
第 51 卷第 3 期 Vol. 51, No. 3
2021 年 3 月 JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA Mar. 2021

Received: 2021-03-08; Revised: 2021-03-28 doi:10. 52396 / JUST-2021-0053

Citation: WU Jie, ZHOU Jia, ZHENG Zemin. Subgroup analysis for multi-response regression. J. Univ. Sci. Tech. China, 2021, 51
(3): 216-227.

Subgroup analysis for multi-response regression

WU Jie1,2, ZHOU Jia1,2∗, ZHENG Zemin1,2∗

1. International Institute of Finance, University of Science and Technology of China, Hefei 230601, China;
2. School of Management, University of Science and Technology of China, Hefei 230026, China

∗Corresponding author. E-mail: tszhjia@mail. ustc. edu. cn; zhengzm@ ustc. edu. cn

Abstract: Correctly identifying the subgroups in a heterogeneous population has gained increasing
popularity in modern big data applications since studying the heterogeneous effect can eliminate the
impact of individual differences and make the estimation results more accurate. Despite the fast growing
literature, most existing methods mainly focus on the heterogeneous univariate regression and how to
precisely identify subgroups in face of multiple responses remains unclear. Here, we develop a new
methodology for heterogeneous multi-response regression via a concave pairwise fusion approach, which
estimates the coefficient matrix and identifies the subgroup structure jointly. Besides, we provide
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numerical studies demonstrate the effectiveness of the proposed method.
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1　 Introduction
Rapid developments in technology have brought in
massive data sets in various fields ranging from health,
genomics and molecular biology, among others. In
these applications, identifying subgroups from a
heterogeneous population is of great importance since it
reveals domain knowledge behind the data. For
example, experimental studies have shown that the
relative efficacy of antiretroviral drugs for treating
human immunodefciency virus infection sometimes
depends on baseline viral load and CD4 count[1] .
Similarly, in the study of clinical trials, it has been
increasingly recognized that some subgroup of patients
can benefit from a treatment or suffer from an adverse
effect much more than the others[2] . Therefore,
recovering the heterogeneous effects has gained
increasing popularity in data analyses.

A popular method for analyzing data from a
heterogeneous population is to view data as coming from
a mixture of subgroups, where their own sets of
parameter values should be estimated using finite
mixture model analysis[2-4] . However, these mixture
model-based approaches need to specify the underlying
distribution of data and the number of mixed
components in the population, which are often difficult

to satisfy in real applications. By contrast, several other
methods consider the problem of exploring homogeneous
effects of the covariates by assuming that the true
coefficients are divided into a few clusters with common
values. For example, Guo et al. [5] proposed using a
pairwise L1 fusion penalty for identifying variables in the
context of Gaussian model-based cluster analysis. Chi
and Lange[6] proposed to multiply nonnegative weights
to the L1 norms to reduce the bias. The major advantage
of such methods is that they can detect and identify
heterogeneous subgroups without knowledge of a priori
classification. But the L1 penalty generates large biases
in the estimates in each iteration of the algorithm, thus
leading to incorrect conclusions. Furthermore, Wang et
al. [7] applied a two-stage multiple change point
detection method to determine the subgroups and
estimated the regression parameters. Similarly, Li et
al. [8] proposed an estimation procedure combining the
likelihood method and the change point detection with
the binary segmentation algorithm. Despite a well
estimation accuracy of these two methods, it is unclear
how to verify the theoretical properties.

To address these issues, Ma and Huang[9] proposes
a new method in which the heterogeneity can be
modeled through subject-specifc intercepts in regression
and can be implemented via a concave pairwise fusion



penalized least squares without a priori knowledge of
classification, thus more desirable for identifying
subgroups. But this method is only applicable to
heterogeneous univariate regression, and how to deal
with heterogeneous multi-response regression is still
unknown, which restricts the efficiency of the method.
Although there exist many literature focusing on multi-
response regression[10-15], which represent the
dependency between the multiple outcomes and the same
set of predictors, these method are no longer valid in
face of the problem related to the data from a
heterogeneous population.

In this article, we develop a new methodology for
heterogeneous multi-response regression, which
estimates the coefficient matrix and identifies the
subgroup structure jointly. The proposed estimator
utilizes the idea proposed By Ma and Huang[9], that is,
applying the concave pairwise fusion penalized least
squares, but extends the univariate heterogeneous
regression to a multiple one. The major contributions of
this paper are twofold. First, we develop a new method
for heterogeneous multi-response regression, which
automatically divides the observations into subgroups
without a prior knowledge of classification. Second, we
provide theoretical guarantees for the proposed method
by establishing estimation consistency and derive the
convergence properties of the algorithm.

