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Abstract: The online updating method (ONLINE) is an efficient analysis approach applied to big data.
We prove the asymptotic properties and conduct statistical inference of the ONLINE models in kernel
density and kernel regression. Several algorithms are proposed to solve the problems of the bandwidth
selection in kernel density and regression respectively. We verify the asymptotic normality of the
ONLINE density model in simulation and apply the ONLINE linear kernel regression to the Volatility
Index ( VIX) prediction. The empirical results show that the ONLINE linear kernel regression model
achieves a comparable performance in continuously arriving option data streams prediction with
significantly lower complexity than the classical local linear regression model.
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1 Introduction

Large organizations, such as financial companies and
Internet giants, or other large enterprises, today receive
data at a tremendous scale and speed due to the
explosive growth of data sources that continuously
generate streams of data. Whether option data comes
from financial exchanges that generate millions of
transactions in a short period, or log data in Internet
companies application servers, or streaming data from
Web sites and mobile phone clicks, all of these data
streams require effective and efficient processing and
analysis, which has become challenging problems in
statistics and computer science. Several researchers have
systematically discussed this issue related to the mining
aspects of data streams''™'. Besides, nonparametric
estimation methods have also been studied in data
streams ',

Considering the high diversity of streaming data,
kernel density estimation and regression, as
representatives of nonparametric methods, are very
suitable to deal with estimation and prediction problems
since they need not make excessive assumptions about
the corresponding functions between the data*®*. On
the other hand, rapid real-time inference of convective
data in a few seconds is also expected for the need of

practice while classical nonparametric methods have the
weakness of computational heavily. Therefore, our
focus is not only to perform statistical analysis with as
little calculation and storage as possible but also to
command more relaxed restrictions on the distribution of
the data when it arrives in streams or blocks. Since
requiring less storage and updating in real-time, the
sequential updating approach is instrumental in the high-
speed processing of massive data'®. Much work has
been done in this area ', Kong and Xia'"' go on to
research this method and proved that the online updating
method ( ONLINE ) models with index-special
bandwidth are the optimal choice of minimizing the
asymptotic mean square error among a very general class
of online updating schemes of kernel density and
nonparametric regression models.

Compared with the classical kernel estimation
methods noted as OFFLINE, the ONLINE models are
shown to use the obtained data block to estimate and
update the bandwidth parameters, avoiding the
complexity of re-estimation every time the data stream
arrives. Although the ONLINE approach has sensational
theoretical properties, further steps must be taken before
attempting an application of the ONLINE method.
Taking the density estimator as an example, when the
information of the true density is unknown, how to
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obtain the ONLINE estimators from the observed data is
not studied''™ | let alone the following inferences
conducted.

In this paper, we establish the statistical inference
for a wide variety of kernel-based nonparametric
estimators coupled with index-special bandwidths based
on the online updating approach and propose the
available and practical algorithms for the applications of
the models. More specifically, we prove the asymptotic
normality with index-special bandwidths of the ONLINE
estimators. Further, when the bandwidths are estimated
reasonably from the data, the asymptotic normality of
ONLINE estimators still holds. As follows, we also
discuss their hypothesis tests and power functions. We
design several algorithms of bandwidth selection for the
ONLINE models, which are of great significance to the
promotion and application of the model. The
effectiveness of the ONLINE model is verified by
numerical study and the ONLINE local linear model is
used to predict the time series data of financial options.

This paper is organized as follows. In Section 2,
we establish the asymptotic properties of the estimator in
the ONLINE kernel density model. Then we establish a
hypothesis test and discuss the power function. In
Section 3, we discuss the ONLINE nonparametric
regression models, including local constant and local
linear model. In Section 4, the algorithms are
constructed to solve the problems of the bandwidth
selection in the ONLINE kernel density and regression
model. Section 5 contains simulation studies to test the
asymptotic normality of the ONLINE density estimator
and we predict the Volatility Index by the ONLINE
local linear regression models.

2 Density estimation and testing

The classical nonparametric density model and the
sequential updating nonparametric density model are
introduced in Section 2. 1 and Section 2.2, respectively.
And we establish the corresponding asymptotic
properties in Section 2.3 and conduct the hypothesis test
in Section 2. 4.

2.1 Nonparametric density model

Throughout this paper, X,,---,X, denote p-variate
independent identically distributed random samples of
density /. And we have X, = (X,,---,X,)" . The
Parzen-Rosenblatt estimator of f( +) is defined as

o= 3K (X ) ()

where K, (u) = K(u/h,)/h;, and K(-) is a kernel

ns
density function. Intuitively, fn( +) is the average of a
set of weights. If the observation X, is closer to x than
other observations, then its weight is relatively larger.
Conversely, if X, is far away from x, then the weight is

small. The bandwidth h, controls the degree of
“closeness”, so the choice of h, is incredibly crucial.
But for classical bandwidth selection methods, h, is
usually chosen based on the total of observations
(X;)?_,. Therefore, the bandwidth needs to be re-
estimated when the observations arrive in batches.

