The stable subgroups of S_{n} acting on $\mathscr{U}_{0, n}$

XIA Xiaopeng＊
School of Mathematical Sciences，University of Science and Technology of China，Hefei 230026 ，China
＊Corresponding author．E－mail ：xpxia＠mail．ustc．edu．cn

Abstract

Considering the action of the symmetric group S_{n} on $\mathscr{N}_{0, n}$ ，all the possible stable subgroups were obtained．

Keywords：moduli space；symmetric group；group action；stable subgroup
CLC number：O187．2；O152．1 Document code：A
2020 Mathematics Subject Classification：Primary 14H10；Secondary 20B30

1 Introduction

The moduli space of the Riemann sphere with n－marked points is

$$
\begin{aligned}
\mathscr{U}_{0, n} & =\left\{\left(x_{1}, \cdots, x_{n}\right) \in\right. \\
\Pi \mathbb{C P}^{1} \mid x_{i} & \left.\neq x_{j}, \forall 1 \leqslant i \neq j \leqslant n\right\} / \operatorname{PGL}_{2}(\mathbb{C}) .
\end{aligned}
$$

The symmetric group S_{n} naturally acts on $\mathscr{O}_{0, n}$ ．For any $\sigma \in S_{n}$ and any $\left[x_{1}, \cdots, x_{n}\right] \in \mathscr{A}_{0, n}$ ，we have

$$
\sigma \cdot\left[x_{1}, \cdots, x_{n}\right]=\left[x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right]
$$

Ref．［1］investigated the locus with nontrivial stable subgroups，and proved that the stable subgroups must be cyclic．However，we find examples with the stable subgroups being cyclic groups，dihedral groups， A_{4}, S_{4} ，or A_{5} ．In this paper，we study stable subgroups on $\mathscr{K}_{0, n}, n \geqslant 4$ ，and obtain all types of stable subgroups．For the convenience of description，we introduce the following notations．We write $\zeta_{d}, d \geqslant 1$ ，to denote the primitive d－th root of unity in \mathbb{C} ，and write \bar{A} to denote the image of $A \in \mathrm{GL}_{2}(\mathbb{C})$ in the projective general linear group $\mathrm{PGL}_{2}(\mathbb{C})$ ．Let $x \in \mathscr{A}_{0, n}$ ，then the stable subgroup of x is

$$
\operatorname{Stab}(x)=\left\{\sigma \in S_{n} \mid \sigma \cdot x=x\right\}
$$

We first prove that the stable subgroup is isomorphic to a finite subgroup G of $\mathrm{PGL}_{2}(\mathbb{C})$ ，and then obtain the types of p－subgroups by using the properties of elements in G ，and then obtain the types of finite subgroups in $\mathrm{PGL}_{2}(\mathbb{C})$ ．Then we obtain the classification of stable subgroups（ see Theorem 2．1）． Finally，we further discuss stable subgroups for a more accurate description（ see Proposition 3．1），and show the existence of these possible types by some examples （ see Example 3．1）．

2 Finite subgroups of $\mathbf{P G L}_{2}(\mathbb{C})$

Theorem 2． 1 Let $x \in \mathscr{M}_{0, n}$ ，then $\operatorname{Stab}(x)$ is
isomorphic to a cyclic group，a dihedral group，A_{4}, S_{4} or A_{5} ．

Let $x=\left[a_{1}, \cdots, a_{n}\right] \in \mathscr{M}_{0, n}$ and $\left(a_{1}, a_{2}, a_{3}\right)=(0$, $\infty, 1)$ ．Then for every $\sigma \in \operatorname{Stab}(x)$ ，there exists a unique $\bar{A} \in \mathrm{PGL}_{2}(\mathbb{C})$ such that $\sigma \cdot\left(a_{1}, \cdots, a_{n}\right)=\bar{A}$ ． $\left(a_{1}, \cdots, a_{n}\right)$ ．So we can define a map $\Phi: \operatorname{Stab}(x) \rightarrow$ $\mathrm{PGL}_{2}(\mathbb{C})$ ．Obviously，Φ is a group homomorphism and it is injective．Therefore，we obtain the following conclusion：

Proposition 2．1 Let $x \in \mathscr{M}_{0, n}$ ，then $\operatorname{Stab}(x)$ is isomorphic to a finite subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$ ．

Therefore，we need to consider the types of finite subgroups of $\mathrm{PGL}_{2}(\mathbb{C})$ ．