The remainder of this paper is organized as
follows. Section 2 presents the model setting and our
new methodology. Theoretical properties of the
proposed method are established in Section 3. We
provide numerical studies in Section 4. Section 5
concludes with extensions and possible future work. The
proofs and additional technical details are provided in
the Appendix.
2　 Subgroup analysis for multi-response

regression via concave pairwise
fusion

2. 1　 Model setting
Consider the following heterogeneous multi-response
regression model

Y = XB + C + E (1)
where Y=(y1,…, yn)T is an n×q response matrix, X =
(x1,…, xn)T is an n×p covariate matrix, B is a p×q
coefficient matrix, C=(c1,…, cn)T is an n×q intercept
matrix and E = (e1,…, en)T is an n×q random error
matrix. One interesting application of the model is
precision medicine where the responses vector could be
several phenotypes associated with some disease and
predictors are a set of observed characters such as
gender, sex, age and so on. After adjusting for the
effects of the covariates, the distribution of the response

is still heterogeneous. It means that the heterogeneity
can be the result of unobserved latent factors which can
be modeled through the subject-specifc intercept
vectors, similar as that in Ref. [9] . Specifically, the
heterogeneous structure can be modeled as follows
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where α=(α1,…, αK)T is a K×q matrix and αk is the
common vector for the ci’s in the kth subgroup, and W
is an n×K (latent) indicator matrix in which wik =1 for
ci in kth group and wik = 0 otherwise. Substituting this
into model ( 1 ) yields the final multi-response
heterogeneous model:

Y = XB + Wα + E (2)
　 　 Let ψ=(ψ1,…, ψK) be a partition of {1,…, n} .
Without loss of generality, we assume that Y = (y1,…,
yn)T are from K different groups with K≥1 and the data
from the same group have the same intercept vector αi,
i. e. ci =αk for all i∈ψk .

Although we adopt a similar estimation idea
proposed in Ref. [9], how to apply the method under
multi-response regression model here is a nontrivial task
even if it is conceptually straightforward. Our goal is to
correctly estimate K, identify the subgroups of outcomes
and accurately estimate the regression coefficient matrix
B.
2. 2　 Algorithm
Consider that the heterogeneous treatment effects are
characterized by the intercept matrix, to estimate the
unknown parameter matrix B and intercept matrix C
jointly, a direct idea is to solve the following penalized
least square problem

Qn(C, B) = 1
2 ∑

n

i = 1
‖yi - xi B - ci‖2

2 +

∑
i < j

pr(‖ci - cj‖2, λ) (3)

where pr(·, λ) is a penalty function indexed by the
tuning parameter λ ≥ 0, indicating the amount of
penalization. By minimizing the objective function, the
penalty function pλ( . ) shrinks some ‖ci -cj‖2 to 0,
thus automatically dividing the samples into different
subgroups. Given λ>0, the estimates of the coefficient
matrices are defined as

(C︿ (λ),B︿ (λ)) = arg min
C,B

Qn(C,B,λ) (4)

　 　 For ease of presentation, we set (C︿ ,B︿ )≡(C︿ (λ),
B︿ (λ)) . Let {α︿ 1,…, α︿ K︿ } be the distinct values of c︿ i

and A︿ k = { i:c︿ i = c︿ k,1≤ i≤n}, 1≤k≤K︿ . Then an
estimated partition of {1,…,n} can be {A︿ 1,…,A︿ K︿ } .

However, the penalty function in the above
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optimization problem (3) is not separable in ci . We
then reformulate the problem as follows by resorting to
δij =ci-cj,

L0{C, B, δ} = 1
2 ∑

n

i = 1
‖yi - xi B - ci ‖2

2 +

∑
i < j

pr(‖δij‖2, λ),

s. t. ci - cj - δij = 0 (5)
where δ = { δij, i < j }T . Applying the augmented
Lagrangian method, we can obtain the estimates of the
parameter matrix by minimizing the following problem:

L(C, B, δ, v) = L0{C, B, δ} + 　 　 　 　 　 　

∑
i < j

〈vij, (ci - cj - δij)〉 + υ
2
‖ci - cj - δij‖2

2 (6)

where 〈a, b〉 =aTb is the inner product of two matrices
a and b with the same dimensions, the dual matrix v =
{vT

ij, i < j}T is Lagrange multiplier matrix and υ is a
penalty parameter. Then, with observed data sets (X,
Y ), we use an alternating direction method of
multipliers (ADMM) to compute the estimates of (C,
B, δ, v ) . At the mth iteration, we solve for the
minimizer of L (C, B, δ, v ) iteratively using the
following three steps:

