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Abstract: The control design and system analysis of wireless networked control systems with unknown
round-trip delay characteristics are investigated. An estimation based approximating control strategy is
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1　 Introduction
As a special class of networked control systems
(NCSs), wireless NCSs (WNCSs) take advantage of
wireless data communication networks to close the
control loop. Thanks to the much more flexibility of
wireless communications[1,2], as well as the
developments of the embedded computing, sensing
technology, etc. , WNCSs have become more and more
influential in many next era information technologies
including unmanned aerial vehicles[3], smart
warehousing[4], Internet of vehicles[5], etc. [6-8] . In
these areas WNCSs can be regarded as their fundamental
control architecture and hence play a vital role.

As is widely known how to effectively deal with
the communication constraints such as network-induced
delay, data packet dropout, etc. have always been
central to the study of NCSs. For WNCSs, besides the
unique features such as the flexible network topology,
the security and privacy issues that are introduced by the
wireless communications and have been investigated
considerably in recent years, the aforementioned delay
and dropout are still core to the design of WNCSs, but
are more challenging for a different reason.

In fact, it is a naturally held belief that the more

the information on the delay characteristics of NCSs is
known, the better the system performance can achieve.
Such a belief has already been demonstrated by many
existing works. For example, under the assumption of
time-varying delay within certain upper and lower
boundaries, stabilized controllers can be designed[9-11],
but with more information on the delay, e. g. , the
probability distribution or the Markovian modeling of
the delay, stabilized controllers can be designed subject
to much larger upper and lower boundaries, and other
performance index such as the settling time, overshoot,
etc. can be further improved[12-14] .

However, though the delay characteristics can be
possibly known by classic wired NCSs, it is often not
easy, if not impossible, to be known by WNCSs. The
reasons are two-folded. Firstly, the flexibility of
wireless communication networks means that nodes can
easily join or leave the network, thus affecting the
topology of the communication network that the
considered WNCS uses, and consequently causing time-
varying and hard to predict delays to the considered
WNCS. This fact basically means that the exact delay
characteristics can not be calculated even all the network
parameters are known. Secondly, the wireless
communication network used by the considered WNCS



is usually of a relatively small scale since wireless
communications are more unreliable, but the small scale
further deteriorates the effects of the time-varying
network topology, making the join or leave of a node
affecting the delay characteristics greatly[15-17] .

The above facts therefore mean that a better design
for WNCSs will first require the appropriate
measurement of the delay characteristics, since the
system performance will be conservative without
considering the detailed delay characteristics, which are
however not directly available for WNCSs.

In order to deal with the above challenge, we
propose an estimation based approximating control
(EBAC) strategy to WNCSs. This strategy consists of a
delay characteristics estimator at the controller side to
estimate the delay characteristics by using online
historical delay data, and a approximating controller to
take advantage of the delay characteristics estimation.
The sufficient stability conditions for the closed-loop
system are given, and a controller gain design method is
also proposed. Numerical examples illustrate the
effectiveness of the proposed strategy. The remainder of
the paper is organized as follows. Section 2 formulates
the problem of interest, and the proposed strategy is
then detailed in Section 3. The sufficient conditions for
the stochastic stability of the closed-loop system with a
controller gain design method are given in Section 4.
Numerical examples in Section 5 validate the proposed
approach and Section 6 concludes the paper.

2　 Preliminaries and problem formulation
Consider the WNCS as illustrated in Figure 1, where the
plant is described by the following linear discrete-time
model with disturbances,

x(k + 1) = Ax(k) + Bu(k) + Cw(k) (1)
where x∈RR n, u∈RR m and w ∈RR are the system state,
the control input, and the system disturbance,
respectively, wT( k) w( k)≤w2

max with wmax being the
upper bound of disturbance, and A∈RR n×n, B∈RR n×m

and C∈RR n×m are the system matrices.

Figure 1. The considered wireless network control systems.