2.2 The ONLINE nonparametric density model

To solve the problem, the ONLINE nonparametric
density model introduced by Kong and Xia'' is an

~

improvement. Suppose f,_; is the current estimator after
X,,---,X,_, have been observed. Once X, arrives, the
estimator is then updated as
f(x)= (1 =B,)f,.(x) +B, K, (X, —x),

where 8, is a weight coefficient, and it is worth noting
that the choice of the bandwidth 4, is independent of all
preceding observations. they have proved that fn(x)
with 8 = n~' has the smallest asymptotic mean square

error amongst a general class of weighting series. The
ONLINE density model is

f = YK (X ) )

The bandwidth b, = ¢i™, i = 1,2,-++,n. By minimizing
the mean square error of the ONLINE estimator, the
parameters ¢ and « have the following form:

o= ! y
4 +p

o= (e e D) (RO
2(p +4) [tr| 7,(x) | )?

(3)
here tr{.7,( ) | denotes the trace of Hessian matrix of
P

f(+), and ]| 7 ()} = _Zazf/ax,?, and R,(K) =

i=1
sz(u)du. As it can be seen in Equation (3), the

estimator of ¢ is not directly available. In Section 4,
several algorithms are constructed to solve the
difficulties of the estimation of c.

Compared with the classical model, the significant
difference of Equation(2) is the form of index-special
bandwidth. As we can see, in the ONLINE model, the

bandwidth h, = ¢i ™ is split into two parts: the constants

cand a, and the variable i™*, where the constant ¢ is
related to f( -) and « depends on the dimension p of
observations, and the variable term is only affected by
the sample size n. The advantage of bandwidth splitting
in this way is that if ¢ can be accurately estimated from
the initial data streams, it can be used for the
subsequent data streams continuously, without the re-
calculation of bandwidth, which is of great significance
to reduce the amount of calculation of big data. In the

next, we will study the asymptotic properties of fl(x)
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and establish the hypothesis test.
2.3 Asymptotic properties of the ONLINE density
estimator
To discuss the asymptotic properties of the ONLINE
density estimator, we make the following assumptions
of kernel function and density function, respectively.
Al The kernel function K( +) is symmetric, and

we have fK(u)du = 1, also we have fuuTK(u)du =1,

andez(u)du = R(K) < .

A2  The density function f( -) is third order
continuously differentiable at the interior point x of its
support.

Under the above assumptions, we establish the
asymptotic normality of /,(x) as follows.

Theorem 2.1 Assume Assumptions Al-A2 hold.

Suppose thatjl k(u) 1*?du < o for somed > 0, then

_ (L+pa)e” ( _ _
LRy Kyt X =
2

mhr%,%}(x) In ) =S N0,

The proofs of all theorems and corollaries in this
paper are presented in the Appendix.

The gradient vector and Hessian matrix of f( - )
denote by V,(+) and .7, -), respectively. Given that
Theorem 2.1 is not sufficient for the following
hypothesis test, we consider proving the asymptotic
normality of the estimated parameters.

Corollary 2.1  Assume Assumptions Al — A2

hold. Suppose thatfl k(u)1*"du < o for somed >0,

and tr{.7;(x) | 9, tr{ Z,(x) |, then

PO (G o)~ f(x) -
fn(x>R2<K>np
)
Z(ICTM[H%'?@()C) Fne ) L’N(O,l) ,
where
e= {p(p + 2)R(K)f,(x) 1V
2(p + 0 L7, () 7
»
and tr{. 7 ; (x) | = 2 (@ f./ ox2) | x,.
i=1
2.4 Hypothesis test of the ONLINE density estimation
Given the arrived observations following the distribution
f, the estimator of f(x,), which means the density of
the fixed p dimensional point x,, can be easily
computed. In this section, we aim to develop the
hypothesis test of f(x,) according to Corollary 2. 1.
Specifically, the hypothesis test for the true density of
the given point x,, is as follows;
Hy:f(x,) = 6, vs H,:f(x,) # 6,

The estimator f,(x,), and its bias b (x,) and
variance o7 (x,) of x, can be calculated according to the
previous sections. Here

b(xy) = [2(1 —20) ][ |7 (x)) | In 7™
and

0,7 (x0) = [£,(x)R,(K) ][ (1 +pa)e”]™'n"™".
According to Corollary 2.1, we have

fi(x0) —f(xy) =b,(x,) d

a-n ( xO )
then the test statistic can be defined as

z = J.(x,) ;00 -b,(x,) (4)

o,(x,)
which follows the asymptotic standard normal
distribution under H, is true. We reject H, if | z, | =

U, » Where u, , is the upper «,/2 percentage point of

N(0,1),

the standard normal distribution and «, is the desired
significance level of the test. Then we discuss the power
function of the test. The power function is

f,(x0) =6, =b,(x,)
Bn(x(,)=P(f et ¢ >u“0)=
U;l(x()) :
- +60~_f(xo) <
O-n(x0>
L(xy) = (f(xy) +b,(x;)) =
O-n(x()>
o +M) -
? 0-n<x0)
5 — ol +f<f>‘9) _d,(u% +W)
’ O-I‘l(xo) ’ a-n(xO)

If f(x,) converges to 6, fast enough such that
(f(xy) — 00)/5'”(3"0) — 0, then the power B,(x,)
converges to «, and the probability of Type Il error
converges to 1 —a,, and the test is not able to

discriminate the alternative from the null hypothesis. If
f(x,) converges to 6, at a slow rate such that (f(x,) —

1-p(-

6,)/0,(x,) — % , then the power converges to 1 and
the probability of Type Il error converges to 0, so the
alternative is too easy. Intermediate rates seem to be the
most interesting. Considering that f(x,) = 6, +6,, 6,
converges to 0 as n — o , the problem we consider is
how fast §, converges to O can ensure the value of power
function is between o, and 1. So 8, converges to 0 at the

~ pa—1
same rate with o, (x,) , which is O(n[T). The curve of
the power function is shown in Figure 1.