Lemma 2． 1 Let G be a finite subgroup of $\operatorname{PGL}_{2}(\mathbb{C})$ ，and let $\overline{A_{1}}, \overline{A_{2}} \in G \backslash\left\{\overline{I_{2}}\right\}$ ．Let A_{1} have characteristic subspaces $V_{\lambda_{1}}, \quad V_{\lambda_{2}}$ belonging to eigenvalues λ_{1}, λ_{2} ．Then：
（i）$\overline{A_{1} A_{2}}=\overline{A_{2} A_{1}}$ if and only if $A_{2} V_{\lambda_{i}}=V_{\lambda_{i}}$ for $i=1$ ， 2 or $o\left(\overline{A_{1}}\right)=o\left(\overline{A_{2}}\right)=2, A_{2} V_{\lambda_{i}}=V_{\lambda_{j}}$ for $1 \leqslant i \neq j \leqslant 2$ ．
（ii）Let $\overline{A_{3}} \in G$ and $o\left(\overline{A_{1}}\right)>2$ ．If $\overline{A_{2}}$ and $\overline{A_{3}}$ commute with $\overline{A_{1}}$ ，then $\overline{A_{2}}$ commutes with $\overline{A_{3}}$ ．
（iii）If $\overline{A_{1} A_{2}}=\overline{A_{2} A_{1}}$ and $o\left(\overline{A_{1}}\right), o\left(\overline{A_{2}}\right)$ are not all 2 ，then $\overline{A_{1}}, \overline{A_{2}} \in\left\langle\overline{A_{1} A_{2}}\right\rangle$ ．
（iv）Let $\overline{A_{2} A_{1} A_{2}^{-1}}$ commutes with $\overline{A_{1}}$ and $o\left(\overline{A_{1}}\right)>$ 2．Then $\overline{A_{2} A_{1} A_{2}^{-1}}=\overline{A_{1}^{ \pm 1}}$ ，and $\overline{A_{2} A_{1} A_{2}^{-1}}=\overline{A_{1}^{-1}}$ if and only if $o\left(\overline{A_{2}}\right)=2$ and $A_{2} V_{\lambda_{i}}=V_{\lambda_{j}}$ for $1 \leqslant i \neq j \leqslant 2$ ．

Proof Since G is a finite group and $\overline{A_{1}}, \overline{A_{2}} \in G \backslash$ $\left\{\overline{I_{2}}\right\}$ ，it follows that A_{1} and A_{2} are diagonalizable．
（i）Suppose that $\overline{A_{2} A_{1} A_{2}^{-1}}=\overline{A_{1}}$ ．Let $A_{2} A_{1} A_{2}^{-1}=$

Citation：XIA Xiaopeng．The stable subgroups of S_{n} acting on $\mathscr{M}_{0, n}$ ．J．Univ．Sci．Tech．China，2021，51（5）：369－373．
λA_{1} ，then $\left\{\lambda_{1}, \lambda_{2}\right\}=\left\{\lambda \lambda_{1}, \lambda \lambda_{2}\right\}$ ．If $\lambda_{1}=\lambda \lambda_{1}$ ，then $A_{2} V_{\lambda_{i}}=V_{\lambda_{i}}$ for $i=1$ ，2．If $\lambda_{1}=\lambda \lambda_{2}$ ，then $\lambda_{1}=-\lambda_{2}$ and $A_{2} V_{\lambda_{i}}=V_{\lambda_{j}}$ for $1 \leqslant i \neq j \leqslant 2$ ，then $o\left(\overline{A_{2}}\right)=2=o\left(\overline{A_{1}}\right)$ ．

Conversely，if $A_{2} V_{\lambda_{i}}=V_{\lambda_{i}}$ for $i=1,2$ ，then $A_{2} A_{1}=$ $A_{1} A_{2}$ ，so $\overline{A_{1} A_{2}}=\overline{A_{2} A_{1}}$ ．If $o\left(\overline{A_{1}}\right)=o\left(\overline{A_{2}}\right)=2$ and $A_{2} V_{\lambda_{i}}=V_{\lambda_{j}}$ for $1 \leqslant i \neq j \leqslant 2$ ，then $A_{2} A_{1} A_{2}^{-1}=\lambda_{1} \lambda_{2} A_{1}^{-1}$ ，so $\overline{A_{2} A_{1} A_{2}^{-1}}=\overline{A_{1}^{-1}}=\overline{A_{1}}$ ．
（ii）The proof of（ii）is trivial by（i）．
（iii）We get $A_{2} V_{\lambda_{i}}=V_{\lambda_{i}}$ for $i=1,2$ by（i）．Then there exists a matrix $P \in M_{2}(\mathbb{C})$ ，such that

$$
\begin{gathered}
A_{1}=P^{-1}\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) P, A_{2}=P^{-1}\left(\begin{array}{cc}
\mu_{1} & 0 \\
0 & \mu_{2}
\end{array}\right) P \\
A_{1} A_{2}=P^{-1}\left(\begin{array}{cc}
\lambda_{1} \mu_{1} & 0 \\
0 & \lambda_{2} \mu_{2}
\end{array}\right) P
\end{gathered}
$$