In Figure 1, the wireless communication network is
shared with other users, and the sensors, controllers and
actuators are time synchronized. The delay of sensor to
controller and controller to actuator is dk and hk
respectively at time k. Time stamps are used in the data

transmissions, and hence the actuator may know the
round-trip delay τk at time k, by comparing the current
time instant and the time stamp contained in the data
reflecting the time instant when the sampled data was
sent.

In WNCSs, τk can usually be assumed to be
unknown but behaves Markovian, as in Assumption 2.1.

Assumption 2. 1 (Markovian τk ) The round-trip
delays τk, k≥1 are a Markov process with its unknown
delay transition probability (DTP) being described by

Pr(τk+1 = j | τk = i) = πij, j ≤ i + 1
0, j > i + 1{ (2)

where πij>0, ∀i,j∈MM = {0,1,2,…,M}, ∑
M

j=0
πij = 1,

and Π=(πij) .
If we take consideration of nodes joining or leaving

the network, we may find that in reality round-trip
delay exist packet delay variation (PDV) [18], and PDV
may exhibit a “piecewise Markovian” feature, that is,
τk can be essentially Markovian, but will be suddenly
moved to another mode which is still Markovian, but
with totally different transmission probabilities, as
illustrated in Figure 2. This feature can be captured by
Assumption 2. 2.

Assumption 2. 2 (Piecewise Markovian τk ) The
PDV of round-trip delay τk, k ≥1, is a piecewise
Markov process, that is, the unknown transition
probability matrix will be changed soon after the joining
or leaving of the nodes at unknown time instants, but
between two consecutive changes, the Markov process
of τk can still be described as in Assumption 2. 1.

Figure 2. The transition matrix can be piecewise in practice.

Our goal is then to design appropriate control
strategies for the system as illustrated in Figure 1 under
Assumptions 2. 1 or 2. 2. One may realize that the key
challenge here is that the characteristics of the round-trip
delay τk is unknown, and therefore our approach will
firstly try to estimate τk, which makes our work
different from most existing works that often take the
knowledge of τk for granted.

3　 Design of EBAC strategy
In this section, we first design the EBAC strategy under
Assumption 2. 1, and then modify it to fit Assumption
2. 2.

823 中国科学技术大学学报 第 51 卷



Figure 3. The framework of EBAC strategy in Assumption.

3. 1　 Design of EBAC strategy in Assumption 2. 1
The control framework for the EBAC strategy is
illustrated in Figure 3. By its name, one may realize
that the main idea of our EBAC strategy is to
approximate a more fine-tuned controller step by step,
with the more accurate estimation of the delay step by
step. For the EBAC strategy under Assumption 2. 1, we
have to design a DTP estimator to update the delay
estimations, and an approximating controller to obtain
the control signal.

In what follows we detail the designs of each
module.
3. 1. 1　 Design of the DTP estimator
At time k, the DTP estimator obtains the interval

estimation Π􀮨k by using the received round-trip τk-dk,
with the estimation confidence being α, i. e. , ∀πij,
Pr(πij∈[πij,k,πij,k])= α.

One may understand that at the beginning of
estimation the confidence can be worse than required
due to the lack of samples. To deal with this challenge,
we propose an improved Jeffery interval estimation
method, as follows.

Using traditional Jeffery interval estimation, the
estimation interval of πij is [π′ij,k,π′ij,k] at time k,

π′ij,k = β(1 - α
2

;Xij,k,Ni,k - Xij,k + a),

π′ij,k = β(1 + α
2

;Xij,k,Ni,k - Xij,k + b), (3)

where β(c;d,e) is the c quantile of Beta distribution
with parameters d,e, and a, b is the initial parameters
of prior Beta distribution, usually taking the value of
0. 5, Ni,k is the number of delays whose previous step
delay is i, and Xij,k is the number of received delay
packets up to time k with the delay values of two
consecutive packets being i and j respectively.