3 Nonparametric regression and testing

Regression analysis in nonparametric cases is suggested
to be a widely used tool in applied data analysis.
Therefore, in this section, we will discuss the ONLINE
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! have
0.9r
o [ Lpe)CSE) 50 (x) —m(x) =B,(x)| > NO,D),
" Ry(K)o;
07} | where
06! | B .(x)= &{2(1 =2a)} " -
S os} || [tr{ 7, (x)} +2V" m(x) VF(x)/f(x) In >
04l ‘;‘ ‘ Similar to Corollary 2. 1, the following corollary can be
ol | addressed.
Corollary 3.1 Under Assumptions Al -A2, we
o2 have
0.1 =
by 005 0 005 0.1 W {%nw(x)—m(x)—zgnw(x) ;LN(()J) ’
5 Al "R, (K)o,
where

Figure 1. Power function.

model in nonparametric regression. Suppose we have
observations (X,,Y,)}_., which are generated according
to

Y= m(X,)) +e,,i=1,,n (5)
where X, is a p X 1 random vector with probability
density function f( +), and m( +) is a smooth function.
&, is an error item with E(e; 1 X,) = 0, Var(g, | X,) =
o’. It is of interest to estimate m( +) based on (X,
Y,)!_,, after which we will conduct statistical inference.
3.1 ONLINE local constant estimator and its

asymptotic properties

The ONLINE local constant estimator of m(x) is
addressed" ! by minimizing

iKhi(Xi -x) 1Y, —m(x) P2,

Its solution is

n

Z K%,-(Xi -x)Y,
m, (x| a,c)= "= (6)

z K71,-<Xi _x>
i=1

again with index-specific bandwidths h, = ¢i™*, i = 1,

---,n, for some constants ¢ > 0, a > 0. Similar with
kernel estimator, by minimizing the mean square error

of 7nnu,(x | a,c), the constant ¢ and « have the following
form .

o=

1 B p(p + 2) 1/(4+p)
4+p (2(p+4)) .

( R,(K)f(x)a, yw>
[t 7, (x) | f(x) +2V m(x)Vf(x)]® ’
where Vm( -) and .77, ( - ) denote the gradient and
Hession matrix of m( +). Under the same assumptions
and denotations claimed in the previous section, the

asymptotic distribution of m,,(x | a,c) can be stated by
the following theorem.
Theorem 3.1 Under Assumptions Al -A2, we

B, (x)= &{2(1 =2a)}| " -
[tr| Z,(x)} +29" m(x) V,(x)/F,(x) In 7>

Here the notation %m(x) , Vim(x) are the estimator of
~ d
7, (x) and Vm(x) which satisfied .7, (x) ——
~ d
T, (x),and Vm(x) — Vm(x). It’ s worth noting
that .77 (x) , the second derivative of the estimator of
m(x), is extremely complicated, so here we use

J,(x), the estimation of second derivative of m(x)

“m

instead, which can be obtained by Taylor expansion.

3.2 ONLINE local linear estimator and its
asymptotic properties
The ONLINE local linear estimator of m(x) is

addressed">' by minimizing
Y KX, —x) Y, -b' X, (x)}’ (7)
i=1

with respect to b = [m(x) ,h, V'm(x)]", and X, (x)
= [1,(X, —x)"/h,]". Denote b as an estimator of b.
Denote M(x) = [m(x), V' m(x)]", and M(x) =
[m(x), Vm(x)]". So we have

b=[5(x)]"8(x,Y) (8)
where

500 = L3 K - 0%, (0%, (),

i |2 R (9)
Sy(x,Y) = ;ZK,”(Xi -x)X,(x)Y,

The asymptotic normality of M(x) is established by
the following theorem and corollary.

Theorem 3. 2 Under Assumptions Al — A2, we
have

n(l—pa)/Z(M(x) ~M(x) —B,(x)) LN(O,Z) )
where
By(x) =

0

nf(x) (tr{'%n<x> ! )
2(1 - 2a) :

pX1
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- (Ti (Rz( K) ~0] xp ) ;nnw(x()) - (m(xO) + an(xo) ) < u% + 00 - m(x0> ) .
Cp(l +pa>f(x) 0p><1 Rz(K> ’ a-nw(x()) 2 Zrnw(x())
here R,(K) = juuTKz(u)du. 2 — | uw +W) —(p(u“o +W)
’ Unw( xO ) ’ Unw ( xO )

Corollary 3. 2. Under Assumptions Al —A2, we
have

N ~ - d
[n'™f(x) ]*(M(x) —M(x) = B,(x)) —>N(0,%),
where

. B w tr{ 7, (x) |
B,(x) = 2(1 = 2a) ( 0, ) ,
— O'E R,(K) 0””

c”(l-i-pa)( 0p><1 R2<K)) .

Here the notation .}Zm(x) , Vm(x) are the estimator of

H (x) and Vm(x) which satisfied 74’,”()5) SN

m

H,(x), Vin(x) —— Vn(x).
3.3 Hypothesis test about the ONLINE constant
estimator
When the observations (X, ,Y,), -+, (X,,Y,) arrive, the
estimator of m( +) at a fixed p dimensional point x, can
be easily calculated. As the following, in this section,
we aim to develop the hypothesis test of the m(x,)
according to Corollary 3. 1.

