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Abstract: A manifold extended t-process regression (meTPR) model is developed to fit functional data
with a complicated input space. A manifold method is used to transform covariate data from input space
into a feature space, and then an extended t-process regression is used to map feature from feature space
into observation space. An estimation procedure is constructed to estimate parameters in the model.
Numerical studies are investigated with both synthetic data and real data, and results show that the
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1 Introduction

A nonparametric regression method, Gaussian process
regression ( GPR ), proposed by Williams and
Rasmussen''’ in 1996, is widely used to fit functional
data. Rasmussen'?’ discussed the detailed algorithm of
using the Gaussian process ( GP) in the supervised
learning of regression and classification, where various
covariance functions were proposed and their
characteristics were discussed. Shi and Choi'”
introduced methods using the Gaussian process in
functional data space. Sun et al. "*) used GPR to predict
short-term wind speed, and Liu et al. "’ applied GPR
on the prediction of short-term deformation of the tunnel
surrounding rock. Many researchers have expanded and
improved the Gaussian process from different
perspectives. With regard to computational space
complexity, Smola and Bartlett'® used sparse greedy
technique to approximate the maximum posterior
estimation of the Gaussian process, which performs well
when the dataset is large. Seiferth et al. '’ proposed
Meta-GP algorithm applying GPR on non-Gaussian
likelihood data, which is suitable for data stream
processing with low computational complexity. Banerjee
et al. "*' proposed a method to solve data storage and
processing issues on large dataset by substituting the
dataset with a random projection on low dimension
subspace. Since GP is susceptible to outliers in data,
there are many robust processes proposed to fit
functional data. For example, Wauthier and Jordan'®’

proposed that GPR tends to overfit in sparse areas of
data. They used heavy-tailed stochastic processes to
improve the robustness of the estimation. Yu et al. "
showed that t-process can improve robustness of model.
Shah et al. "' showed that t-process can reduce the
overfitting problem while maintaining the excellent
properties of GP. Jylinki et al.'”' utilized a t-
observation model ( Student-t observation model ) in
GPR and did estimations with expectation propagation to
improve robustness of prediction and overcome problems
of t-process model. Wang et al.'" proposed a
nonparametric regression method with more robustness
than GPR by combining Gaussian process and inverse
gamma distribution, which is call extended t-process
regression (eTPR).

GPRs and other robust process models are powerful
nonparametric regression methods. However, the
traditional GPR does not perform well when the dataset
is not on vector-space, such as manifold data. For non-
smooth data, such as step function, numerical studies
show that both GPR and eTPR perform ill. This paper
introduces manifold models to devise flexible covariance
functions which improved the performance of
prediction. Manifolds are now widely used in data
processing to change the dimension of the data. When
the dimension of the data is large, manifolds can map
data to a low-dimensional space to reduce the
computational complexity and increase the speed of
calculation. Lin and Yao'*' proposed a functional
regression method on the manifolds. By means of
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functional local linear manifold smoothing, the
convergence of estimation can reach polynomial speed,
and the estimation also performs well on noisy data.
Sober et al. '*! used moving least squares to estimate the
function on manifolds with linear time complexity,
which avoided the non-linear dimensionality reduction
process and the loss of information. Zhan and Zhou''®’
proposed ManiMIL ( manifold based multi-instance
learning ) and used collapse phenomenon originated
from the MIL ( multi-instance learning ) algorithm to do
the prediction, which reduced the calculation time and
addressed the collapse issue of LLE ( locally linear
embedding). In order to enhance the data diversity
when reducing data dimension, Gao and Liu"""’ reported
a method to reconstruct the data with a new defined
manifold distance, which improved the recognition rate
significantly. Fan and Chen'"™ proposed ManiNLR, by
combining manifold model with nonlinear regression.
They used the manifold model to map high-dimensional
space to low-dimensional space, which improved the
classification speed. Recently, Calandra et al. '
combined the manifold method with GPR and created
manifold Gaussian process regression ( mGPR ) by
mapping input data to feature space, which improved
the accuracy of the prediction, especially at the
discontinuous points. Mallasto and Feragen' ™' extended
GPR to non-vector space by defining wrapped Gaussian
processes ( WGPs) on Riemannian manifolds.