The pair ( Xij,k, Ni,k ) can be obtained online
iteratively.
(Xij,k,Ni,k) = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

(Xij,k-1 + 1,Ni,k-1 + 1), τk-dk
= j, τk-dk-1

= i
(Xij,k-1,Ni,k-1), otherwise{

(4)
　 　 We then introduce a learning rate, σ≤1 to obtain a
slowly narrowed estimation interval of πij from [0,1] at
the beginning, with the increase of samples, as follows,

πij,k = (1 - σNi,k)π′ij,k
πij,k = σNi,k + (1 - σNi,k)π′ij,k (5)

where as can be seen, σ balances between the
estimation interval and the estimation confidence, being
an effective approach to solve the difficulty.

Remark 3. 1　 The reasons for selecting the Jeffery
interval estimation are two-folded. Firstly, the Jeffery
interval guarantees an unbiased estimation, which is key
to ensure the system stability. Secondly, the Jeffery
interval estimation is a priori-based estimation method,
which performs good in convergence for small quantity
of samples[19] .
3. 1. 2 　 Design of the approximating controller and

actuator
It is understood that the controller gains may not be

updated using Π􀮨k at each step k, since firstly switches of
controller too often may destabilize the system[20], and
secondly too many switches also cause more cost. We
hence propose an approximating controller and actuator,
designed as follows.

At time k, the approximating controller receives
the states set z(k-dk ) = (x(k-dk ),x(k-dk -1),…,
x(k- dk - M )), and then the controller determines
whether to update its gain, if

zT(k - dk)z(k - dk) ≤ c-1zT(ri)z(ri), c > 1
(6a)

k - dk - ri > L, L ≥ M (6b)
or

k - dk - ri ≥ Q (6c)
where ri is the ith updating moment, z ( ri ) is the
updating states, L and c are configurable parameters, Q
is the maximum allowed non-updating interval, whose
value will be given in Section 4.

Denote Π︿ k by the estimation interval actually
applied to the controller, then

Π︿ k =
Π􀮨k, k - dk satisfies(6)
Π︿ k-1, otherwise{ (7)

　 　 Remark 3. 2　 The inequality (6a) ensure that the
two consecutive updating states z(ri) and z(ri+1) satisfy
the decreasing relationship, which then help stabilize the
system under certain conditions as given in Section 4.
(6b) is used to adjust the update frequency: the larger
L and c are, the greater the interval between two
updating moments is. ( 6c ) is used to keep the
controller updating during the control process.

The state feedback control signal sequence is
designed as follows[21],

U(k - dk) = [u(k - dk),…,u(k - dk + M)]
u(k - dk + i) = Ki(Π

︿
k)x(k - dk),i ∈ MM (8)

where U(k-dk) with the time stamp k-dk will be sent to
the actuator.

At the actuator side, the actuator selects from
U(k-τk) the control signal u(k) and applies it to the plant,
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u(k) = Kτk(Π
︿

k-hk)x(k - τk) (9)
　 　 The EBAC strategy in Assumption 2. 1 can then be
summarized as Algorithm 3. 1.

Algorithm 3. 1 　 The EBAC strategy for systems
(1) with Assumption 2. 1

Initialization: the initial value of the updating moment r0 =0,
the initial estimation interval πij =0, πij =1 when i≤j+1 and πij =
0, when i>j+1. At time k,

1 The DTP estimator receives delay τk-dk
, and obtains Π􀮨k by

equations (3), (4) and (5), go to 2.
2 The approximating controller judges whether the received

states set meets equation (6), and then updates U ( k - dk )
according to (8), and sends it to the actuator with time stamps.

3 The actuator receives τk, selects u ( k ) according to
equation (9), and applies it to the plant.
3. 2 　 Design of EBAC strategy for systems with

Assumption 2. 2
With Assumption 2. 2, the PDV instants are unknown,
and hence we design a PDV detector before DTP
estimator to detect PDV instants, and restart Algorithm
3. 1 after detected. The modified control framework for
the EBAC strategy is illustrated in Figure 4.