Hy:m(x,) = 6, vs H :m(x,) # 6,.
The estimator ;L"(xo) , and its bias b, (x,) and variance

o’(x,) can be derived according to the previous
section. Here

b, (x,) = @12(1 =2a) | '[tr| 7, (x,) | +
2VT;1<xo) W}n(xo)/ﬁ(xo)Jn_za,
and
T (%0) = [R(K)oL][ (1 +pa)ef,(x,) ] '™,
According to Corollary 3.1, we have

;‘an(xO) _m(x0> _Z)nw(xo) d

a-nu'<x0 )
and then the test statistic can be defined as

L m,,(x,) —6, —b,(x,) (10)

O'n(xo)
which follows the asymptotic standard normal
distribution under H, is true. We reject H, if | z, | =

U, » Where u, , is the upper «,/2 percentage point of

N(0,1),

the standard normal distribution and «, is the desired
significance level of the test. The power function of the
test is discussed as follows:

m, (x,) =6, -b, (x
B"<x0) — P( nw( ())N 0 ( 0) > u%) —
a-nw<x0) :
| _P(_u% p o mmx)
’ o-nw(x()>

Considering that m(x,) = 6, +6,, 8, converges to 0 as
n — o , the problem we consider is how fast 9§,
converges to 0 can ensure the value of power function is
between a, and 1. So 6, converges to O at the same rate
with &

o(X,) , which is O( T ).
4 Algorithms

In this section, we will discuss computational details on
the bandwidth selection of the ONLINE models. It is
generally accepted that the performance of the kernel
estimator is mainly determined by the bandwidth.
However, the bandwidth in the online model is not easy
to obtain directly, and the difficulties lie in the
determination of parameters c.

4.1 Solution of ¢ in the ONLINE kernel density

estimator

In the classical kernel density estimation, the main
methods to solve bandwidth selection are rule of
thumb' "',  cross-validation'*"’ and plug-in""®""".
There are drawbacks to blending the same bandwidth
into all components'"®"®'. As we can see, the parameter
c is related toj’"(x). Therefore, the calculation of ¢ can
be converted into the problem of searching a fixed

point. If we plug in the /,(x) based on the previous ¢, to
get a new ¢,, ¢ can be addressed after iterating such a
process for several times. More precisely, we state the
steps in the following.

(I) Based on the previous observations X, ,---,X,
using the cross-validation method, we obtain the initial
bandwidth marked as h,, then its ONLINE kernel
density estimator f,( -) can be calculated according to
Equation (2).

(I) The estimation of the initial parameter ¢, as
follows :

o p(p " 2) 1/(4+p) RZ(K)},,(JC) 2\ 1/ (4+4p)
o~ (2(p + 4)) (tr{.%é}n(x) P2 ) '

(IT) While the initial estimated value ¢, of ¢ is
obtained, we can calculate the first bandwidth h, =
¢, i* Thenf () and tr| ; (+) | according to h, can
be calculated accordingly. Repeat this process until ¢
converges.

4.2 Solution of ¢ in the ONLINE Kernel regression
estimator

In the ONLINE kernel regression models, the parameter
¢ can also be estimated through the same idea in Section

4.1 theoretically while the second derivative of m( +)
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explicit form is not easy to access. Besides, the
parameter c is determined by f( +), m(+) and o, , which
are complicated or even impossible to be derived in the
practical problem. Moreover, the parameter ¢ in
regression models does not get closer to the true value
with each iteration. So inspired by cross-validation that
does not rely much on the calculation formula, we use

the data-driven approach to figure out c. Let ﬂ_i(Xi)
denote the leave-one-out local linear estimator of m(x)
atx = X, by using all observations but (X;, ¥;). And

b .(X)= (m (X)), Vm (X,))". We have

b (X)= ( m_(X;) )=

S Em(x)
[z oy L) -x0m)]

ZKhi(X,’ —x>(X, 1_X) Yl-.

Define a (¢ +1) x 1 vector e, whose first element is
one with all remaining elements being zero. The leave-

one-out kernel estimator of m(X,) is given by nAz,L.( X)=
elTnAz_,.(Xl.) , and we choose ¢ to minimize the least-
squares cross-validation function given by

CV(c) = zj} [Yi - ’/n\—i(Xi>]2-

5 Simulation study

In this section, we analyze the performance of the

Q-Q plot (x=3.5) Q-Q plot (x=1.5)

ONLINE models in the density estimator. The ONLINE
local linear model is applied to predict the Volatility
Index.
5.1 Density estimator normality test on artificial
dataset

In this part, we investigate the normality of the online
density estimator by the following simulation based on a
one-dimensional bimodal normal distribution. More
specifically, the distribution has the following form.

2
X -
fay= 07 eXp(_( p«;) )+
V2mo, 20,
0.3 ( (x _:“2)2)
exp| — 5 S
V2mo, 20,
wherew, = -3, u, = 3, 0, = 0,” = 1. Based on the
distribution, we ran 500 simulations, each producing
500 observations. Four specialized points x = {-3.5,
-1.5,1.5, 3.5 are considered respectively and

Gaussian kernel is used. The bandwidth , is determined
by ¢, which could be estimated by the algorithm in
Section 4. 1. For 500 resulting estimator values for each
point, we computed the sample percentiles which range
from 1% to 99% and presented them with corresponding
theoretical percentiles of standard normal distribution in
quantile-quantile ( Q-Q ) plots as shown in Figure 2.
Figure 2 shows Q-Q plots at x=1{-3.5,-1.5,1.5,3.5}
drawn from Corollary 2. 1. The plots deviate only
slightly from 45-degree lines, indicating that the
quantile-quantile of those points are very close to that of
standard normality distribution.