GPR methods with manifolds, however, are not
robust to handle outliers in data. To the best knowledge
of authors, there is not a robust process manifold
regression model reported in literature. In this paper,
we combine t-process and manifold methods to create a
robust manifold regression model to fit functional data,
which is called the manifold extended t-process
regression model ( meTPR). We used manifold model
to map input space into a feature space. Then the eTPR
method is applied to the data in the feature space to
capture the nonlinear structures of data. Compared to
GPR and eTPR models, the proposed method can fit
data from complicated input space, such as non-smooth
data. Manifold model significantly improves the
accuracy of prediction. In addition, meTPR is more
robust than GPR-based manifold methods.

The remainder of the paper is organized as follows.
In Section 2, we present the manifold extended t-process
regression, and the estimation procedure. Numerical
studies and real examples are given in Section 3.
Robustness and information consistency properties are
showed in Section 4. We conclude in Section 5.
Additional technical details and all the proofs are
presented in the Appendix.

2 Manifold extended t-process regression

Consider a functional regression model
y= F(x) +€ (1)
where x is the covariate from input space .ZCR ”, and
ye 7/CRis the observation. We focus on the task of
learning a regression function F; .4~ %/ To simplify
the input space which is usually complicated and
improve the accuracy of prediction of non-smooth data,
we introduce the manifold model, mapping data space
2 to feature space .7Z. Then, we use an eTPR model to
depict the relationship between the feature space .7 and
the output space #.
The used manifold transformation is a nested
mapping as follows,

F=f-M (2)
where M. .%—.77 is the manifold transformation from
the input space .% to the feature space 7ZCR ¢, and f:
F—/ is a function from the feature space .77 to the
output space Z/CR . Let z=M(x) .7 be the features.
Then we have f(z) € /.

2.1 Manifold transformation
A continuous transformation M(x)= (T,e---oT,) (x) has
been used by Calandra et al. '®’ | where [ is the number
of layers, x is the input data. Inspired by Calandra et
al. ' we use that transformation in this article. Each
T can be written as the following transformation,
T(x,)= t(W,x; +B,) (3)
where x, is the input of each layer, x, =x, ¢ is a
transformation function, such as #(x)=1/(14+e™), and

W, and B, are the weights and bias of each
transformation  respectively. For the manifold
transformation M, vector 6, comprises weight

parameters and bias parameters of the transformation for
each layer, i.e. 6, =[W,, B,, ---, W,, B,]". This
transformation can be regarded as one or more widely
used  coordinate  transformations and  sigmoid
transformations, where the sigmoid transformation is
symmetry and has robustness against outliers.
2.2 t-process regression
We now briefly introduce an extended t-process ( ETP)
and an extended multivariate t-distribution ( EMTD).
Wang et al. 130 extend a Gaussian process to a t-process
using the idea in Reference [21]:
flr ~GP(h,rk), r~1G(v,w) (4)

where GP(h, rk) stands for a GP with a mean function
h and a covariance function rk, and IG(v,w) stands for
an inverse gamma distribution. Then, f follows an f ~
ETP(v,w, h, k), implying that for any collection of
points x=(x,,---,x,)", we have

fo=f(x)=

(f(x,)5 =, f(x,))" ~EMTID(v,0, h
meaning that f, has

. K)o (5)
an extended multivariate t-
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distribution (EMTD) with the density function,

-1/2 F(n/2 +1))
p(z) =1 27wk, | 7F(U)
z=h)'K'(z-h
(1 ( >2 ( )) —(n/24+v) (6)
w
hn:(h(-xl)"”, h(-xn>)T7 Kn:<kij)n><n and kij:k(xi9

x;) for some mean function h ( - ): 2" — R and
covariance kernel k( -, - ). . ZX%2>R.
After mapping the input space to the feature space,
we let the eTPR model
¥(2) = f(z) +e() (7)
where z is the feature in feature space .77.
We assume f and € are a joint extended t-process