Since $\overline{A_{1} A_{2}}=\overline{A_{2} A_{1}}$ ，then $o\left(\overline{A_{1}}\right) \mid o\left(\overline{A_{1} A_{2}}\right)$ and $o\left(\overline{A_{2}}\right) \mid$ $o\left(\overline{A_{1} A_{2}}\right)$ ，so there are $a, b \in \mathbb{Z}$ such that

$$
\left(\frac{\lambda_{1} \mu_{1}}{\lambda_{2} \mu_{2}}\right)^{a}=\frac{\lambda_{1}}{\lambda_{2}},\left(\frac{\lambda_{1} \mu_{1}}{\lambda_{2} \mu_{2}}\right)^{b}=\frac{\mu_{1}}{\mu_{2}}
$$

Then $\left(\overline{A_{1} A_{2}}\right)^{a}=\overline{A_{1}}$ and $\left(\overline{A_{1} A_{2}}\right)^{b}=\overline{A_{2}}$ ，so $\overline{A_{1}}, \overline{A_{2}} \in$ $\left\langle\overline{A_{1} A_{2}}\right\rangle$ ．
（iv）We get $A_{2} A_{1} A_{2}^{-1} V_{\lambda_{i}}=V_{\lambda_{i}}$ for $i=1,2$ by（i）． Note that $A_{2} V_{\lambda_{1}}$ and $A_{2} V_{\lambda_{2}}$ are the characteristic subspaces of $A_{2} A_{1} A_{2}^{-1}$ ．If $A_{2} V_{\lambda_{i}}=V_{\lambda_{i}}$ for $i=1,2$ ，then $\overline{A_{2} A_{1} A_{2}^{-1}}=\overline{A_{1}}$ ．If $A_{2} V_{\lambda_{i}}=V_{\lambda_{j}}$ for $1 \leqslant i \neq j \leqslant 2$ ，then we can get $\overline{A_{2} A_{1} A_{2}^{-1}}=\overline{A_{1}^{-1}}$ and $o\left(\overline{A_{2}}\right)=2$ by the proof similar to（i）．

Lemma 2． $2^{[2]}$
（i）The dihedral group of order $2 n$ has a presentation $D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=(a b)^{2}=1\right\rangle$ ．
（ii）The alternating group A_{4} has a presentation $A_{4}=\left\langle a, b \mid a^{3}=b^{3}=(a b)^{2}=1\right\rangle$ ．
（iii）The symmetric group S_{4} has a presentation $S_{4}=\left\langle a, b \mid a^{4}=b^{2}=(a b)^{3}=1\right\rangle$ ．
（iv）The alternating group A_{5} has a presentation $A_{5}=\left\langle a, b \mid a^{5}=b^{2}=(a b)^{3}=1\right\rangle$ ．
（ \mathbf{V} ）The symmetric group S_{5} has a presentation $S_{5}=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right| a_{i}^{2}=\left(a_{i} a_{i+1}\right)^{3}=\left(a_{i} a_{j}\right)^{2}=1,1 \leqslant i, j \leqslant$ $4, i+1<j\rangle$ ．

Lemma 2． 3 Let G be a finite subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$ ，and let P be a p－subgroup of G ．Then：
（i）If $p>2$ ，then P is cyclic．
（ii）If $p=2$ ，then P is a cyclic group or dihedral group．

Proof（i）Let $|P|>1$ ，so $|Z(P)|>1$ ，then P is abelian by Lemma 2．1（ii）．Let $g \in P$ such that $o(g)=$ $\max \left\{o\left(g^{\prime}\right) \mid \forall g^{\prime} \in P\right\}$ ，then for any $g^{\prime} \in P$ ，we get g ， $g^{\prime} \in\left\langle g g^{\prime}\right\rangle=\langle g\rangle$ by Lemma 2． 1 （iii）．Hence P is
cyclic．
（ii）Let $|P|>2$ ，so $|Z(P)|>1$ ．If there is $g \in$ $Z(P)$ such that $o(g)>2$ ，then P is cyclic by the same proof as（i）．Now，we suppose that there is $\bar{A} \in Z(P)$ such that $o(\bar{A})=2$ ．Let $V_{\lambda_{1}}, V_{\lambda_{2}}$ be the characteristic subspaces of A belonging to eigenvalues λ_{1}, λ_{2} ．Let