Q-Q plot (x=-1.5) Q-Q plot (x=-3.5)

™M = ™ — ™ - ™M -
o - o~ — o - o~ -
o A o - o - o -
o Lo o~ 4 0Nl
) ) ) S
o J/° o J4/° o 4/° o G
T T T  TrrTT7r7  fTTTroTrTrTrTT1 | T
-3 101 23 -3 1012 3 -3 10123 -3 =4 0123
Histogram (x=3.5) Histogram (x=1.5) Histogram (x=-1.5) Histogram (x=-3.5)
— ; _ - — -
- A K o AN 2 /
e 7 o _ o o
o
o o~ o
(<] g — o o
S 7] S b S
o o o o
S rmr—Tr 7171 ° r 771 1 ° 717171 1° 1717 7171
4 2 0 2 4 4 2 0 2 4 & 2o 24 4 2 0 2 4

Figure 2. Quantile-Quantile plots and histograms at the points x={-3.5,-1.5,1.5,3.5} using the ONLINE model.
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Table 1. Two types of errors of the ONLINE kernel density model.
o, = 0.01 o, = 0.025 a, = 0.05
! Type [ error  Type Il error Type I error ~ Type Il error Type I error ~ Type Il error
-3.5 0.012 0.988 0.024 0.972 0.038 0.966
-1.5 0.016 0.984 0.027 0.970 0.044 0.965
1.5 0.014 0.986 0.018 0.980 0.053 0.960
3.5 0.008 0.991 0.021 0.982 0.048 0.968
Besides, to show the performance of hypothesis with ¢ = 0.03 which is selected from the first 300

testing, we calculate two types of errors at x according
to Section 2.3. Repeated 500 times, the average
probability of two types of errors can be obtained. It’s

worth noting that §, is the same order as o, ( +), so we
have 8, = 0.01. Table 2 shows two types of errors at
four points.
5.2 Volatility index prediction by ONLINE linear
kernel regression model
In this section, we predict the Volatility Index ( VIX) by
using the ONLINE linear kernel regression model. The
VIX is an index released by the Chicago Board of
Options Exchange (CBOE) to reflect the expectation of
future volatility of markets'™ . It provides market
participants with an indicator that reflects the overall
trend of the market, which is crucial in options
trading'*'’. The data used in this section consists of the
CSI 300 stock index options on 2020-09-14, which is
downloaded from Wind, and it is the snapshot of five-
level market quotations of each option which are
recorded per 500 milliseconds. As a result, a total
number of 1085 observations are chosen. Considering
that the 50 exchange-traded funds ( 50ETF) have been
traded for a long time and the trading volume is
extremely large, we also use the historical data of
S50ETF options which are also included in the
simulation. Note that the data is the difference value of
two initial data whose time difference is the time interval
of 10 ticks. Based on these values, the following model
for the VIX difference sequence of CSI 300 stock index
options is built,
AX, = m(AX,_, ,AX, ,,---,AX,_,,
AX’[—] ’AXIl—Z’..'9AX,I—q) +‘91 (11)

Note that, X,_; is the i -order lag term of CSI 300 stock
index option, and X', is the j -order lag term of SOETF
option before the arrival moment. Here, the first 300
pieces of data are trained to select ¢ value by the cross-
validation method in Section 4. 2, and the Gaussian
kernel function is used. As a comparison, the
bandwidth of the OFFLINE method is also selected by
cross-validation.

Figure 3(a) and Figure 3(b) use a 2-dimensional
regression model, AX, = m(AX,_,,AX,_,) +¢&,, and the
ONLINE model is used to predict the left sample points

sample points. Figure 3 (a) is the real VIX curve and
estimated curve of the ONLINE local linear model after
the first difference. The first 100 points are intercepted
for clearness of representation. The solid black line
shows the curve of the ture VIX, while the solid red line
is the ONLINE model’ s fitting curve. The volatility of
the ture VIX is steep while the fitting curve of the
ONLINE model is relatively smoother. As shown in
Figure 3(b), in the intervals with obvious trends, such
as [ 550,600 ], VIX has an obvious downward trend and
the predicted value is relatively accurate. In the ranges
where the VIX does not fluctuate sharply, such as [ 600,
7007, the forecast curve is relatively smoother. Only
using a 2-dimensional model, the overall estimated
curve is too stable, so we consider adding another kind
of 2-dimensional 50ETF option data. Figure 3(c¢) and
Figure 3(d) use a 4-dimensional regression model, so
we have AX, = m(AX,_, ,AX,_, ,AX|_ ,AX!_,) +¢&,, and
¢ = 0.1. Compared with the 2-dimensional model, the
prediction curve is more accurate, and the fluctuation is
more consistent with the ture VIX.

