extensive simulated data.

The structure of the remaining contents is as
follows. Section 2 introduces several commonly used
sparse PCA methods. Section 3 shows the analysis on
CSI 300 constituent stock data via PCA and sparse PCA
technique. In Section 4, numerical experiments are
carried out on several commonly used sparse PCA
algorithms. We conclude with a short discussion in
Section 5.

2　 Algorithms for the sparse PCA problem
In this section, we review four popular sparse PCA
methods, which include the variance maximization
( VM ) [10], the reconstruction error minimization
( REM ) [12], the singular value decomposition
( SVD ) [11] and the probabilistic model ( PM ) [14] .
Table 1 gives a brief summary on the four methods,
and we will discuss them in details in the afterward
sections.

Before discussing the methods, we define some
notations. Denote the data we have collected as {xi,i=

1,…, n} and its corresponding matrix form as X∈
Rn×p . Without loss of generality, assume that the
matrix X has been centered to have zero mean. Let
rank ( X ) = r. Let k be the maximum number of
(sparse) principal component (PC) to be calculated.
Let vj be the first j-th (sparse) loading vector, and V=
( v1, …, vk ) be the loading matrix. Then the
corresponding PC is Xvj,j = 1,…,k. Let Ik denote the
k×k identity matrix. For any matrix M = (Mij), define
the Frobenius norm of M as ‖M‖F = ∑

i
∑

j
Mij .

2. 1　 Variance maximization (VM)
The variance maximization approach was proposed by
Croux et al. [10] . The main idea is to preserve as many
changes in the original sample as possible when
projecting data points into a low-dimensional space.
Note that maximizing the variance of the first PC Xv1

can be equivalently expressed as
max

v1
vT1XTXv1

s. t. 　 vT1 v1 = 1 (1)
Based on this formulation, Croux et al. [10] introduced
a sparse PCA framework by imposing a l1 penalty
function into the objective function of (1), that is

max
v1

vT1XTXv1 - λ1‖v1‖1

s. t. 　 vT1 v1 = 1 (2)
where λ1 ( ≥ 0 ) is a regularization parameter that
controls the amount of shrinkage on the first PC. It can
be seen that the larger the value of λ1, the greater the
amount of shrinkage ( i. e. the greater the amount of
zero estimates) . Then based on the top ( j-1) -th PCs,
the j-th sparse PCs can be solved via the following
optimization problem:

Table 1. Summary of sparse PCAs: VM, REM, SVD, and PM.
Method Formulation Available package in R Reference

VM

max
vj

vT
j XTXvj

s. t. 　 vT
j vj =1,

vT
1 vi =0, i=1,…,j-1,

‖v1‖<t

pcaPP Croux et al. [10]

REM

min
A,B
∑

n

i = 1
‖xi - ABTxi‖2

s. t. 　 ATA = Ik,

∑
k

j = 1
‖Bj‖ < s

elasticnet Zou et al. [12]



SVD
min
U,D,V

‖X - UDVT‖2
F + ∑

k

j = 1
λj‖Vj‖1

s. t. 　 UTU = Ik,
VTV = Ik

PMD Witten et al. [15] ,Shen and Huang[11]



PM
X=WZ+ε

f(Zi) ~ N(0,Ik)
f(ε) ~ N(0,σ2 Ip)

nsprcomp Sigg and Buhmann[14]
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max
v

vTXTXv-λ j‖v‖1

s. t. vTv=1,
vTv1 =0,

…
　 　 　 　 　 　 　 　 　 vTvj-1 =0 (3)
where λ j ( ≥ 0 ) is a regularization parameter that
controls the amount of shrinkage on the first j-th PC.

Since the principal components are required to be
orthogonal, j-1 constraints are added for solving the
j-th PC, which makes the problem ( 3 ) difficult to
solve. Croux et al. [10] proposed to use a grid search
algorithm to obtain the PCs, and showed that it is very
fast and has a high accuracy in the high-dimensional
setting. The basic idea of the algorithm is to simplify
the problem into a series of optimizations in a two-
dimensional plane under the constraint of unit norm.
This boils down to a series of maximization of
functions on the unit circle. This is simply a univariate
maximization problem, which can be solved by a grid
search.