At time k, the PDV detector uses the latest w
delays to form the detection window, Dd ={τj, k-dk-w
<j≤k-dk} . The stationary distribution of Π, denoted as
P=(pi), can be estimated since less frequent changing
PDV can ensure the convergence of the estimation. We
use the chi-square test to detect PDV instant with the
following statistics

χ2 = ∑
M

i = 1

(fi - w·pi)2

w·pi
(10)

where fi is the counts of each kind of delay in Dd . We
then compare it with chi-square distribution to obtain the
detection result, see Reference [22] for details. The
detect window will move one step forward when a new
delay date arrives.

The modified EBAC strategy can be summarized as
in Algorithm 3. 2.

Figure 4. The framework of EBAC strategy in Assumption 2. 2.

Algorithm 3. 2 　 The EBAC strategy for system
(1) with Assumption 2. 2

1 The PDV detector detects whether delay probability
transition matrix has variation by equation (10): the algorithm
goes to step 2 if there is no variation, otherwise goes to step 3.

2 Execute steps 1 ~3 in Algorithm 3. 1.
3 Reset the system clock, and restart Algorithm 3. 1.

4　 Stability analysis and controller gain
design

Before proceeding further to the system analysis, we
first present the following definition to be used later.

Definition 4. 1[23] 　 The trajectory of system (1) is
said to be mean-square uniformly ultimately bounded
(MUUB), if for any compact subset Dc ⊂RR n and all
x(0)= x0∈Dc, there exist a constant 􀆠>0 and a time
constant T = T(􀆠, x0), such that E[xT(k)x(k) | x0] <
􀆠, for all k > T.
4. 1　 Stability analysis
For the next stability analysis, we define the switching
moment si =k, k-1-τk-1<ri≤k-τk is the time when the
ith updating packet at the controller is received by the
actuator.

The following lemma is used to reveal the control
signal used between consecutive switching moments si
and si+1 .

Lemma 4. 1 　 With the EBAC strategy, for any
step k ∈[si,si+1), there exists ki∈[ri,si], such that
u(k) can be written as

u(k) = Kτk(Π
􀮨

ki)x(k - τk) (11)
　 　 Proof　 From (7), Π︿ k-hk in (9) is

Π︿ k-hk
=

Π􀮨k-hk, k - τk = ri
Π︿ k-hk-1, k - τk > ri

{ (12)

　 　 Repeatedly using equation (7), it is known that

there must exist ki ∈[ ri, si ], such that Π︿ k-hk
= Π􀮨ki,

where ki-dki
=ri . The lemma is proved.

Substitute equation(11) into the system (1), the
closed-loop system can be written as

x(k + 1) = Ax(k) + BKτk(Π
􀮨

ki)x(k - τk) + Cw(k),
si ≤ k < si +1,i = 0,1,2,….

　 　 The above expression can be rewritten as the
following Markov jump system,

z(k + 1) = Φτk(Π
􀮨

ki)z(k) + Fw(k), si ≤ k < si +1
(13)

where

Φτk(Π
􀮨

ki) =

A … BKτk(Π
􀮨

ki) … 0
I 0
0 I 0

⋱
I 0

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

,

F =

C
0
0
︙
0

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

.

I is identity matrix with rank n, BKτk(Π
􀮨

ki) is in the first

row, and the (τk+1)th column in Φτk(Π
􀮨

ki) .
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The following theorem gives the sufficient
conditions of MUUB for the closed-loop system (13) .

Theorem 4. 1 　 The closed-loop system (13) is
MUUB under the EBAC strategy and Assumption 2. 1,
if there exist symmetric positive definite matrix set PP l =
{Pi,l,i∈MM } and symmetric matrix set GG l = {Gi,l,i∈
MM }, such that the following LMIs hold for all rl,l≥0

ΦT
i P􀮨i,lΦi - ρPi,l ΦT

i P􀮨i,lF

FTP􀮨i,lΦi FTP􀮨i,lF - ρI

é

ë

ê
ê
ê

ù

û

ú
ú
ú
< 0 (14)

P􀮨i,l = (1 - πii,kl)Gi,r + Pi,l,
Pi,l - Pj,l < Gj,l (15)

λminI ≤ Pi,l ≤ λmaxI, ∀i,j ∈ MM ,
Q ≥- (lnc + 2lnλ) / lnρ (16)

where λmin, λmax and ρ<1 are given parameters, and λ=
λmax / λmin .