(ETP),
(@ -mmelenfe) fo o)) @

where 4 and k are the mean function and kernel
function, respectively. The covariance function of € is
k(u, v)=¢I(u=v), where I( - ) is an indicative
function. We can express the ETP hierarchically as

Grr-ello) oo 2)) @

and r~IG(v,w) (10)
where IG (v, w) is inverse gamma distribution with
parameters v and w. It shows that y ~ ETP (v, w, h,
k+k_) is joint of f+elr ~GP(h, r(k+k_)) and r ~
IG(v, w), which is the extended t-process regression
model (eTPR).
2.3 Estimation
2.3.1 Estimation procedure
Denote the covariate by x = (x,, =+, x,).
function of eTPR model f is
by = k(M(x) . M(x,) (11)
Let the input data be &/, and the new data point be u,
the model can be written as
y(uw) | 7, ~
EMTD(n/2 +v,n/2 +v =1, u’, o +5,)
(12)
w = Ef(M(u)) 1 2,)= K3y (13)
o, = Var(f(M(u)) | 7,) =

so(k(M(u), M(u)) —k,"3" k,) (14)

The kernel

where
S =K +d¢l (15)
and
Y3y +2(v - 1)
= E(rl &,) = n+2(0 —1) (16)

K is the kernel matrix constructed as K = (k ) ., and
k,=k(M(x) ,M(u)).
2.3.2 Computation

Let = (62, éM) and $ be the estimated parameters of

nxn

meTPR process, where $ is the variance parameter of

~

error €, 6, is parameters of eTPR process f and §M is
parameters of the manifold model. These parameters can
be estimated by minimizing the marginal log likelihood.

Consider the nested mapping F = f o M. Log

marginal likelihood of meTPR is

m

l(g; v) = z { - %log(Zﬂ'(v -1)) —%logl 3=

i=1

5
2(v - 1)

log(T(5-+0)) =log(T()} (17

where § = yrZ;'y. Note that the value of 7(,1 is

(%+v)10g(1 + ) +

determined by é\T and éM.
The calculation of 5, is similar to the calculation of
parameters in the eTPR'"

9. e E):
A0 v) - Loyzaat -3 20 (1)
a0, 2 30,

According to the chain rule, we can obtain the
gradient-based estimation of §,, as follows,

9. - 02
M iTr((s aa' - ‘ZZ ) (19)
‘ka é’ﬂwk
where @=3"y, and s, = (n+2v) /(2(v-1)+S). For
feature z, dz/ &AOMk depends only on the input

transformation M. A computation procedure for the
parameter estimation is as follows,

Step 1. Set initial values of the parameters.

Step 2. For a fixed §M, update §T with (17) and
(18).

Step 3. For a fixed 67T, update §M with (17) and
(19).

Step 4. Repeat Steps 2 and 3 until convergence.

3 Numerical study

This section includes two scenarios of stimulation study,

i.e. the step function model and the smooth function

model, and compares the performance of the proposed

method with those of existing methods. We consider

GPR, eTPR, mGPR, and meTPR to fit training data

respectively, and obtain the prediction on testing data.
MSE (mean square error) ,

MSE = 2 (Fy(x) = F(x/
and PE (predlctlon error) ,
N
PE = Y (y/ - F(x))*/N
i=1

from each computed method, where {(x,", y,"): i=
1, ---, N} are the test data. All simulation results are

))?/N
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based on 100 replications.
3.1 Simulation
3.1.1 Step function
In the first scenario, we consider the following step
function model :
y= F(x) +w, w ~ . J(0,d,”) (20)
where
0, ifx <0;
Fa)= {1, itx > 0.