Before presenting the algorithm, we first combine
the problems ( 2 ) - ( 3 ) into a single optimization
problem. Denote the top ( j - 1) -th estimated loading
matrix as V︿ j-1 =(v︿ 1,…,v︿ j-1),1≤j≤k-1, where v︿ 1 is
the i-th estimated loading vector. For j>1, let V︿ ⊥

j-1 be a
matrix whose columns are a set of orthogonal bases of
subspaces orthogonal to the space generated by the
column of V︿ j-1 . In order to maintain symbol
consistency, let V︿ ⊥

0 be equal to the identity matrix.
Define X( j-1) = XV︿ ⊥

j-1, obviously X( j-1) belongs to the
low-dimensional space RR p-j-1 . Then, the optimization
problems (2)–(3) are equivalent to

max
v

f(v) = vTX( j -1) TX( j -1) v - λ j‖V︿ ⊥
j -1v‖1

s. t. 　 V︿ Tv = 1 (4)
　 　 The grid search algorithm for the variance
minimization problem (4) is given by the following
algorithm.

Algorithm 2. 1 　 The variance minimization approach
via grid search algorithm
1. Sort the columns of X( j) in descending order of variance.
Then the first variable has the maximum variance value, and its
corresponding loading vector v=(1,0,…,0) is used as the first
approximation of the solution, where the length of v is p-j+1.
2. For l= 1,2,…,m, using the iterative steps to update all the
components of the vector v: For 1≤i≤p- j+1, update the i-th
component vi of the current best approximation v, which is
achieved by maximizing the following equation to find γ∗:

f(v1b(γ),…,vi-1b(γ),cosγ,vi+1b(γ),…,vp-j+1b(γ)),
where γ takes the value in the interval [ arccos ( vi -π / 2 l-1 ),
arccos(vi +π / 2 l-1 )], b(γ) = sin(γ) / 1-(vi) 2 makes such
unit standard conditions hold. This function is maximized by
using grid search. The updated value of vi is cosγ∗ .

Note that if the number of iterations l increases,
we will implement a more rigorous search on the
plane, because we assume that it is very close to the
solution. Since N grid is continuous, we can increase
the accuracy in each iteration step. When the absolute
value of the change of the optimal direction in the two
iterations is lower than the predetermined tolerance
level, we call the algorithm converges. When the
maximum number of iterations is reached, the
algorithm stops. Finally, the optimal sparse direction
of the j-th principal component obtained by the grid
algorithm must be rotated to the original space, i. e.
vj =V⊥

j-1v.
2. 2　 Reconstruction error minimization (REM)
While the VM approach obtains the PCs by maximizing
the variance, we can also derive the PCs via
minimizing the distance between projected data and the
original ones. As described in Reference [16], this
method can be formulated as follows,

min
v
∑

n

i = 1
‖xi - VVTxi‖2

s. t. 　 VTV = Ik (5)
Inspired by this formulation, Zou et al. [12]

reconstructed the product of the loading matrix, VTV,
into two p × k matrices ATB. Based on this
reconstruction, they proposed a sparse PCA method by
adding a combination of l1 and l2 penalties to B and
leaving the orthogonal constraint to A, that is,

min
A,B

∑
n

i = 1
‖xi - ABTxi‖2 +

λ∑
k

j = 1
‖B j‖2 + ∑

k

j = 1
λ1,j‖β j‖1

s. t. 　 ATA = Ik (6)
where βj is the j-th column of B, λ is a parameter
controlling the norm of loading vectors, and λ1,j is a
parameter that controls the sparsity of the load vector
βj . For data set with n>p, assume that λ>0, and for
data set with n≤p, λ=0.

The REM approach links the estimation of sparse
PCs with variable selection in linear regression. When
fixing the matrix A, solving the problem with respect to
B is an elastic net problem, which has be well studied,
see Reference [17] for example. Based on this, Zou
et al. [12] developed the block coordinate descent
algorithm to the REM approach by optimizing the
variables of (5), i. e. , A and B, in two separate sub-
problems. The detail algorithm is presented as follows.

Algorithm 2. 2 　 The REM approach via bolck
coordinate descent method
1. Let A be initialized to V[,1:k], which is the load of the first
k ordinary principal components.
2. For a given A = [α1,…,αk], for j = 1,2,…,k, solve the
following elastic network problem:
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βj = arg min
β

(α j - β) TXTX(α j - β) + λ‖β‖2 + λ1,j‖β‖1 .
3. For a given B = [ β1, …, βk ], calculate the SVD
decomposition XTXB=UDVT, and then update A=UVT .
4. Repeat Steps 2,3 until convergence.
5. Standardization: V︿ j =βj / (‖βj‖),j=1,…,k.