(Cm+1, Bm+1) = arg min
C,B

L( C, B, δm, vm) (7)

δm+1 = arg min
δ

L(Cm+1, Bm+1, δ, vm) (8)

vm+1
ij = vmij + υ(cm+1

i - cm+1
j - δm+1

ij ) (9)
Since δm and vm are fixed in the first step, the problem
(7) can be simplified as

f(C, B) = 1
2 ∑

n

i = 1
‖yi - xi B - C ‖2

2 +

∑
i < j

〈vij, (ci - cj - δij)〉 +

υ
2 ∑i < j

‖ci - cj - δij‖2
2 + Cn,

where Cn is a constant independent of (C,B) . Through
some algebra, we rewrite f(C,B) as

f(C, B) = 1
2
‖Y - XB - C‖2

F +

〈V, (AC - δ)〉 + υ
2
‖AC - δ‖2

F + C (10)

where A={(ei-ej), i< j}T with ei being the ith unit n×
1 vector whose ith element is 1 and the remaining ones
are 0. Thus the updates Cm+1 and Zm+1 are given by

Cm+1 = (In + υAT A) -1[ (In - QX)Y + υAT(δm - 1
υ
Vm)]

(11)
Bm+1 = (XT X) -1XT(Y - Cm+1) (12)

where QX = X ( XTX ) -1XT denotes the orthogonal
projection matrix onto the range of X and In denotes the
identity matrix. In the second step, we discard the terms
independent of δ and minimize the problem (8 ) as

follows
∑
i < j

〈vTij, (ci - cj - δij)〉 + 　 　 　 　 　 　 　

υ
2
‖ci - cj - δij‖2

2 + pr(‖δij‖2, λ),

with respect to δ. Corresponding to the penalty pr, this
is a groupwise thresholding operator. Let S ( z, t) =
(1-t /‖ z ‖2 ) + z be the groupwise soft thresholding
operator with (x) + = x if x>0 and = 0, otherwise. And
define ζmij = (cm+1

i -cm+1
j ) +υ-1vmij . Then the solution path

for the matrix δ is
δm+1
ij = S(ζm,λ / υ) (13)

for the L1 penalty[16] or

δm+1
ij =

S(ζmij , λ / υ)
1 - (γυ)

if ‖ζmij ‖F ≤ γλ,

ζmij , if ‖ζmij ‖F > γλ
{ (14)

for the MCP[17] with γ>1 / υ or

δm+1
ij =

S(ζmij , λ / υ) if ‖ζmij ‖F ≤ λ + λ / υ,
S(ζmij , γλ / ((γ - 1)υ))
1 - 1 / ((γ - 1 )υ))

　 if λ + λ / υ ≤ ‖ζmij ‖F ≤ γλ,
ζmij if ‖ζmij ‖F > γλ

ì

î

í

ï
ï
ï

ï
ï
ï

(15)
for the SCAD penalty[18] with γ>1 / υ+1. At last, the
update of vij is given in ( 9 ) . We terminate the
algorithm when the stopping criterion met. To be
specific, we stop the algorithm once rm+1 =ACm+1-δm+1 is
close to zero such that ‖ rm+1 ‖F < a for some small
value a.

The efficiency of subgroups identification via our
method can be seen from a simple simulation example
summarized in Figure 1, where the data are generated
similarly as in Section 4 except that each row of C∗ is
generated i. i. d. from three different vectors α1, α2, α3

with equal probabilities. That is,
P(c∗i = α1) = P(c∗i = α2) = P(c∗i = α3) = 1 / 3

with α1 =(2,…, 2), α2 = (0,…, 0) and α3 = (-2,…,
-2) . It is clear that the estimators using concave
penalties MCP and SCAD can accurately identify the
subgroups while convex penalty Lasso merge to one
value quickly due to the overshrinkage of the L1

penalty.

3　 Theoretical properties
In this section, we study the theoretical properties of the
proposed estimator. Specifically, we provide sufficient
conditions under which there exists a local minimizer of
the objective function equal to the oracle least squares
estimator with a priori knowledge of the true groups
with high probability. We also derive the lower bound
of the minimum difference of the coefficients between
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subgroups to estimate the subgroup-specific treatment
effects.

Figure 1. Solution paths for c︿ 11,c
︿
21,…, c︿ n1 against λ for data

in Section 2.