Proof　 For any k, there exist switching moment sl
and sl+1 . Let k ∈ [ sl, sl+1 ), and then the updating
moments interval corresponding to is [ rl, rl+1 ) . From

Lemma 4. 1, a constant estimation Π􀮨kl is used in [ sl,

sl+1), and hence Φτk(Π
􀮨

kl) can be rewritten as Φτk for
simplify.

For the closed-loop system in system ( 13 ),
construct the Lyapunov function as follows,

V(z(k)) = zT(k)Pτk,lz(k),
where Pτk,l is a positive definite matrix corresponding to
each delay. Pτk,l is constant between the two switching
moments.

We obtain
E(V(k + 1) - ρV(k) - ρwT(k)w(k) | z(k),τk = i) =

ξT(k)
ΦT

i P
︿
i,lΦi ΦT

i P
︿
i,lF

FTP︿ i,lΦi FTP︿ i,lF
é

ë

ê
ê

ù

û

ú
ú
ξ(k) -

ρzT(k)Pi,lz(k) - ρwT(k)w(k) (17)
where P︿ i,l =∑

M

j=1
πijPj,l,ξT(k)= [zT(k) ,wT(k)] . Then

we can know from equation (15) and the nature of
probability that πii =1-∑j≠i

πij, and

P︿ i,l < (1 - πii,kl)Gi,l + Pi,l
Δ

􀪅􀪅 P􀮨i,l (18)
From equations (18) and (14), we can know equation
(17) is less than 0, and thus

E(V(k + 1) | z(k),τk) ≤ ρV(k) + ρwT(k)w(k)
(19)

　 　 Lemma 4. 1 shows that the same controller gains
sequence is used between two switching moments, and
equation (19) can then be obtained as

E(V(k) | z(sl),τsl) < ρk-slV(sl) + w2
max(ρ + ρ2 + …) <

ρk-slzT(sl)Pτsl,rl
z(sl) + ρ

1 - ρ
w2

max (20)

From equation (20), The relationship between system
states at k and at switching moment is shown in equation

(21) .
E(zT(k)z(k) | z(sl),τsl) <

ρk-slλzT(sl)z(sl) + ρ
(1 - ρ)λmin

w2
max (21)

　 　 From rl to sl, the controller gains before update are
used. Similar to the methods in equations (20) and
(21), the relationship of states at switching moment and
updating states can be obtained as follows,

E(zT(sl)z(sl) | z(rl),τrl) <

ρλ zT(rl)z(rl) + ρ
(1 - ρ)λmin

w2
max (22)

　 　 From equations ( 6a ), ( 6c ) and ( 16 ), the
consecutive updating states z(rl), z(rl-1) satisfy

E(zT(rl)z(rl) | z(rl -1),τrl-1) ≤

c-1zT(rl -1)z(rl -1) + 2ρ
(1 - ρ)λmin

w2
max (23)

　 　 Then from equations (23), (22), (21), we can
obtain the following

E(zT(k)z(k) | z0,τ0)d < ρk-slλ2c-vzT0 z0 + ζw2
max

(24)
where v is the number of controller updating until k, ζ=

(1+λ+ 2c
c-1

λ2) ρ
(1-ρ)λmin

. When k tends to infinity, v

also tends to infinity. Hence,
lim
k→∞

E(zT(k)z(k) | z0,τ0) =
lim
v→∞

ρk-saλ2c-vzT0 z0 + ζw2
max = ζw2

max (25)
　 　 If we take 􀆠 to be ζw2

max +Δ, where Δ is arbitrary

positive number, then we obtains that T is
lnΔ-lnzT0 z0

lnc
Q,

when k>T, meaning that E [ zT( k) z( k) | z0,τ0 ] < 􀆠
holds. This completes the proof.