As described in Reference [12], the empirical
evidence shows that the output result of the algorithm
does not change much with the change of λ. For the
case of n>p, the default term λ can be zero. In fact, λ
usually takes a small positive number to overcome the
potential collinearity problem of λ.
2. 3　 Singular value decomposition (SVD)
An alternative way to obtain the loading matrix product
VTV is by using the singular value decomposition
(SVD) . Mathematically, let the SVD of X be X =
UDVT, where U = [ u1, …, ur ] with orthogonal
columns, V = [ v1,…, vr ] with orthogonal columns,
and D= diag{d1,…,dr} with d1 ≥…≥dr . It can be
easily to see that the j-th loading vector of XTX is vj,
j=1,…, r. Thus we can obtain the PCs of XTX by
performing SVD to matrix X.

Since the SVD of X can be rewritten as∑
r

j = 1
d ju jvTj ,

we can estimate the singular vectors uj and vj one by
one. In specific, let u be an n-dimensional vector with
unit norm, and v be a p-dimensional vector. Then by
the low-rank approximation property of SVD, we have
the solution of the following optimization problem:
　 　 　 　 　 　 　 　 min

u,v
‖X-uvT‖2

F (7)
is

u=u1,v=d1v1 .
　 　 Similarly, we can derive the j-th components (uj,
djvj) by finding the best rank-1 approximation of the

residual matrix X - ∑
j -1

l = 1
dlulvTl .

Shen and Huang[11] introduced sparsity promoting
penalty into (7) to obtain a sparse version of v, 　 　
　 　 　 　 　 　 　 min

u,v
{‖X-uv‖2

F+Pλ(v)} (8)

where Pλ(v)= ∑
p

j = 1
pλ( |vj | ) is a penalty function with

the parameter λ. To solve the problem ( 8 ), an
iterative algorithm is developed. Firstly, given v, the
solution of problem ( 8 ) with respect to v has the
explicit expression, i. e. , u = Xv /‖Xv‖ [11] . Next,
we discuss the optimization problem of v with fixed u.

Since Pλ(v)= ∑
p

j = 1
pλ( |vj | ), the objective function in

(8) can be rewritten as
∑

i
∑

j
(xij-uivj) 2+ ∑

j
pλ( |vj | )=

　 　 　 ∑
j
{∑

i
(xij-uivj) 2+pλ( |vj | )} (9)

in which we can optimize each component of u
separately. For the j-th component vj, we only need to
solve the following problem:

min
vj

{v2
j -2(XTu) jvj+pλ( |vj | )} .

　 　 The above discussion are summarized as follows.
Algorithm 2. 3 　 The SVD approach via iterative

method
1. Initialization: Apply standard SVD to X, and then get the
optimal rank 1 of X approximately as su∗v∗T, where u∗ and v∗

are all unit vectors. Let vold = sv∗ and uold =u∗ .
2. Update:

(a) The element vj of unew is
min

v
{v2

j -2(XTu) jvj+pλ( |vj | )};
(b) unew =Xvnew /‖Xvnew‖.

3. Repeat Step 2 until convergence.
4. Standardize the last vnew to get the required sparse load vector
v=vnew /‖vnew‖.

It can be seen that Algorithm 2. 3 only contains
simple linear iteration and group reduction rules.
Therefore, it has the advantages of easy
implementation and high computational efficiency.
2. 4　 Probabilistic model (PM)
Sigg and Buhmann[14] showed that the PCs can also be
redefined as the maximum likelihood solution of a
probabilistic latent variable model. The original data is
assumed to be

X = ZW + ε (10)
where Z={Z1,…,Zn} T is the latent variable, W∈RR k×p

represents the principal component, its row vector is
regarded as a k-dimensional latent variable,  is the
noise. Both the latent variable and noise are assumed to
follow the normal distribution, that is, Zi ~ N(0,Ik),
ε ~ N(0,σ2 Ip) . Then, the marginal distribution of X
is a normal distribution with a mean value of 0 and a
variance of WTW + σ2 Ip . The estimation of the
parameters W and σ2 can be achieved by the maximum
likelihood function. Sigg and Buhmann[14] proposed
using the variational maximum expectation algorithm to
estimate the parameters.