To further illustrate the result of the comparison,
we compared the mean square error ( MSE ) and
calculation consumption time of the ONLINE regression
model with the OFFLINE counterpart. Herep = 1,2,3,
5, n = 100,300,500. As can be seen from Table 2, the
mean square error of the ONLINE model is close to the
OFFLINE. With the increase of sample size n and
dimension p, the relative mean square error is also
increasing, even approaching 1. However, Table 2
shows the ONLINE model achieves a comparable
performance in continuously arriving option data streams
prediction while it has significantly lower complexity
than the traditional local linear predictive regression
model.

In high-frequency trading, when the decision
maker needs to consider whether to trade at some special
price, it can be considered to conduct hypothesis tests
for several points. Type I error affects the transaction
income, while Type Il error is related to risk.
Therefore, the two types of errors are constructed
together to provide contributions to transaction
decisions.
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(a) Ture VIX and ONLINE local linear estimation curve (b) Ture VIX and ONLINE local linear estimation curve
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(c) Ture VIX and ONLINE local linear estimation curve (d) Ture VIX and ONLINE local linear estimation
after first-order difference (p=2,9=2) curve (p=2, ¢=2)
Figure 3. Plots of ture VIX and ONLINE local linear estimation curve.
Table 2. MSE(10™*) and computation time of ONLINE/OFFLINE regression models.
P n Time( ON) MSE(ON) Time ( OFF) MSE( OFF) Relative time  Relative MSE
100 0.92 0.60 90.37 0.50 98.23 0.83
1 300 1.12 0.82 338.91 0.71 302. 60 0.87
500 2.76 1.38 1421. 46 1.24 515.02 0.90
100 0.97 0.51 102.37 0.44 105. 54 0.86
2 300 1.30 0.78 382.62 0.69 294.32 0.89
500 3.02 1.46 1488. 89 1.34 493.01 0.92
100 1.56 0.51 160. 49 0.45 102. 88 0.89
3 300 1.72 0.81 524.67 0.72 305.04 0.93
500 3.49 1.35 1674.85 1.28 479.90 0.95
100 2.89 0.41 366. 16 0.35 126.70 0.86
5 300 4.03 0.77 1385.03 0.69 343.68 0.90
500 6.49 1.12 3809.76 1.05 587.02 0.94

in ONLINE kernel density and ONLINE nonparametric

6 Conclusions regression models. In addition, we verify the asymptotic

In this paper, we prove the asymptotic properties of the normality of ONLINE density model in simulation, and
ONLINE kernel density and ONLINE kernel regression, apply this method to predict the Volatility Index ( VIX)
and establish hypothesis tests. Several algorithms are using the ONLINE linear kernel regression. It is of

constructed to solve the problems of bandwidth selection interest to conduct the inference of varying coefficient
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regression models in which the online method can also
be applied. Besides, more datasets in different areas,
such as finance, computer science, and engineering,
can be considered to investigate the performance of the
method in applications.
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Appendix

Lemma A.1 (Lyapounov CLT) Suppose that for each n, @ are independent, Ew,, = 0 and o, =

nl o nn

Ew’, < . Defines. = 2 o’.. Suppose further that for some § > 0 the following condition holds:
=1

2+8
S El w17t

Then we have

- d
zwni/'sn, N(()’l)
i=1

Proof of Theorem 2.1 Recall that

; LA (X,. —x)
X)=n TK — ,
R

i

whereh, = c¢i ™ and a = (4 + p) ~'. To derive the asymptotic normality of £,(x) , we rewrite /,(x) —f(x) as sum of
two parts in the following form,

£,0) =fx) ={E[f,(0)] = fG0) | + 1 f,(x) —Elf,(x)]]
where B, and V, contribute to the bias and variance of the estimator. For the first part B
above, we can expand it as follows:

B, =E[f.(x)] -f(x) =n"" Zf K(
Noted thatz =uh, +x, then dz = h/du, and we have

B, =L X [ K +x) du - fix) =

based on the notation

no

)f(Z>dz Ax)

N - n? o
2 KU bt B+ D A u] du ol 3R ~f(x) =

v 7(x) | Z I +o(—2h2) ——tr T (x) | n j 22de(1 +0(1)) +o(n™) =

2
| H(x) | +o(n).

2(1 = 2a)

we can also expand it as follows

2

For the second part V.

no

V. =F.(x) _E[f”(xﬂz’l@ihlp{l((x};x) _EK(Xih_x” def ‘n .

i=1 ;

It’ s clear that E(V, .) =0, then

n,i
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) 1 X, —-x X —-x\1°
Var(V. )= E(VZ ) =—E| K|~ - EK| "= =
i ’ h217 h h

25
n i i i

)f(Z)dz - ( : r

nh"’ -=
13

400

K(z _ix)f(z)dz) 2 =

h

EKz(X" _x) —EzK(Xi _x) = L[ KZ(zfx
h h n*hr - h;
2

L R s+ xdu = (T K@ +xde) =

pa
n”hY

LT R ) a0 Tdu o=y +o( L) =IO ey vo L),
n hl - 4 n n* hl - n*h?

272
n h’

i

nZ
Denote R,(K) =f K*(u)du, it’s easy to see that

Var(V,) = i Var(V,,) = f(x)R,(K)n™ ™' (1 +pa) ¢ +o(n™™).

Now, by Jenson inequalities, we have
2+8

" " X —-x X —-x
S El m“*“ZlEK( i )_EK( 7 )
i=1 ; ;

S (aht)? ,
n 248 X —x\ |77 n 145
S—s ( L ) 2
o (nhf>2+§ hi
Hence, we can derive the following equation;
n El V”v[ |2+§ ~ 3
“ Var(V )72 =0(nr4).