Training data points with sample size n are evenly
sampled in [ -5,4]. We take sample size as n = 20, 40
and 80, and ¢, = 0.2 and 0. 4. For testing data, 500
data points are generated at equal intervals from [ -5,
5]. An outlier is set at (4, 1.5). Let

M(x)= T(x)= t(Wx +B)
be the manifold transformation, where ¢t (x) = 1/
(1+e™). Let the dimension of the feature space be 3,
W be a 3x1 matrix, and B be a 3 Xn matrix. Matérn
exponential kernel is used,

— 1 u-v a o _
ko (u, v) = F((}{)2(,_](771” 1% Z(ny u = v I)
(21)

where 1,>0, .72, ( - ) is a modified Bessel function of
order o, and
() ~1,(0)

H2) = sin(am) (22)
and
IL(x)= i*J(ix)= Y 1 (5 yanva

mom!I'(m+a+1) 2
(23)
Figure 1 shows prediction curves from GPR,
eTPR, mGPR, and meTPR based on one simulation

dataset. It follows that the meTPR prediction curve fits
the indicator function better, compared to GPR and
eTPR which ignore the manifold structure. mGPR and
GPR are sensitive to outliers, while meTPR shows
robustness against the outlier. It is reasonable that
meTPR considers both of manifold structure and
robustness against ouliers.

1.5
1.0+
iy
=]
0.5
g
o
0.04
-0.5 i
-4 -2 0 2 4
Input x

Figure 1. Presents prediction curves from GPR, eTPR,
mGPR, and meTPR based on one simulation dataset.

Table 1 shows the mean and standard deviation of
the MSE and PE of the predicted results. It shows that
meTPR has the smallest MSEs and PEs among the four
methods, mGPR is better than GPR and TPR, and
eTPR has smaller MSE and PEs than GPR. When
sample size becomes larger, MSEs and PEs reduce. It
follows that for this non-smooth data, the accuracy of
prediction can be improved by the manifold model
mapping the input space to the feature space.

3.1.2 Smooth function with outliers
In the second scenario, we consider a smooth function
F(x),

F(x)= 1/(1 +e™) (24)

Table 1. MSE, PE and their standard deviation (in parentheses) of GPR, TPR, mGPR and meTPR in Scenario 1.

¢,=0.4

PE mean (SD)

MSE mean (SD)

PE mean (SD)

$,=0.2
n Method

MSE mean (SD)
GPR 0.0455(0.0115)
TPR 0.0421(0.0109)

20
mGPR 0.0379(0.0295)
meTPR 0.0333(0.0110)
GPR 0.0279(0.0061)
TPR 0.0252(0.0055)

40
mGPR 0.0206(0.0062)
meTPR 0.0194(0.0050)
GPR 0.0188(0.0044)
%0 TPR 0.0165(0.0036)
mGPR 0.0128(0.0074)
meTPR 0.0118(0.0032)

0.0856(0.0122)
0.0822(0.0115)
0.0780(0.0300)
0.0734(0.0116)
0.0686(0.0069)
0.0658(0.0064)
0.0612(0.0069)
0.0600(0. 0061)
0.0590(0. 0059)
0.0568(0.0053)
0.0530(0.0079)
0.0521(0.0050)

0.0648(0.0201)
0.0598(0.0183)
0.0590(0.0332)
0.0519(0.0230)
0.0441(0.0114)
0.0415(0.0106)
0.0349(0.0098)
0.0346(0.0106)
0.0286(0.0061)
0.0279(0.0056)
0.0219(0.0057)
0.0215(0.0054)

0.2252(0.0234)
0.2205(0.0224)
0.2191(0.0345)
0.2120(0.0249)
0.2049(0.0172)
0.2024(0.0168)
0.1956(0.0156)
0.1954(0.0161)
0. 1894(0.0126)
0.1887(0.0123)
0.1825(0.0122)
0.1822(0.0122)
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Table 2. MSE, PE and their standard deviation (in parentheses) of GPR, TPR, mGPR and meTPR in Scenario 2.