3. 1　 Notation and conditions
Let Mψ ={C∈RR n×q} : ci = cj, for i,j∈ψk, 1≤k≤K.
For each C∈Mψ, It can be written as C=Wα, where α
=(α1,…, αK)T and αk is a q-dimension vector of the
kth subgroup for k=1,…,K. Simple calculation shows

WTW = diag( | ψ1 | ,…, | ψK | ),
where | ψk | denotes the number of elements in ψk .
Denote the minimum and maximum group sizes by
|ψmin | = min

1≤k≤K
|ψk | and |ψmax | = max

1≤k≤K
|ψk | , respectively.

For any positive numbers an and bn, let an≫bn denote
an

-1 bn =o(1) . For any vector ζ = (ζ1,…,ζs)T∈RR s,
define the infinity norm of the vector as ‖ ζ ‖∞ =
max
1≤l≤s

| ζl | . For any matrix A = (Aij ) s,t
i=1,j=1, define the

infinity norm of the matrix as‖A‖∞ = max
1≤l≤s

∑
t

j = 1
| Aij | .

For any symmetric matrix As×s, define its L2 norm by
‖A‖2 = max

ζ∈Rs,‖ζ‖2=1
‖ A ζ‖2, and let λmin (A) and

λmax(A) be the smallest and largest eigenvalues of A,
respectively. Denote U = (W, X ), and the notation
1(·) denotes an indicator function. Finally, denote
the scaled penalty function by

ρ(t) = λ -1 Pγ(t,λ) .
　 　 We make the following basic assumptions.

Condition 3. 1 　 For some constant a > 0, the
function ρ (t) is constant once t≥a λ. It is symmetric,
non-decreasing and concave on [0,∞ ) . In addition,
ρ′(t) exists and is continuous except for a finite number
values of t, ρ′(0+)= 1 and ρ (0)= 0.

Condition 3. 2　 The noise vector =(1,…, n)T

has sub-Gaussian tails such that P( | aT | >‖a‖2 x)≤
2exp(-c1 x2) for any vector a∈RR n and x>0, where 0<
c1<∞ .

Condition 3. 3　 For any 1≤l≤q, assume ∑
n

i = 1
d2
il =

n , and for any 1≤j≤p, assume ∑
n

i = 1
x2ij 1{i ∈ ψk} =

| ψk | . λmin(UT U)≥C1 |ψmin | , sup
i
‖Xi‖2 =C2 p for

some constants 0<C1<∞ and 0<C2<∞ .
Conditions 3. 1 puts a mild assumption on the

penalties and it is obviously that the concave penalties
such as MCP and SCAD satisfy it. Condition 3. 2 is
standard in the penalized regression in high-dimensional
settings. Condition 3. 3 imposes conditions on the
eigenvalues of the population covariance matrix UT U.
Note that λmin(WT W)= |ψmin | . By assuming λmin(XT X)
= Cn, we have

λmin | (W, X)T(W, X) | ≤ min ( | ψmin | , Cn) .
The equality holds when WT X = 0. Hence, we assume
λmin[(W, X)T(W, X) ]≥C1 |ψmin | for some constant
0<C1<1.

Before giving the detail theorem, we also need to
introduce a new definition called oracle estimators,
which are not real estimators but theoretical
constructions useful for stating the properties of the
proposed estimator. When the true group memberships
ψ1,…, ψK are known, the oracle estimators for B and C
are solved by

(B︿ or, C︿ or) = arg min
C∈RRn×q, B∈RRp×q

1
2
‖Y - XB - C‖2

F,

and correspondingly, the oracle estimators for the
common intercept vector α and the coefficient matrix B
are given by

(B︿ or, α︿ or) = arg min
α∈RRK×q, B∈RRp×q

1
2
‖Y - XB - Wα‖2

F

(16)
　 　 Let α0 = (α1,…, αK)T ∈RR K×q, where α0

k is the
underlying common intercept vector for the group ψk .
Let B0 be the underlying regression coefficient matrix.
Now we are ready to show the main results.

Theorem 3. 1　 Suppose |ψmin |≫q (K+p) nlogn .
Then under Conditions 3. 1 - 3. 3, we have with
probability at least 1-2q(K+p) n-1,

‖((α︿ or - α0)T, (B︿ or - B0)T,)T‖F ≤ ϕn (17)
and
‖C︿ or - C0‖2 ≤ | ψmax | ϕn, sup

i
‖c︿ or

i - c0i ‖F ≤ ϕn,
where

ϕn = C C -1
1 | ψmin |

-1q K + p nlogn (18)
　 　 Theorem 3. 1 establishes the estimated error bound
for the oracle estimator (α︿ or, B︿ or) obtained by solving
least squares problem (1) . Considering that K≥n |ψmin |
and | ψmin | ≫ q (K+p)nlogn , K, p and q should
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satisfy q K+p nlogn = o ( n) . Therefore, the upper
bound ϕn of the estimation error can converge to 0 for
sufficient large n.