To obtain sparse PCs, we add a step of axis-
aligned gradient descent to the probabilistic model, and
the detailed algorithm is presented as follows:

Algorithm 2. 4　 The PM approach via gradient descent
method
1. Initialize t=1, apply standard SVD procedure to X, and then
get the first principal component of X as W( t) .
2. When |WT

( t+1)W( t) | >1-ε, the following loop is performed:
(1) y=XW( t) ;

(2) W∗ =
∑
N

n=1
y(n) x(n)

∑
N

n=1
y2
(n)

;

(3)assign a value to s, its elements are |w∗
i | in descending

order, and the order is recorded in π;
(4) for k=1,…,K, add (sk-sk+1) to the 1,…,k elements of
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Figure 2. Cumulative returns of the stocks in the CSI 300 index from February 1, 2019 to February 1, 2021.

X( t+1) ;
(5) rearrange the elements in W( t+1) according to π, t =

t+1.
3. Output W.

3　 Empirical analysis
3. 1　 Data exhibition
We investigate the performance of the classic PCA and
the sparse PCA methods described in Section 2 to the
stock data from February 1, 2019 to February 1, 2021.
We obtained the daily yield of the 234 unique stocks in
the CSI 300 index from the Wind database. Figure 2
shows the cumulative daily return of 234 stocks in CSI
300 since February 1, 2019. It can be seen that some
stocks are showing a clear upward trend, while others
are showing a downward trend.

We define the sectors as General Industry
Classification groups (GICs) [18], see Table 2.
3. 2　 Results from PCA
We first divide the whole period into two non-overlap

Table 2. General Industry Classification (GIC) sectors.

GIC(k) Description Number of companies

1 Consumer discretionary 16

2 Consumer staples 18

3 Energy 6

4 Financials 49

5 Industrials 37

6 Information technology 25

7 Health care 25

8 Materials 11

9 Real estate 16

10 Telecommunication services 7

11 Utilities 23

periods: ① the period before the outbreak of the
COVID-19 pandemic: from February 1, 2019 to
December 31, 2019; ② the period after the outbreak:
from January 1, 2020 to February 1, 2021.

Figure 3 shows the first five principal components
calculated from PCA before and after the outbreak. It
can be seen that in 2019, the first PC has a large
variance, about 37. 4% , followed by 5. 2% , 4. 8% ,
2. 3% and 2. 2% .

In comparison, after the outbreak, there is an
obvious increment in the variance value of the second
PC, while the variance of the first PC drops down to
33. 6% . It suggests that the second PC absorbed some
variations from the first PC after the outbreak. To
provide further insight into the impact of the pandemic,
let us look at the factor loading graph on the right
panels in Figure 3. While the first PC has a similar
coefficient values in most stocks, yet the directions of
factor loadings in the second PC change substantially
after the outbreak.

As known, the first PC represents a linear
combination of input data that explains most of the
differences. It turns out that this is the “ market
factor”, i. e. , the trend of securities to rise and fall
together as an asset class. The right panel of Figure 3
illustrates this by showing that all stocks have the same
sign on the first PC. In other words, it is empirically
the case that there is a dominant systematic factor
called the equity risk premium explaining the variance
of returns. This is because macro variables, such as
monetary, fiscal policy, growth expectations, political
risk, regulatory risk and other factors, influence the
returns of all stocks.

Figure 4 plots the return of the investment
portfolio based on the first and second principal
components and the CSI 300 index. It can be seen that
both the portfolios from the first and second PCs have
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Figure 3. The first five PCs from classic PCA before and
after the outbreak of the COVID-19 pandemic.

higher cumulative returns than the CSI 300 index.
Furthermore, the portfolio returns of these two PCs are

Figure 4. Portfolio for the stocks from the first two PCs. The CSI 300 index is also included for comparison. The daily and
cumulative portfolios are presented in the left and right panels, respectively.

similar in 2019, but after January 1, 2020, the total
returns of the portfolio of the second PC is significantly
higher than those of the first PC. This might be due to
that the sudden outbreak led to high demand in certain
areas, which resulted in the growth of stocks in those
fields. We will explore this furthermore via sparse PCA
technique.

Figure 5 shows the daily profit by zooming in the

top left panel of Figure 4 during the period of January
1, 2020 and April 20, 2020. In addition, the number
of new domestic cases is included for comparison. We
divide this period into five stages according to the
portfolio changes.

(Ⅰ) The first stage (before January 9, 2020):
The stock price fluctuates steadily, and there is no
obvious upward or downward trend. At this time,
news of “unexplained pneumonia” was only spread in
a small area and had not attract the attention of the
government and the public, so it had no obvious
impact on the stock market.