Applying Lemma A. 1 (the Liapounov CLT) yields

N

248 pr 7. _ —4a(d+1)
2 nizﬂs;lp(wa)fl K(u) I""f(hu +x)du =0(n ).

2V Fx) - fx) -
Vo L) —fx) =B, a0

n

i=1 _ _

Var(V.) /Var(V.) JVar(V,)

Therefore the following result holds,
(1 +pa)c (f( c’
(X)) —f(x) -
SO R(K)n™™! 2(1 = 2a)
- P
Lemma A.2 Suppose A1-A2 hold andn' ™ — o asn— o , f,(x) — f(x).
Proof By Chebyshev’s inequality,

[tr] 7,(x) | ]n*“) N0,

P i) | = o) = BULD D" BRG) ~F) _ee)
£ e &n
where ¢,(x) = { (1 +pa)c’} "'f(x)R,(K).
Proof of Corollary 2.1 Since f,(x) Lf(x) , tri 7 (x) | LN tr{.7,(x) |, and we have
172 tr{‘%}l(x)% 24p/2 2/ (p+4) —2a
n =

Ez[tr%%,(x)ﬂn,h (1 +pa)c” =(1 + pa)
2(1 - 2a) FOR(K)n™ 2(1 =2a) (F.(x)Ry(K))"?

[p+a WAL p(p +2) LEOR(K) o _p
= 2 G :
2(p +2) /f.(x)R,(K) 2(p +4) o’ {7, (x) | 2
Combining Slutsky theorem, Corollary 2. 1 are derived.
Proof of Theorem 3.1 To begin with, we rewrite ;L,W(x) —m(x) as follows:

S (x) —mx) = Ma(x) =) 1F,(x) _set B(x)
£ (%) £.(x)

Since ¥, =m(X,) +¢,, we have

M(x)=[m,,(x) =m(x)]f,(x) =

LS 1Y, = m(x) 1K, (X, —x) =

i=1

1 n 1 " def
2 [m(X) =m(x) K (X, —x) +—=3 &K (X, —x) ==b, +V,
i=1 i=1
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Here we consider the property of b, as following ;
ELb,] = 3 [Im(X) = m(x) 1K, (X, ~)f(X,)dX, =
12f;K(Xh_x) (m(X,) = m(x)f(X,)dX, =
LS [kt tmCha +x) =m(x) s +x)du =
% fK(u)[hu Vin(x) +h u" 7, () ul[f(x) +hu"VF(x) +h—uTZ/(x)u du +o(— 2 h) =
fZ R [tr] 7,(x) | f(x) +2V m(x) V(x) ] +o<;§ R =
*Z 2Ll Z,(x) 1 f(x) +2Vm(x) Vi(x) ] +o(n) =
z(lcjz[tr{-%’m(x) f(x) +2V m(x) Vf(x) Jn ™ +0(n) =B, (x)f(x) +o(n™),
)
where B, (x) =c’{2(1 = 2a) ! '[tr{. 7, (x) | +2V m(x) Vf(x)/f(x)In7*, and tr| .7 ,(x)| = i & m/ox;.

Note thatVim(x) , Vf(x) are gradient of m(x) and f(x). To continue,
X
Var[ b, ] =Var( z[m(X) -m(x) ]K;, (X, —x)) Z 1 E{K( ’

i= |n2h§”
n 1 1 XI. -X
2E2[K( 3 )[m(X,.) —m(x)]} =

i

0( —6a)

i=1

. )[m<x,.>—m<x>1} -

(w)[m(hu +x) —m(x) ]’ f(hu +x)du —

i1 n 71’,) ; i=1
%UK(u)[m(hu +x) —m(x) f(hu +x)du]
It’ s clear that
E[v,] =E(E[v,] x]) =0.
Denote v,= Y, &.K; (X,—x)/n= Y v, and it gives that
i=1 i=1 . 0-2
Var[v, ] = z %E[ KB_(XI' -x)]* =
i=1 N
i=l n i - ; n i= ]I’L
pa—lR K
n 2( )f(x)a-r +0(npa71>'
(1 +pa)c”
Moerover,
n ( >2+5 n
DElw, 1’ = 2 El & K (X, —x) 1’? =——"— 2E| Ky (X, —x) 177 =
i=1 n n =1
E(S[)2+6 n Xi —x
Y K5 rx0ace) -
E ) 248 n _
(821)3 Z ~1 K2+§(u)f<hiu +x)du =O<n(pa—l)(l+8)) ,
n + = h?+26
which yields that
S Elw,l 2o = O (nlre12)
=1 Var(v,) """
Consider that
b, -B,(x)f(x) b, —E(b
T(x): n nw( )f( )_ n ( n)
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then the following equality holds,
E(T(x))* _ Var(b,)

P(I T(x) | >¢) < =o(n™).
(I 7Cx) ) & & Var(v,) ()
According to the Lemma A. 1, it’s easy to find that
no W) = b, M) =B (0fx) +B(f(x) =b, 4o
Var(v ) /Var(v,) JVar(v,) T