Due to the constraint of equation (15), the control
performance can be more improved when the estimation
convergence. Consequently, we give the following
theorem to ensure system ( 13 ) is MUUB without
constraint (15), which is however relatively difficult to
solve when Π is completely unknown.

Theorem 4. 2 　 The closed-loop system (13) is
MUUB under the EBAC strategy and Assumption 2. 1,
if there exist symmetric positive definite matrix set PP l =
{Pi,l,i∈MM }, such that the following LMIs hold for all
rl, l≥0.

ΦT
i Pi,lΦi - ρPi,l ΦT

i Pi,lF
FTPi,lΦi FTPi,lF - ρI

é

ë

ê
êê

ù

û

ú
úú
< 0 (26)

Pi,l = ∑
M

j = 1
πij,klPj,l

λminI ≤ Pi,l ≤ λmaxI, ∀i,j ∈ MM
Q ≥- (lnc + 2lnλ) / lnρ

ü

þ

ý

ï
ï

ïï

(27)

where the definition of λmin, λmax, λ and ρ are the same
as in Theorem 4. 1.
4. 2　 Design of controller gain
Combining the advantages of these two theorems, the
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Figure 5. The estimation interval [π23,π23 ] as increasing
number of samples use different σ.

following controller gains design method is proposed.
We introduce μ(k) to represent the convergence of the
estimation. When all estimated interval width is less
than a given threshold θ, then the estimation is
sufficiently close to the true value.

μ(k) =
0, max

∀i,j∈MM
(πij,k - πij,k) < θ

1, otherwise{ (28)

　 　 When the probability estimation does not converge,
the controller gains are calculated by Theorem 4. 1, or
otherwise by Theorem 4. 2. We propose Corollary 4. 1
to obtain the controller gain.

Corollary 4. 1 　 The closed-loop system (13) is
MUUB under the EBAC strategy and Assumption 2. 1,
if there exist symmetric positive definite matrix set PP l =
{Pi,l,i∈MM }, symmetric matrix set GG l ={Gi,l,i∈MM },
and the controller gains sequence K = {K0,K1,K2,…,
KM}, such that the following LMIs hold for all rl, l≥0

- ρPi,l 0 ΩT
i

0 - ρI ΞT
i

Ωi Ξi - Γi,l

é

ë

ê
ê
ê

ù

û

ú
ú
ú
< 0 (29)

(1 - μ(kl)) (Pi,l - Pj,l) < Gj,l,　 　 　 　 　 　
　 　 　 　 　 λminI ≤ Pi,l ≤ λmaxI, ∀i,j ∈ MM (30)

Q ≥- (lnc + 2lnλ) / lnρ
ΩT

i = γi1ΦT
i , …,γiMΦT

i[ ]

ΞT
i = γi1FT, …,γiMFT[ ]

Γi,l = diag((1 - μ(kl))G
-1
i,l + μ(kl) P -1

1,l,…,
　 　 　 (1 - μ(kl))P

-1
i,l + μ(kl) P -1

i,l ,…,
　 　 　 (1 - μ(kl))G

-1
i,l + μ(kl) P -1

M,l)

ü

þ

ý

ï
ï
ïï

ï
ï
ïï

(31)
γij = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
(1 - μ(kl))} (1 - πii,kl) / M + μ(kl) πij,kl , i ≠ j

(1 - μ(kl)) + μ(kl) πii,kl , i = j{
　 　 To deal with the LMIs of the form Pτk,l, P-1

τk,l and
Gτk,l, G-1

τk,l in Corollary 4. 1, the cone complement
linearization (CCL) algorithm[24] is used.

Remark 4. 1　 The above analysis and design is for
Assumption 2. 1. This controller is still valid for
Assumption 2. 2, since as assumed the interval of PDV
is sufficiently long, and each interval is regarded as an
independent system mode.

Figure 6. The system states x1 and x2 with and without DTP
estimator.

Figure 7 . The PDV happened at 400th step, and is
detected at 436th steps.

Figure 8. The system states get by our method
and method[26] .

5　 Numerical examples
In this section, a numerical simulation example is used
to illustrate the effectiveness of the proposed method.