¢$,=0.2 $,=0.4
n Method
MSE mean (SD) PE mean (SD) MSE mean (SD) PE mean (SD)

GPR 0.0259(0.0090) 0.0661(0.0094) 0.0449(0.0212) 0.2064(0.0282)

TPR 0.0227(0.0081) 0.0630(0.0086) 0.0370(0.0156) 0.1983(0.0222)

2 mGPR 0.0205(0.0231) 0.0606(0.0227) 0.0428(0.0486) 0.2050(0.0566)

meTPR 0.0162(0.0092) 0.0564(0.0094 ) 0.0356(0.0240) 0.1972(0.0283)
""""""""""""""""""""" GPR  0.0132(0.048)  0.057(0.005)  0.0248(0.0090)  0.1867(0.0150)

TPR 0.0115(0.0041) 0.0520(0.0051) 0.0227(0.0085) 0.1846(0.0146)

* mGPR 0.0102(0.0196) 0.0510(0.0215) 0.0194(0.0113) 0.1812(0.0154)

meTPR 0.0086(0.0083) 0.0489(0.0075) 0.0176(0.0089) 0.1795(0.0146)
""""""""""""""" GPR  0.0068(0.0026)  0.0469(0.0038)  0.0144(0.0056)  0.1750(0.0133)

TPR 0.0057(0.0021) 0.0458(0.0034) 0.0137(0.0051) 0.1743(0.0129)

w0 mGPR 0.0059(0.0223) 0.0460(0.0219) 0.0104(0.0048) 0.1711(0.0124)

meTPR 0.0048(0.0083) 0.0450(0.0085) 0.0099(0.0048) 0.1705(0.0123)

Other steps are the same as those for the step
function. Tabel 2 shows the mean and standard
deviation of the MSE and PE of the predicted results.
We obtain the similar conclusion with those for the step
function.

3.2 Real data

The proposed meTPR model is applied to dataset for the
study of children with Hemiplegic Cerebral Palsy,
including 84 girls and 57 boys in primary and secondary
schools. These students are divided into two groups
(m=2) . the group playing video games (56% ) and the
group not playing video games (44% ). Average correct
rate of Big/Little Circle (BLC) and the average correct
rate of Choice Reaction Time ( CRT) are measured.
More details are in Reference [22]. Before applying the
proposed methods, we take logarithm of BLC and CRT
mean correct latencies. For GPR, e¢TPR, mGPR and
meTPR, von Mises-inspired kernel was taken.

bo(u,0) = moexp(mi( 2 cos(uy =) —p))

(25)
where 1,>0, n,>0.

We randomly selected 80% data as the training set
and the remaining 20% data as the testing set for
calculating the prediction errors under various models.
The process is repeated 100 times.

Table 3 shows the mean and standard deviation of
prediction errors. It shows that GPR has the largest
average prediction error and meTPR has the smallest
average prediction error. It follows that meTPR model
performs well in improving the accuracy of prediction.

Table 3. Mean and standard deviation of prediction errors
using GPR, eTPR, mGPR, and meTPR methods.

Method Mean(SD) of PE of BLC Mean(SD) of PE of CRT

GPR 0.1398(0.0299) 0.1630(0.0337)
TPR 0.0361(0.0093) 0.0683(0.0130)
mGPR 0.0611(0.0170) 0.1020(0.0244)
meTPR 0.0333(0.0628) 0.0475(0.0102)

4 Robustness and information consistency

4.1 Robustness
The manifold extended t-process regression can provide
estimation with greater robustness than mGPR when data
includes outliers. Let 6 =(§T,§M) and

Flu)=wp, =p, Ly, Vp=0, =0 1,5
be the predicted mean and variance of F(u) in meTPR.
F, ;(u) and V, are the predictions in the manifold
Gaussian process. Let M, = (I?T( u)-Fy(u))/./V, and
M;= (fc( u)-Fy(u))/./V, be two t-test statistics for a
null hypothesis F(u)=F,(u). When the kernel function
is bounded, if y,—o for some j, then M;—o , while
M, is still bounded. Then M, for meTPR is more robust
against outliers compared to that for mGPR.

Let T(F,)=T,(y,, -, y,) be an estimation of 6,
where F, is the empirical distribution of {y,, -+, vy},
and T is functional on the distributions. The influence

function of 7 on F' is defined as

IF(y; T, F) = lim T((1 1) F+18,) - T(F)

i
(26)
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where 6, is 1 on point y, O on other points. The
influence function can show the degree of change of the
estimated parameter after adding a disturbance to the
data set, then it can reflect the robustness of the
estimation method. For the meTPR model, we have the
following proposition.