Combined with the Slutsky theorem, Theorem 3.1 is easy to obtained.
Proof of Corollary 3.1 1It’s easy to see that
(1 tlpa)épf‘('x;) an(x> — (l +pa)f<x) 2I_I(-x)Cp/2+2n—20¢+(1—pc)t)/Z =@’
n”"'R,(K)o’ 2(1 =2a)R, (K)o 2
where H(x) = [tr{ 7, (x) | +2V' m(x) Vf(x)/f(x)]. Since 77, (x) SN T, (x), and Vm"(x) L>Vm(x) ,
applying Slutsky theorem gives Corollary 3. 1.
Proof of Theorem 3.2 Denote b = [m(x) AV m(x)]" X, (x)=[1,(X, —x)"/h,]", and

~ 1 n - - _ l n N
S,(x) =;ZKR,»(XI' _x)Xin(x)XinT(x> , 8,(x,Y) =;2K71i(Xi -x)X,(x)Y.
= =

So we can see that
b-b= {Sl<x) } _rsz(x,Y) - {Sl(x) } _rSl(x>b =
15,001 - X LK (X, 0 X, (0) 117, -X,T()b]) =
5,001 L E 1K, =0 X ImX) +e, = m(x) = (X, =0) () )] =

n

def

15,0017 13 LK (X, =0 X () 1L (X =0) " 7,(x) (X, =x) +e, +R(x,X) ]|

_ 13,00 | 1B, (x) +V,(x) +R,(x) ],
where
B.(x) =23 (K, (X, =0)X, () ][5 (X, =0)"7,(x) (X, =%) ],

i=1

v =LY KX -0X 0]

1 -
R,(x) =—- 3 [K;(X, =x) X,,(x) JR(x.X)) ,
i=1
and R(x,X,) is the residual term after the second-order Taylor expansion of m(X,). Moreover,

ELB,(x)] = S ELK(X, =) [1,(X, =) /B ] LS (X =) 7,0 (X, =x) ) =

21;12; Efj K(w)[1,u"]"u" 7 u f(hu +x) du :C'L’n‘“f(x)(tr{]//m(x){) + o(ié n) =

2(1 -2a)\ 0,
A f(x) (7, (%) | e
2(1 —2a>( 0, ) toln™).

Since EV, (x) =0, it can be seen that
I % 5
Var(V,(x)) =E(V,(x))* =?Z E[K, (X, —x)X,(x)]’e] =
i=1

R,(K) 0, ) ol f(x)

N 2Tyt o (!
0 R,(K) ] c"(1 + pa) ( )

’

i%j[(z(u)[l,uT]T[l,uT]f(ﬁ,.u +x)du =(
=i n’h!

i= pxl

where R,(K) = J uu"K*(u)du. In addition, if A and B are two fixed matrices of the same dimension and A" exists,

then we have
(A+a,B) ' =A"" —a,A"'BA™" +0(d}),
where a, — 0. It is clear that
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S,(x) =f(x)1,, +0,(n"),
so we have
[1S,(e)t T =1 (), +0,(n™).
Similar to the proof of the Theorem 2. 1, by Chebyshev’s inequality and the Lyapunov CLT, we have
~ d
n'' (M (x) -M(x) -B,(x)) —— N(0,3),
where
B (x> :C2n—2af(x> (tr{ﬂf/m(x)%) _ (Ti (Rz(K) ~01><p )
g 2(1 -2a) 0 ’ (1 +pa)f(x)\ 0,  R(K)]’

Since one can easily verify that the conditions in Lemma A. 1 are all satisfied. Therefore, we can apply the
Liapounov CLT to conclude Theorem 3. 2.

Proof of Corollary 3.2 The proof of Corollary 3. 2 is analogous to that of Corollary 3. 1. To avoid
duplication, descriptions are not provided in this paper.

pxl1

(Continued from p. 389)
Proof of Proposition 4.1 The score function of 6, in the meTPR model is

5,(05 y) = %Tr( (3 '3 -3 ‘%) (A13)
k
Let [ be the length of 0 and s,(0; y)=(s,(8 ; y), =, 5,(0; y))". The score function becomes that under the
GPR model when s, =1. The impact factor s, =(n+2 v) /(2(v=1)+y"3 "y ) is very important for estimating 6. For
example, when y,—o for some j, the score function s,(6; y) is bounded, while that from the GPR model is not.
For a given parameter v, following Ref. [25] the influence function for the estimator 0 is
e 2
(330, F)= = (ECOT0)) s (03) (A14)
Note that the matrix 9°/(8; v)/( 090" ) is bounded for y, which indicates that the influence function of 0 is
bounded under the meTPR model. Similarly, we can get that the score function is unbounded. So, for mGPR, the
influence function of parameter estimation is also unbounded.
Proof of Proposition 4.2 Obviously ¢°=(y-F,(x))"(y-F,(x))/¢,=0(n). Under the condition of Lemma

A. 1 and the condition that || F, ||, is bounded and E (loglI, +¢;" K, 1)=0(n) is established. According to Lemma
A. 1, for a positive constant ¢ and any £>0, when 7 is large enough, we have

LB DLpy (5] Py ), a1 01 =

1
Exf;(—logp%,ﬁyl x) +log p, (y1 Fy, x))dp, 5(y 1 x) <

1 13 ¢ +2(v-1) 2 c )
EJGlogl 1, + ' K1+ L 0T E T + )+ 4 )dpy (| ) (A15)
It gives
1
TEDLp (Y] Fyu 1) py iy 0)]) =0, as oo (Al6)

Thus, the proposition holds.