$$
\mathscr{A}=\left\{\bar{B} \in P \mid B V_{\lambda_{i}}=V_{\lambda_{i}}, i=1,2\right\}
$$

and let
$\mathscr{B}=\left\{\bar{B} \in P \mid o(\bar{B})=2, B V_{\lambda_{i}}=V_{\lambda_{j}}, 1 \leqslant i \neq j \leqslant 2\right\}$ ． So we have $P=\mathscr{A} \cup \mathscr{B}$ by Lemma 2．1（i）．Let $g \in \mathscr{A}$ such that $o(g)=\max \left\{o\left(g^{\prime}\right) \mid \forall g^{\prime} \in \mathscr{A}\right\}$ ．Note that $\left\{g^{\prime} \in \mathscr{A} \mid o\left(g^{\prime}\right)=2\right\}=\{\bar{A}\}$ ．For any $a \in P$ ，we have a ， $g \in\langle a g\rangle=\langle g\rangle$ by Lemma 2．1（i）and（iii），then $\mathscr{A}=$ $\langle g\rangle$ ．If $\mathscr{B}=\emptyset$ ，then $P=\mathscr{A}$ is cyclic．If $b \in \mathscr{B} \neq \emptyset$ ，then $b g \in \mathscr{B}$ and $o(b g)=2$ ．For any $c \in \mathscr{B} \backslash\{b\}$ ，then $b c \in$ $\mathscr{A}=\langle g\rangle$ by the definition of \mathscr{B} ．Hence

$$
P=\left\langle b, g \mid g^{o(g)}=b^{2}=(b g)^{2}=1\right\rangle
$$

is a dihedral group．
Lemma 2． $4^{[2]}$ Let all Sylow subgroups of a finite group G be cyclic groups．If G is commutative， then G is a cyclic group；if G is not commutative，then G is a metacyclic group determined by the following definition relationship：

$$
G=\langle a, b\rangle, a^{m}=b^{n}=1, b^{-1} a b=a^{r},
$$

$\operatorname{gcd}((r-1) n, m)=1, r^{n} \equiv 1(\bmod m),|G|=n m$ ．
Lemma 2．5 ${ }^{[3]}$ Let G be a finite group，and let $O(G)$ be the largest normal subgroup of odd order in G ．If G has dihedral Sylow 2－subgroups，then $G / O(G)$ is isomorphic to either
（i）a subgroup of $\operatorname{Aut}\left(\operatorname{PSL}\left(2, p^{n}\right)\right)$ containing $\operatorname{PSL}\left(2, p^{n}\right)$ ，where $\operatorname{Aut}\left(\operatorname{PSL}\left(2, p^{n}\right)\right)$ is isomorphic to the semidirect product of $\operatorname{PGL}\left(2, p^{n}\right)$ by a cyclic group of order n and p is an odd prime，
（ii）the alternating group A_{7} ，or
（iii）a Sylow 2 －subgroup of G ．
Lemma 2． $6^{[3]}$ Let $G=\operatorname{PSL}(2, q)$ with $q=p^{r}$ ， where $q>3$ and p is an odd prime．If P is a Sylow p－ subgroup of G ，then $N_{G}(P)$ is a Frobenius group with a cyclic complement of order $\frac{q-1}{2}$ which acts irreducibly on P ．

Theorem 2．2 Let G be a finite group．Then G is isomorphic to a subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$ if and only if G is isomorphic to a cyclic group，a dihedral group，A_{4} ， S_{4} or A_{5} ．

Proof Suppose that G is isomorphic to a subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$ ．Let M be the largest normal subgroup of odd order in G ．If $|M|>1$ ，we suppose M is not cyclic． By Lemma 2.3 and Lemma 2．4，we have $M=\langle a, b\rangle, a^{d}=b^{k}=1, b^{-1} a b=a^{r}$, $\operatorname{gcd}((r-1) k, d)=1, r^{k} \equiv 1(\bmod d),|M|=k d$.