(Ⅱ) The second stage ( January 9, 2020 to
February 3, 2020 ): On January 9, the expert
evaluation team of the National Health Commission
released information on the pathogen of Wuhan’s
unexplained virus pneumonia and determined that the
pathogen was a new type of coronavirus. Based on the
fear of SARS, a coronavirus in 2003, the public
panicked and began to stock up large amounts of
medical supplies such as masks and disinfectants. On
January 23, 2020, Wuhan and several cities in Hubei
issued the “ lockdown” rule. At the time of the Lunar
New Year, the population movement was large, which
caused the pandemic to spread to a certain extent across
the country. The entire Spring Festival is the most
severe period of the pandemic, and the surge in the
number of confirmed cases continues to challenge the
public confidence. Since the market is closed during
the Spring Festival, the CSI 300 index fell by 8% on
the first day of opening after the Spring Festival.
Although the pandemic did not spread across the
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Figure 5. Portfolio for the stocks from the first PC and the CSI 300 index from January 1, 2020 to April 20, 2020. The number of
new domestic cases is included in the bottom panel. The vertical black line indicates the division of five stages, which are defined by
the portfolio changes.

country, the CSI 300 index showed a volatile decline.
(Ⅲ) The third stage (February 4, 2020 to March

5, 2020 ): On February 3, Wuhan Huoshenshan
Hospital received the first batch of patients. The P3
Laboratory in Zhejiang Province has isolated 8 strains
of viruses, several of which are very suitable for
vaccines. At the same time, with the unfolding of the
anti-pandemic, the number of newly diagnosed patients
has begun to decline, and public confidence has been
greatly improved. The stock market has shown an
upward trend amidst volatility.

(Ⅳ) The fourth stage (March 5, 2020 to March
23, 2020): On March, the pandemic in China was
basically under control, but overseas pandemic s began
to break out, and U. S. stocks experienced four circuit
breakers. Affected by the U. S. stock market, the
domestic stock market experienced a major decline.

(Ⅴ) The fifth stage (March 23, 2020 to April
20, 2020): In the second half of March, domestic
confirmed diagnoses are basically cleared. With the
resumption of work and production on a large scale,
the stock market began to pick up and gradually
returned to the average line before the pandemic.

(Ⅵ) The sixth stage ( after April 20, 2020 ):
Starting from the second half of April, the domestic
pandemic has been well controlled, and the order of
production and life before the pandemic has been
completely restored. The stock market has also
returned to a state of steady volatility before the
pandemic. However, after experiencing such a rapid
and powerful pandemic, the structure of the stock
market in the post-pandemic era requires further
analysis.

3. 3　 Results from the sparse PCA methods
The results from PCA shows how the pandemic

influences the stock market. Next we will present more
difference before and after the outbreak, especially the
difference in the leading stocks set. We fix the number
of the first and second PCs to be 10, and perform four
sparse PCA methods mentioned in Section 2 on the stock
data. We also include the simple truncating ( ST) [2]

method by keeping the top 10 elements of PCs ( in
absolute value ) from the classic PCA method and
truncating the remaining elements to be zero.

First of all, we applied all the above methods to
the entire period. Table 3 shows the GIC of the nonzero
elements in the first two sparse PCs. It can be seen that
the stocks selected by the first PC mainly belong to the
financial field, while those of the second PC mainly
belong to the health care or industrial field except for
the PM approach. We will provide further insight into it
by separating the period by the outbreak.

Figure 6 and Figure 7 present the selected stocks in
the first two PCs for the periods before and after the
outbreak, respectively. The stocks are arranged
according to the absolute value of the loadings. We also
include the GIC sector that the stocks belong to in Table
4 and Table 5. It can be seen that before the outbreak,
the stocks in the first PC are mostly from financial field
for all methods except the VM method. Different from
other methods, both the two PCs from VM have
complicate constructions. For the second PC, both REM
and SVD yields to a combination of industrial stocks.
The second PC of PM methods still consists of financial
stocks.
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Table 3. The nonzero loading fields from different sparse PCA techniques on entire period.