Proposition 4.1  Assume the kernel function k is
bounded continuous differentiable on 8, then for a given
v, the estimated parameters of meTPR, ) , has a
bounded influence function, while that from the mGPR
does not.

4.2 Information consistency
Let p, (y|F,, x) be the density function to generate the

data y given x in true model y=F,(x)+e, where F, is
the true F. Let p,(F) be a measurement of the random
process F on space .7={F( « ). 2>R |. Let

Poorl )= [ pur !l Fooydp(F) (27)

be the density function to generate the data y given x
under the meTPR model. In this case, meTPR model is
different from true model. Let ¢, be the true value of

¢. Letp, , 5( vlx) be the estimated density function of
meTPR model. Denote

Dip,, p,] = J(Ingl = logp, ) dp,

by the Kullback-Leibler distance between two densities
p, and p,. According to Seeger et al. ‘®! | if
Ex(D[p%(yl Fo, %), pg oyl x) ]) 0asn— o,
then we call meTPR model information consistent,
which is presented in the following proposition.

Before presenting the information consistency of
the meTPR, we briefly introduce a reproducing kernel
Hilbert space'*'. Assume .7 is a Hilbert space of
functions F: .2°>R with an inner product { = , « ) .
We call .77 a reproducing kernel Hilbert space associated
with a kernel function k, where the kernel function k.
DX 24—R satisfies

O Vxe2, k( -, x) e

@ Vxe#, VFe7,

(F, k(+, %)) >= 8,(F)= F(x).

Proposition 4.2 Under the appropriate conditions
in Lemma A. 1 and condition that | F, ||, is bounded

and E (loglI,+¢y'K,1)=0(n) holds, we have
1
;EZ(D[P%(yl F09 x) ’ p¢(),§(y| x)]) 4)0, asn-—®

(28)
where the expectation is taken over the distribution of x
and || F, ||, is norm of F, in the reproducing kernel
Hilbert space associated with the kernel function

k(= 5 0)=k(M( ), M(+);6).

5 Conclusions

In order to solve the difficulty of fitting with outliers and
in complicated covariate space, we proposed a manifold
t-process regression ( meTPR) model. We proposed a
parameter estimation method and studied the theoretical
properties of the model. The proposed model is robust
to outliers, and performs well for non-smooth and
complicated covariate space. Although Y is one-
dimensional in this article, the model can be extended to
multi-dimensional dependent functional data.
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Appendix
Lemma A.1 Under meTPR model (1), assume that the covariance kernel function k is bounded and
continuous on the parameter 6, and ) converges to § when n— . Then, for a positive constant ¢ and any £>0, when
n is large enough, we have
2
LT T IR o) el 4o
(A1)
where K, =(k(M(x,), M(x;)) ) s g =(y-Fy(x))"(y-Fy(x))/¢,, and I, is the nxn identity matrix. || F, ||, is
the reproducing kernel Hilbert space norm of F, associated with kernel function k(M( - ), M( - ); 6).
Proof Assume r is a random variable following inverse gamma distribution IG(v,(v-1)). let GP(h, k) be
Gaussian process with mean function 4 and covariance function k. Conditional on r, we have

1 1,1 1%
;( —log py, o(y 1 x) +logp, (y1 Fy, x)) < ;{?10{%' I, + 'K, 1 +

F 0 rk 0
(&) =erlfo) (5 ) (A2)
Then conditional on r, the extended t-process regression model
y(x)= F(x) +¢€ (A3)

becomes Gaussian process regression model

y(x)= F(x) +e€ (A4)
where F=F|r~GP(0, rk(M( - ), M( +) ;6)), €l r~GP(0, rk.(M( + ), M( - ) ; ¢,)), and F and error term
€ are independent. Denoted the computation of conditional probability density for given r by p. For the model y(x)=
F(x)+e, let

Pyl 0= [ py (L Fy v, ) dp(F) (5)

Po(yl r, x): P%(yl Fo,r,x) (A6>
where p, is the induced measure from Gaussian process GP(0, rk(M( + ), M( ) ; 5) ). We know that variable r is
independent of covariates x. Easily, we show that