Since $b^{-1} a b=a^{r} \neq a$ and $d>2$, then $k=2$ by Lemma 2.1(iv), contradicting the hypothesis that M is a group of odd order. Hence M is a cyclic group. By suitable modification to proof of Lemma 2.3(ii), we can show that G is a cyclic group or dihedral group. If G is a 2 group, then G is a dihedral group by Lemma 2.3(ii). If G is not a 2 -group and $|M|=1$, then G is isomorphic to a subgroup of $\operatorname{Aut}\left(\operatorname{PSL}\left(2, p^{r}\right)\right)$ containing $\operatorname{PSL}(2$, p^{r}) by Lemma 2.3 and Lemma 2.5, where p is an odd prime. If $p=3$ and $r=1$, then $\operatorname{PSL}(2,3)$ is isomorphic to A_{4} and $\operatorname{Aut}(\operatorname{PSL}(2,3))$ is isomorphic to S_{4}, then G is isomorphic to A_{4} or S_{4}. If $p^{r}>3$, then $N_{G}(P)$ is a Frobenius group with cyclic complement of order $\frac{p^{r}-1}{2}$ by Lemma 2.6, where P is a Sylow p-subgroup of G. Note that $N_{G}(P)$ is a dihedral group. Then $\frac{p^{r}-1}{2}=2$, then $p=5$ and $r=1$. Hence G is isomorphic to A_{5} or S_{5}. Suppose that G is isomorphic to S_{5}. By Lemma 2.2, there is $g \in \mathrm{PGL}_{2}(\mathbb{C})$ such that $g^{-1} G g=\left\langle\overline{A_{1}}\right.$, $\left.\overline{A_{2}}, \overline{A_{3}}, \overline{A_{4}}\right\rangle$, where

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), o\left(\overline{A_{i}}\right)=o\left(\overline{A_{i} A_{j}}\right)=2 \\
& o\left(\overline{A_{i} A_{i+1}}\right)=3,1 \leqslant i, j \leqslant 4, i+1<j
\end{aligned}
$$

However, by solving the equations, it is found that there are no $\overline{A_{2}}, \overline{A_{3}}, \overline{A_{4}} \in \mathrm{PGL}_{2}(\mathbb{C})$, which make the above formula hold. This leads to a contradiction. Hence G is not isomorphic to S_{5}.

Conversely, let G be isomorphic to a cyclic group, a dihedral group, A_{4}, S_{4} or A_{5}. According to Lemma 2.2, we use the same method mentioned above and solve the equations, then we obtain that there is a subgroup G^{\prime} in $\operatorname{PGL}_{2}(\mathbb{C})$ such that G^{\prime} is isomorphic to G.

3 Types of stable subgroups

For $x \in \mathscr{M}_{0, n}$, we further discuss $\operatorname{Stab}(x)$ in this section for a more accurate description.

Lemma 3.1 Let $x \in \mathscr{A}_{0, n}$, and let $\sigma \in \operatorname{Stab}(x) \backslash$ $\{(1)\}$. Then:
(i) A complete factorization of σ has $r_{1} 1$-cycles and $r_{2} d$-cycles, where $0 \leqslant r_{1} \leqslant 2$ and $r_{1}+r_{2} d=n$.
(ii) If there is $\tau \in \operatorname{Stab}(x)$ such that $\sigma \neq \tau$ and $\tau \sigma \tau^{-1}=\sigma^{-1}$. Then $|\{i \mid \sigma(i)=i\}| \neq 1$.

Proof Without loss of generality, we may assume $\sigma(2) \neq 2$. Let $x=\left[x_{1}, \cdots, x_{n}\right]$ such that $\left(x_{1}, x_{2}, x_{3}\right)=$ $(0, \infty, 1)$, and let $\sigma \cdot\left(x_{1}, \cdots, x_{n}\right)=\bar{A} \cdot\left(x_{1}, \cdots, x_{n}\right)$.
(i) Let $\sigma=\sigma_{1} \cdots \sigma_{s}$ be a complete factorization into disjoint cycles, and let this complete factorization of σ have $r_{i} d_{i}$-cycles, where $1 \leqslant i \leqslant t$ and $1=d_{1}<d_{2}<\cdots<d_{t}$. Without loss of generality, we may assume $\sigma_{1}=\left(i_{1} \cdots\right.$ $\left.i_{d_{2}}\right)$. Since $\bar{A} \cdot\left(x_{i_{1}}, x_{i_{2}}\right)=\left(x_{i_{2}}, x_{\sigma\left(i_{2}\right)}\right)$ and $\overline{A^{d_{2}}} \cdot\left(x_{i_{1}}\right.$,
$\left.x_{i_{2}}\right)=\left(x_{i_{1}}, x_{i_{2}}\right)$, it follows that there are linearly independent vectors α and β, such that they are eigenvectors of $A^{d_{2}}$ but not A, so $\sigma^{d_{2}}=(1)$, then $r_{3}=\cdots$ $=r_{t}=0$. For any $i \in\{i \mid \sigma(i)=i\}$, we have the vector $\left(x_{i} 1\right)^{\mathrm{T}}$ a eigenvector of A, so $0 \leqslant r_{1} \leqslant 2$.
(ii) We need only consider the case $\{i \mid \sigma(i)=i\}$ $\neq \emptyset$. Then we can take $i_{0} \in\{i \mid \sigma(i)=i\}$. Let $\tau \cdot\left(x_{1}\right.$, $\left.\cdots, x_{n}\right)=\bar{B} \cdot\left(x_{1}, \cdots, x_{n}\right)$. Since $\sigma \neq \tau$ and $\tau \sigma \tau^{-1}=\sigma^{-1}$, it follows that linearly independent vectors $B\left(x_{i_{0}} 1\right)^{\mathrm{T}}$ and $\left(x_{i_{0}} 1\right)^{\mathrm{T}}$ are eigenvectors of A. Then $\bar{B} \cdot x_{i_{0}}=x_{j_{0}} \neq x_{i_{0}}$, then $i_{0} \neq j_{0} \in\{i \mid \sigma(i)=i\}$, so $|\{i \mid \sigma(i)=i\}|=2$.