Rank REM VM PM SVD ST

1st PC

1 Information technology Materials Financials Financials Financials

2 Financials Industrials consumer Financials Information technology Financials

3 Financials Discretionary Financials Financials Financials

4 Information technology Consumer staples Financials Financials Financials

5 Financials Industrials Financials Information technology Financials

6 Financials Consumer staples Financials Financials Financials

7 Financials Industrials consumer Financials Financials Financials

8 Energy Discretionary information Financials Financials Financials

9 Financials Technology Financials Financials Financials

10 Financials Industrials Financials Financials Information technology

2nd PC

1 Health care Industrials Financials Industrials Financials

2 Health care Industrials Financials Industrials Financials

3 Health care Industrials technology Financials Information Financials

4 Health care Health care Financials Industrials Financials

5 Materials Industrials Financials Industrials Financials

6 Health care Industrials Financials Industrials Financials

7 Health care Consumer discretionary Financials Industrials Financials

8 Health care Consumer staples Financials Industrials Financials

9 Health care Industrials Financials Industrials consumer Financials

10 Health care Consumer staples Financials Consumer discretionary Financials



Figure 6. The selected stocks in the first two PCs for the periods before the outbreak of the COVID-19 pandemic. The stocks are
arranged according to the absolute value of the loadings.

　 　 After the outbreak, the selected stocks are totally
different, especially for the REM and VM methods. For

REM and VM, stocks from the health care field are
identified to contribute to the first two PCs, while the
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stocks from financial and real estate fields disappear.
This might be because of the urgent need of medical
supplies during the period of the COVID-19 pandemic.

It can be seen that the first and second PC of ST
algorithm is close to the PM algorithm.

Figure 7. The selected stocks in the first two PCs for the periods after the outbreak. The stocks are arranged according to the absolute
value of the loadings.

Table 4. The nonzero loading fields of of the first two sparse PCs (before the outbreak) .

Rank REM VM PM SVD ST

1st PC

1 Financials Industrials Financials Financials Financials

2 Financials Utilities Financials Financials Financials

3 Financials Industrials Financials Information technology Financials

4 Financials Materials Financials Financials Real estate

5 Financials Energy Financials Financials Utilities

6 Financials Financials Financials Financials Information technology

7 Information
technology Information technology Financials Financials Financials

8 Financials Consumer discretionary Financials Financials Financials

9 Financials Industrials Financials Information technology Financials

10 Financials Financials Financials Real estate

2nd PC

1 Information
technology Information technology Real estate Industrials Industrials

2 Industrials Real estate Real estate Industrials Industrials

3 Industrials Financials Real estate Industrials Information technology

4 Industrials Utilities Real estate Information technology Industrials

5 Industrials Consumer staples Real estate Information technology Industrials

6 Information
technology Information technology Utilities Industrials Health care

7 Industrials Real estate Real estate Industrials Industrials

8 Industrials Materials Materials Industrials Information technology

9 Industrials Health care Real estate Industrials Consumer discretionary

10 Industrials Information technology Materials Industrials Industrials



314第 5 期 Impact of COVID-19 pandemic on stock market via sparse principal component analysis



Table 5. The nonzero loading fields of the first two sparse PCs (after the outbreak) .

Rank REM VM PM SVD ST

1st PC

1 Information
technology Consumer discretionary Financials Industrials Financials

2 Industrials Materials Financials Industrials Financials

3 Industrials Health care Financials Industrials Financials

4 Industrials Industrials Financials Industrials Financials

5 Industrials Utilities Financials Consumer discretionary Financials

6 Industrials Information technology Financials Information technology Financials

7 Industrials Health care Financials Industrials Financials

8 Industrials Utilities Financials Industrials Financials

9 Industrials Consumer discretionary Financials Industrials Financials

10 Consumer discretionary Materials Financials Industrials Financials

2nd PC

1 Health care Consumer discretionary Financials Information technology Financials

2 Health care Health care Financials Financials Financials

3 Information technology Industrials Financials Information technology Financials

4 Health care Utilities Financials Financials Financials

5 Health care Industrials Financials Financials Financials

6 Health care Health care Financials Financials Financials

7 Health care Consumer discretionary Financials Financials Financials

8 Health care Financials Financials Financials Financials

9 Health care Financials Financials Real estate

10 Health care Financials Financials Financials



　 　 In addition, according to the weights of sparse
PCs, we can formulate a winning portfolio, which
selects companies with nonzero loadings. As shown in
Figure 8, the resulting portfolio will perform
significantly better than the market because it invests in
companies that have actually benefited from the
pandemic. It can be seen that except for the PM and ST
methods, all the other methods provide sparse PCs with
better performance compared to the CSI 300 index.
Regardless of whether it is formulated from the first or
second PC, the return of PM and ST portfolio is lower
than CSI 300 index. Based on the previous analysis, it
may because that the stocks selected by PM and ST are
mostly concentrated in bank stocks, which makes it
difficult to diversify risks. The first PC of all methods
has a similar trend to the CSI 300 index, which suggests
that the first PC represents market risk. Compared with
the first PC, the second PC of REM, VM and SVD
portfolio are rising more steadily, surpassing most of the
cumulative return of the first PC in the later period. In