Consider the system
x(k + 1) = Ax(k) + Bu(k) + Cw(k),

xT(k)= (x1
T(k),x2

T(k)), w(k) is 0. 1sin(2k), where
the system state matrix is

A = 1 0. 1
0. 1 0. 99

é

ë
êê

ù

û
úú , B = C = 0. 0047

0. 0909
é

ë
êê

ù

û
úú ,

with its eigenvalues being 0. 8934 and 1. 0166. The open
loop system is unstable. The initial states of the system
is τ0 =1, x(0)= [1,-1]T .

The upper bound of the round-trip delay M is 4,
and the delay probability transition matrixes is
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Π =

0. 1 0. 9 0 0 0
0. 15 0. 1 0. 75 0 0
0. 05 0. 1 0. 15 0. 7 0
0. 1 0. 05 0. 1 0. 15 0. 6
0. 1 0. 1 0. 1 0. 3 0. 4

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

,

which is unknown to the controller.
To verify the functions of the DTP estimator, take

π23 in the matrix as an example, whose actual value is
0. 7. Figure 5 shows that when the number of delay
samples is small, the traditional Jeffrey interval may not
cover the true value. The improved Jeffery method can
cover the true value without significantly slowing down
the convergence speed(α=0. 99) .

To verify the EBAC strategy with Assumption 2. 1,
we compare our method with those in Reference [25] .
The parameters in Corollary 4. 1 are set as ρ = 0. 95,
λmin =0. 05,λmax =30, and the parameters in the EBAC
strategy are set as L = 4, c = 1. 1, θ = 0. 12. Figure 6
shows that our EBAC strategy can ensure the system
convergence while the methods in Reference [ 25 ]
destabilize the system.

To verify the EBAC strategy with Assumption 2. 2,
we keep the above system setting, and let Π before
PDV be

Π =

0. 8 0. 2 0 0 0
0. 6 0. 3 0. 1 0 0
0. 5 0. 2 0. 2 0. 1 0
0. 6 0. 2 0. 1 0. 05 0. 05
0. 5 0. 3 0. 1 0. 05 0. 05

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

.

Figure 7 shows that at 36th step after variation, the PDV
detector restarts the DTP estimator, and the system starts
the next round of control. Figure 8 shows that using the
EBAC strategy with PDV detector can adapt to variation
of delay characteristics, but the method in Reference
[26] just uses the prior known matrix, and hence the
stability of system can not be ensured.

6　 Conclusions
For wireless networked control systems with unknown
delay characteristics, an estimation based approximating
control strategy is proposed, which is shown to be
effective in realistic situations. It is worth pointing out
that the proposed strategy is not only applicable to the
delay characteristics under the Markovian assumption,
but also applicable to other delay characteristics
assumptions such as independent identically distributed
delay and constant delay. This makes the proposed
strategy widely applicable. In our future works we will
try to reduce the computational cost to make the
proposed approach more practically applicable.
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基于估计的无线网络化控制系统逼近控制策略

梁启鹏1,朱巧慧1,康宇2,赵云波2∗

1. 浙江工业大学信息工程学院,浙江杭州 310012;
2. 中国科学技术大学自动化系,安徽合肥 230027

∗通讯作者. E-mail:ybzhao@ ustc. edu. cn

摘要: 通过对闭环延时特性未知的无线网络化控制系统进行控制策略设计和系统分析,提出了一种基于估计

的逼近控制策略,在保证系统稳定性的同时以一种实际可行的方式利用了延时特性. 该策略首先利用延时特性

估计器在线测量延时得到闭环延时特性估计,然后逼近控制器使用此估计得到控制量. 在此基础上,设计了延

时抖动检测器,使控制策略自适应延时特性抖动. 在设计的控制策略下,得到了保证闭环系统均方最终一致有

界的充分条件和控制增益计算方法. 通过数值仿真验证了控制策略的有效性.
关键词: 无线网络化控制系统;延时特性估计;马尔可夫跳变系统;逼近控制

433 中国科学技术大学学报 第 51 卷