Proposition 3.1 Let $x \in \mathscr{A}_{0, n}$. Then one of the following holds :
(i) $\operatorname{Stab}(x)$ is a cyclic group of order m, where $m \mid n$ or $m \mid n-1$ or $m \mid n-2$.
(ii) $\operatorname{Stab}(x)$ is a dihedral group of order $2 m$, where $m \mid n$ or $m \mid n-2$.
(iii) $\operatorname{Stab}(x)$ is isomorphic to A_{4} or S_{4}.
(iv) $\operatorname{Stab}(x)$ is isomorphic to A_{5}.

Proof The proof is trivial by Theorem 2. 1 and Lemma 3.1.

From Proposition 3. 1, we can get the possible types of stable subgroups. Next, we do not fix n, and then prove the existence of these possible types by some examples.

Lemma 3.2 Let $x \in \mathscr{O}_{0, n}$. Then:
(i) If $\operatorname{Stab}(x)$ is isomorphic to A_{4}, then $n \equiv 0,4$, 6,8($\bmod 12)$.
(ii) If $\operatorname{Stab}(x)$ is isomorphic to S_{4}, then $n \equiv 0,6$, $8,12(\bmod 24)$.
(iii) If $\operatorname{Stab}(x)$ is isomorphic to A_{5}, then $n \equiv 0$, $12,20,30(\bmod 60)$.

Proof Consider $\operatorname{Stab}(x)$ acts on the set $\{1,2, \cdots$, $n\}$. For any $1 \leqslant i \leqslant n$, the stabilizer of i, denoted by G_{i}, does not contain dihedral groups by Lemma 3.1, then the size of the orbit of i is $|\operatorname{Stab}(x)| /\left|G_{i}\right|$, where G_{i} is cyclic. Therefore, the conclusion is obtained by Lemma 3.1.

Example 3.1 The following examples show that each finite subgroup of $\mathrm{PGL}_{2}(\mathbb{C})$ happens as a stable subgroup.
(i) Let $x=\left[1, \zeta_{3}, \zeta_{3}^{2}, 0\right] \in \mathscr{M}_{0,4}$. Clearly $\left(\begin{array}{ll}1 & 2\end{array}\right)$, (12) (34), (13) (24), (14) (23) $\operatorname{Stab}(x)$, then $\operatorname{Stab}(x)=A_{4}$.
(ii) Let $x=\left[1, \zeta_{4}, \zeta_{4}^{2}, \zeta_{4}^{3}, 0, \infty\right] \in \mathscr{M}_{0,6}$. Obviously $(1234) \in \operatorname{Stab}(x)$. Since
$\overline{\left(\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right)} \cdot\left(1, \zeta_{4}, \zeta_{4}^{2}, \zeta_{4}^{3}, 0, \infty\right)=\left(0, \zeta_{4}^{3}, \infty, \zeta_{4}, 1, \zeta_{4}^{2}\right)$,
it follows that $(15)(24)(36) \in \operatorname{Stab}(x)$. According to Proposition 3. 1, it follows that $\operatorname{Stab}(x)$ is isomorphic to S_{4}.
（iii）Let $x=\left[1, \zeta_{5}, \zeta_{5}^{2}, \zeta_{5}^{3}, \zeta_{5}^{4}, \frac{1+\zeta_{5}^{2}}{1+\zeta_{5}}, \frac{\zeta_{5}+\zeta_{5}^{3}}{1+\zeta_{5}}, \frac{\zeta_{5}^{2}+\zeta_{5}^{4}}{1+\zeta_{5}}\right.$, $\left.\frac{\zeta_{5}^{3}+\zeta_{5}^{5}}{1+\zeta_{5}}, \frac{\zeta_{5}^{4}+\zeta_{5}^{6}}{1+\zeta_{5}}, 0, \infty\right] \in \mathscr{O}_{0,12}$ ．Obviously $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)(6$ $78910) \in \operatorname{Stab}(x)$ ．Since