short, most of the sparse PCA methods yield better
returns than the CSI 300 index, and the second PC has
more robust and stable performance compare with the
first PC. Combining the PCA results in Section 3. 2, we
can tell the reason that the cumulative returns of the
second PC is higher than those of the first PC in the
period after the outbreak. It is because the dominant
stocks of the second PC are all from the health care and
industrial fields, which have achieved rapid growth
during the pandemic period.

Finally, Figure 9 shows the return trend of the
portfolio obtained from the sparse PC during the period
of January 1, 2020 and April 20, 2020. We include the
results of the REM and SVD methods as example.
Compared with the classic PCA approach, the return
trends show more volatility between the sparse PCA
derived portfolio and the CSI 300 index. In specific, the
portfolio of the first PC tends to have consistent
performance with the CSI 300 index with a smaller
variance, which is expected since it consists of stocks
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Figure 8. Portfolio for the stocks from the first two sparse PCs. The CSI 300 index is also included for comparison. The daily and
cumulative portfolios are presented in the left and right panels, respectively.

Figure 9. Portfolio for the stocks from the first two sparse PCs. The CSI 300 index is also included for comparison. The 1st PC and
2nd PC are presented in the upper and down panels, respectively.

from the financial sector. The portfolio of the second
PC have a total different trend, which can be explained
by its composition, i. e. , stocks are all from the health
care and industrial fields.

4　 Numerical research
In this section, we compare the performance of various
algorithms on synthetic data. All programs are
completed by R software, and the corresponding sparse
principal component analysis methods are: ① VM,
using R package: pcaPP; ②REM, using R package:
elasticnet; ③M, using R package :Nsprcomp; ④SVD:
Consider two algorithms: one is SVDb algorithm, the

other is SVDc algorithm using R package: PMD.
4. 1　 Setting
In this section, we consider a more complex data
generating mechanism by extending the studies in Hsu et
al. [19] . Suppose we are given a sample covariance Σ
coming from a “spiked” model of covariance, with

Σ = VVT + σ2Ip
where the columns of V=(vij)∈RR p×3 are the true sparse
leading eigenvector, Ip is an identity matrix, and σ =
0. 1. A data matrix X ∈ RR n×p is then generated by
drawing n = 100 samples from a zero-mean normal
distribution with covariance matrix Σ, that is, X ~
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N(0,Σ) .
Two dimension are considered: p=50 and p=100.

In addition, we consider two different covariance
structures:

① Non-overlap structure. (Figure 10(a))
v1 = (0. 32,…,0. 32üþ ýï ï ï ï

10

,0,…,0}

p -10

),
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p -30

) .

　 　 ② Overlap structure. (Figure 10(b))
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Figure 10. An illustration of the covariance structure in synthetic examples.

　 　 Therefore, four simulation scenarios are produced,
they are: ① non-overlapping covariance structure, the
number of variables p = 50; ② non-overlapping
covariance structure, the number of variables p = 300;
③ overlapping covariance structure, The number of
variables p = 50; ④Overlapping covariance structure,
the number of variables p=300. The simulation in each
case was repeated 300 times to estimate the first three
principal components.

For comparison criteria, our point here is that,
while variance versus cardinality is a direct way of
comparing the performance of sparse PCA algorithms,
accurate recovery of the support is often a far more
important objective. Many methods produce similar
variance levels given a limited budget of nonzero
components, but their performance in recovering the
true support is often markedly different. Therefore, we
consider a new metric to evaluate the performance of the
different methods, which is defined as the absolute
value of the inner product between the true and