Do iy 1) = ooyl r2) g(r)dr (AT)

P fos )= [poly ]y 2)g(r)dr (A8)
Suppose that we have
—log pe(y ! r, x) +logpy(ylr,x) <
Slogl I, + ¢ K1+ ZCIF 17 +0) +c+ne (A9)

for any given r. So we get

~log[p(y 1 v, 2)e(r)dr < Tlog 1 1, + 'K, 1+

¢+ ne = log[po(y 1 7, )expl = (L CIFy 15 +e) le(r)dr (A10)
Let g (r) be the density function of IG(v+n / 2,(v-1)+¢°/2). It easily shows that
Jootr v, wvexpt = (LCIF 1+ ) Le(rydr =

fpo(yl r, x)g(r)drfeXp% - (é( I Fyll7 +e))ig™(r)dr (A11)
We have
—log py, 5(y 1 x) +logp, (v Fy, x) <

Slogl 1+ ¢ K1+ e = logfexp| = (ZCIF, 1T +0)) [ (ndr <

= Fy |+ + _
%logl I, +d)(;1 Kn|+c+WJ‘rg*(r)dr=
1 g ¢ +2(w-1) »
—1 Vi K L=~/ F Al2
20g| n+¢0 n|+2(n+21j_2>(|| o||k+c)+c+n8 ( )

which shows that Lemma A. 1 holds.
(Continued on p.403)
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S,(x) =f(x)1,, +0,(n"),
so we have
[1S,(e)t T =1 (), +0,(n™).
Similar to the proof of the Theorem 2. 1, by Chebyshev’s inequality and the Lyapunov CLT, we have
~ d
n'' (M (x) -M(x) -B,(x)) —— N(0,3),
where
B (x> :C2n—2af(x> (tr{ﬂf/m(x)%) _ (Ti (Rz(K) ~01><p )
g 2(1 -2a) 0 ’ (1 +pa)f(x)\ 0,  R(K)]’

Since one can easily verify that the conditions in Lemma A. 1 are all satisfied. Therefore, we can apply the
Liapounov CLT to conclude Theorem 3. 2.

Proof of Corollary 3.2 The proof of Corollary 3. 2 is analogous to that of Corollary 3. 1. To avoid
duplication, descriptions are not provided in this paper.

pxl1

(Continued from p. 389)
Proof of Proposition 4.1 The score function of 6, in the meTPR model is

5,(05 y) = %Tr( (3 '3 -3 ‘%) (A13)
k
Let [ be the length of 0 and s,(0; y)=(s,(8 ; y), =, 5,(0; y))". The score function becomes that under the
GPR model when s, =1. The impact factor s, =(n+2 v) /(2(v=1)+y"3 "y ) is very important for estimating 6. For
example, when y,—o for some j, the score function s,(6; y) is bounded, while that from the GPR model is not.
For a given parameter v, following Ref. [25] the influence function for the estimator 0 is
e 2
(330, F)= = (ECOT0)) s (03) (A14)
Note that the matrix 9°/(8; v)/( 090" ) is bounded for y, which indicates that the influence function of 0 is
bounded under the meTPR model. Similarly, we can get that the score function is unbounded. So, for mGPR, the
influence function of parameter estimation is also unbounded.
Proof of Proposition 4.2 Obviously ¢°=(y-F,(x))"(y-F,(x))/¢,=0(n). Under the condition of Lemma

A. 1 and the condition that || F, ||, is bounded and E (loglI, +¢;" K, 1)=0(n) is established. According to Lemma
A. 1, for a positive constant ¢ and any £>0, when 7 is large enough, we have

LB DLpy (5] Py ), a1 01 =

1
Exf;(—logp%,ﬁyl x) +log p, (y1 Fy, x))dp, 5(y 1 x) <

1 13 ¢ +2(v-1) 2 c )
EJGlogl 1, + ' K1+ L 0T E T + )+ 4 )dpy (| ) (A15)
It gives
1
TEDLp (Y] Fyu 1) py iy 0)]) =0, as oo (Al6)

Thus, the proposition holds.