$$
\begin{gathered}
\left.\overline{(1} 1 \begin{array}{c}
1-\zeta_{5}-\zeta_{5}^{4} \\
1 \\
-1
\end{array}\right) \\
\left.\frac{1+\zeta_{5}^{2}}{1+\zeta_{5}}, \frac{\zeta_{5}+\zeta_{5}^{3}}{1+\zeta_{5}}, \frac{\zeta_{5}^{2}+\zeta_{5}^{4}, \zeta_{5}^{2}, \zeta_{5}^{3}, \zeta_{5}^{4}}{1+\zeta_{5}^{3}}, \frac{\zeta_{5}^{3}+\zeta_{5}^{5}}{1+\zeta_{5}}, \frac{\zeta_{5}^{4}+\zeta_{5}^{6}}{1+\zeta_{5}}, 0, \infty\right)= \\
\left(\infty, \zeta_{5}^{4}, \frac{\zeta_{5}^{4}+\zeta_{5}^{6}}{1+\zeta_{5}}, \frac{1+\zeta_{5}^{2}}{1+\zeta_{5}}, \zeta_{5}, \zeta_{5}^{3}\right. \\
\left.\frac{\zeta_{5}^{3}+\zeta_{5}^{5}}{1+\zeta_{5}}, 0, \frac{\zeta_{5}+\zeta_{5}^{3}}{1+\zeta_{5}}, \zeta_{5}^{2}, \frac{\zeta_{5}^{2}+\zeta_{5}^{4}}{1+\zeta_{5}}, 1\right)
\end{gathered}
$$

it follows that
$(112)(25)(310)(46)(79)(811) \in \operatorname{Stab}(x)$ ．
According to Proposition 3．1，it follows that $\operatorname{Stab}(x)$ is isomorphic to A_{5} ．
（iv）Let $n \geqslant 4, x=\left[1, \zeta_{n}, \zeta_{n}^{2}, \cdots, \zeta_{n}^{n-1}\right] \in \mathscr{M}_{0, n}$. Clearly $\sigma=(12 \cdots n) \in \operatorname{Stab}(x)$ ．Since

$$
\overline{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)} \cdot\left(1, \zeta_{n}, \zeta_{n}^{2}, \cdots, \zeta_{n}^{n-1}\right)=\left(1, \zeta_{n}^{n-1}, \zeta_{n}^{n-2}, \cdots, \zeta_{n}\right),
$$

it follows that

$$
\tau=(2 n)(3 n-1) \cdots(d n+2-d) \in \operatorname{Stab}(x),
$$

where d is integral part of $\frac{n+2}{2}$ ，then $o(\tau)=o(\tau \sigma)=2$ ． If $n \geqslant 6$ ，then $o(\sigma)=n>5$ ．If $n=4$ or 5 ，then $\operatorname{Stab}(x)$ is not isomorphic to S_{4} or A_{5} by Lemma 3．2．So $\operatorname{Stab}(x)$ is isomorphic to $D_{2 n}$ by Proposition 3．1．
（ V）Let $x=[1,-1,0, \infty] \in \mathscr{N}_{0,4}$ ．Then $\operatorname{Stab}(x)$ $=\{(1),(12)(34),(13)(24),(14)(23)\} \cong D_{4}$ ．
（vi）Let $x=\left[1, \zeta_{3}, \zeta_{3}^{2}, 0, \infty\right] \in \mathscr{M}_{0,5}$ ．Clearly（12 3），（23）（45） $\operatorname{Stab}(x)$ ．Then $\operatorname{Stab}(x)$ is isomorphic to D_{6} by Lemma 3.2 and Proposition 3．1．
（ vii）Let $n \geqslant 2$ ，and let $x=\left[1, \zeta_{n}, \cdots, \zeta_{n}^{n-1}, 2,2 \zeta_{n}\right.$ ， $\left.2, \cdots, 2 \zeta_{n}^{n-1}, 0\right] \in \mathscr{M}_{0,2 n+1}$ ．Since

$$
\begin{gathered}
\overline{\left(\begin{array}{cc}
\zeta_{n} & 0 \\
0 & 1
\end{array}\right)} \cdot\left(1, \zeta_{n}, \cdots, \zeta_{n}^{n-1}, 2,2 \zeta_{n}, 2, \cdots, 2 \zeta_{n}^{n-1}, 0\right)= \\
\left(\zeta_{n}, \cdots, \zeta_{n}^{n-1}, 1,2 \zeta_{n}, 2, \cdots, 2 \zeta_{n}^{n-1}, 2,0\right),
\end{gathered}
$$

it follows that

$$
\sigma=(12 \cdots n)(n+1 n+2 \cdots 2 n) \in \operatorname{Stab}(x)
$$

Then $\operatorname{Stab}(x)$ is isomorphic to a cyclic group or A_{4} by
Lemma 3． 1 （ ii ）and Proposition 3．1．According to