estimated loading coeffcients, i. e, Cosine = | vT
j v
︿
j | ,j =

1,2,3.
4. 2　 Results
The results of the four simulation studies are plotted in
Figure 11. Obviously, almost all sparse PCA methods
perform better than classic PCA methods. This shows
that the sparse PCA method can better estimate the load
coefficient value. Comparing the non-overlapping
covariance structure and the overlapping covariance
structure, the sparse PCA method performs better in the
case of non-overlapping covariance structure (Figure 11
(a)-(b) versus 11 ( c) -(d)) . In addition, for the
sparse PCA method, it can be observed that the high
coincidence rate of PC1 exceeds that of PC2 and PC3.
Also, sparse PCA performs better when the number of
variables is small (Figure 11(a) versus 11(b) or 11(c)
versus 11(d)) . From the four pictures in Figure 11, we
can find that the REM algorithm, SVDb algorithm (R
code written by Shen and Huang[11]) and SVDc
algorithm (R software package PMD) perform well
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Figure 11. Boxplots of the Consine values drawn by six algorithms: PCA, REM, VM, PM, SVDb and SVDc in four simulation schemes.

under any circumstances, while the VM algorithm and
PM algorithm perform worse when the number of
variables is greater than the number of samples ( p>n) .

This shows that the REM and SVD methods are more
suitable for high-dimensional small sample data. On the
other hand, it shows that the stability of these two
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methods is stronger than the latter two algorithms.

5　 Conclusions
The COVID-19 pandemic has caused serious public
health and economic consequences throughout the
world. It is very important to assess the impact of the
pandemic on the economy, especially the stock market.
It is of great interest to study the impact of the pandemic
on the stock market via dimension reduction techniques
such as PCA. In practice, it is important to figure out
which stocks are inflected mostly by the pandemic and
construct portfolio management based on them. To this
end, we collected the CSI 300 stock data from February
1, 2019 to February 1, 2021, and divided them into two
periods, i. e. , before and after January 1, 2020, and
applied PCA and sparse PCA methods to them. The
results show that the outbreak of the pandemic led to
changes in both proportion and constitution of the
principal component of the stocks in the CSI 300 index.
In addition, our research work compares four different
sparse PCA procedures in CSI 300 data as well as
simulated data, which would provide a practical
guidance for financial applicants.

Studies have shown that the performance of each
algorithm of principal component analysis varies
greatly, and there still have room for improvement. In
the future study, it is of interest to use other modern
optimization algorithms (such as primal-dual active set
algorithm[20] and mixed integer optimization
algorithm[21]) to derive a more accurate estimation. In
addition, our current work is based on historical data
before and after the outbreak of the COVID-19
pandemic, which can be used as a dynamic tool for
index selection in the future, so we need to think about
ways to improve its generalization ability.
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we can obtain Π= s( l-cl
2-s-(h(-1+ch)+s)ρ)

2ρ
. When ∂Π

∂s
= l-cl

2+h(1-ch)ρ-2s(1+ρ)
2ρ

= 0, the optimal price is

s∗ = l-cl
2+hρ-ch2ρ
2(1+ρ)

. The second-order condition ∂2Π
∂s2

= -1+ρ
ρ

<0 is always satisfied.

A. 6　 Proof of Proposition 5. 1

The two first-order conditions are ∂s∗
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2+2ρ

. The two second-order conditions: ∂2s∗
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<0 are always satisfied.

A. 7　 Proof of Proposition 5. 2
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通过稀疏 PCA 分析新冠疫情对股市的影响
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中国科学技术大学管理学院统计与金融系,安徽合肥 230026
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摘要: 新冠疫情的爆发在全世界造成了严重的公共卫生和经济后果。 评估新冠疫情对经济,尤其是股市的影

响非常重要。 为此,我们提出应用几种最先进的稀疏主成分分析(PCA)方法来分析 2019 年 2 月 1 日至 2021
年 2 月 1 日的沪深 300 指数股票数据,以揭示新冠疫情爆发的影响. 将这段时间分为两个时期———2020 年 1 月

1 日之前和之后,在此基础上,我们尝试提取主成分并构建投资组合. 结果表明,在新冠疫情爆发之后,代表市

场的主成分的比例有所下降. 关于前两个主成分的构成,新冠疫情爆发后,起决定作用的股票集合有很大的不

同. 在新冠疫情之后,医疗保健行业的股票开始在沪深 300 指数的投资组合中发挥重要作用. 与沪深 300 指数

相比,稀疏 PCA 方法的前两个主成分可以在组成投资组合的股票集数量少得多的情况下获得更高的回报. 综
上所述,新冠疫情的爆发导致沪深 300 指数股票的主成分比例和构成发生了变化.
关键词: 新冠疫情;稀疏主成分分析;股票指数
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