Lemma 3．2，it follows that $\operatorname{Stab}(x)$ is not isomorphic to A_{4} ，then $\operatorname{Stab}(x)$ is cyclic．Since

$$
\overline{\left(\begin{array}{cc}
\zeta_{2 n} & 0 \\
0 & 1
\end{array}\right) \cdot 1 \notin\left\{1, \zeta_{n}, \cdots, \zeta_{n}^{n-1}, 2,2 \zeta_{n}, 2, \cdots, 2 \zeta_{n}^{n-1}, 0\right\}, \text {, }, ~ . ~}
$$

it follows that $\operatorname{Stab}(x)$ is a cyclic group of order n ．
（viii）Let $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in \mathscr{M}_{0, n}, n \geqslant 5$ ，where $x_{i} \in \mathbb{C}$ for $1 \leqslant i \leqslant n$ and x_{n} is transcendental over $\mathbb{Q}\left(x_{1}\right.$ ， $\left.\cdots, x_{n-1}\right)$ ．Suppose there is $(1) \neq \sigma \in \operatorname{Stab}(x)$ ．Then there is $\bar{A} \in \backslash G L_{2}(\mathbb{C}) \backslash\left\{\overline{I_{2}}\right\}$ such that

$$
\bar{A} \cdot\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(x_{\sigma(1)}, x_{\sigma(2)}, \cdots, x_{\sigma(n)}\right) .
$$

Without loss of generality，we may assume $A=\left(\begin{array}{ll}a & b \\ 1 & c\end{array}\right)$ ．
We can take three different numbers i_{1}, i_{2}, i_{3} in the set $\{1, \cdots, n-1\}$ ，such that $\sigma^{-1}(n) \notin\left\{i_{1}, i_{2}, i_{3}\right\}$ ．Then $\frac{a x_{i_{1}}+b}{x_{i_{1}}+c}=x_{\sigma\left(i_{1}\right)}, \frac{a x_{i_{2}}+b}{x_{i_{2}}+c}=x_{\sigma\left(i_{2}\right)}, \frac{a x_{i_{3}}+b}{x_{i_{3}}+c}=x_{\sigma\left(i_{3}\right)}$.
So $a, b, c \in \mathbb{Q}\left(x_{1}, \cdots, x_{n-1}\right)$ ．But $\frac{a x_{\sigma^{-1}(n)}+b}{x_{\sigma^{-1}(n)}+c}=x_{n}$ ，then x_{n} is algebraic over $\mathbb{Q}\left(x_{1}, \cdots, x_{n-1}\right)$ ．This leads to a contradiction．Hence $\operatorname{Stab}(x)=\{(1)\}$ ．

Acknowledgments

I would like to thank my supervisor Xu Jinxing for generous encouragement and guidance during this work． This work is supported by the Natural Science Foundation of Anhui Province（2008085MA04）．

Conflict of interest

The author declares no conflict of interest．

Author information

XIA Xiaopeng（ corresponding author）is currently a graduate student under the supervision of Xu Jinxing at School of Mathematical Sciences，University of Science and Technology of China．His research interests focus on algebraic geometry．

References

［ 1 ］Chen Hao．The symmetry of n－marked Riemannian sphere． Acta Mathematica Sinica，2007， 50 （2）：271－276．（In Chinese）
［2］Xu Mingyao．Introduction to Finite Groups：Volume 1. Second edition．Beijing：Science Press，1999．（In Chinese）
［3］Gorenstein D．Finite Groups．Second edition．New York： Chelsea Publishing Company， 1980.

$\mathscr{M}_{0, n}$ 上的 S_{n} 作用的稳定子群

夏晓朋＊
中国科学技术大学数学科学学院，安徽合肥 230026
＊通讯作者．E－mail：xpxia＠mail．ustc．edu．cn

摘要：考虑对称群 S_{n} 在 $M_{0, n}$ 上的作用，得到了所有可能的稳定子群．
关键词：模空间；对称群；群作用；稳定子群