Remark 3. 1　 For K≤2, let
bn = min

i∈ψk, j∈ψk′, k≠k′
‖c0i - c0j ‖2 = min

k≠k′
‖α0

k - αk′
0‖2

be the minimal difference of the common values
between two groups.

Theorem 3. 2 　 Suppose the conditions in
Theorem 3. 1 hold. If bn > aλ and λ≫ϕn, for some
constant a>0, where ϕn is given in (18), then there
exists a local minimizer ( C︿ ( λ ), B︿ ( λ )) of the
objective function Qn(C, B; λ) given in (4) satisfying

P((C︿ (λ), B︿ (λ)) = ((C︿ or, B︿ or))) → 1.
　 　 Theorem 3. 2 describes that the oracle estimator
(C︿ or, B︿ or ) is a local minimizer of function ( 4 ) .
Combined with Theorem 3. 1, we conclude that the
estimation error bound of (C︿ , B︿ ) solved by (4) can
converge to 0 with sufficient large n.

Proposition 3. 1 　 Let rm = ACm - δm and sm =
υAT(δm-δm+1) be the primal residual and the dual
residual in the ADMM described above, respectively. It
holds that lim

m→∞
‖rm‖2

F = 0 and lim
m→∞

‖sm‖2
F = 0 for the

MCP and SCAD penalties.
Therefore, the proposed Algorithm always achieves

a local minimum of Qn, starting from some reasonable
initial values. We suggest to give the initial matrices by

solving LR(C, B)= 1
2
‖Y-XB-C‖2

F and the solutions

are BR =(XT X ) -1 XT Y and CR =Y-XBR .

4　 Simulation studies
In this section, we use simulated data to investigate the
finite sample performance of the proposed method via
two concave penalties, the smoothly clipped absolute
deviation ( SCAD ), the minimax concave penalty
(MCP ) and one convex penalty ( Lasso ), in

comparison with the classic method reduced rank
regression (RRR) . Among them, MCP, SCAD and
Lasso have two tuning parameters including rank and
sparse parameter, which are selected jointly by BIC. By
contrast, RRR only has one tuning parameter rank,
which is also tuned by BIC for fair comparison of all
methods.

We adopted a similar simulation setting as that in
Ref. [9] by extending the univariate response variable
to muli-response variables and generate 100 data sets
from model (1) with (n,p,K)= (100,5,2) and q =3,
6. For each data set, the rows of the design matrix X
are independently and identically distributed ( i. i. d. )
generated from N(0, Σx ), where Σx is with diagonal
elements 1 and off-diagonal elements 0. 3, thus bringing
in predictor correlation. Similarly, each row of the error
matrix E is drawn i. i. d. from N(0, 0. 52 ΣE), where
ΣE has the same compound symmetry structure as Σx .
All entries in the coefficient matrix B∗ are generated
i. i. d. from independent uniform [0. 5, 1] . Denote the
true intercept matrix by C∗ =(c∗

1 ,…, c∗
n )T . Then each

row of C∗ is generated i. i. d. from two different vectors
α1, α2 with equal probabilities. That is, we generate
them from the distribution: P(c∗

i =α1)= P(c∗
i =α2)=

1 / 2 with α1 =(2,…, 2) and α2 =(0,…, 0) .
To compare the aforementioned methods, we

calculate Est(B︿ ) = ‖B∗ -B︿ ‖2
F / (pq) and Est (C︿ ) =

‖C∗-C︿ ‖2
F / ( nq) for estimation and Err (B︿ , C︿ ) =

‖XB∗+C∗-XB︿ -C︿ ‖2
F / (nq) for prediction. Meanwhile,

to evaluate the subgroup identification performance, we
report the mean squared errors for K different subgroups,
which are defined as Est ( α︿ 1 ) = ‖α∗

1 -α︿ 1 ‖2
2 / q and

Est(α︿ 2)= ‖α∗
2 -α︿ 2 ‖2

2 / q. At last, the average of the
estimated intercept vectors from all repetitions (K︿ ) and
the percentage of correct identification (K-per) are also
summarized in Table 1.

Table 1. The sample mean and standard deviation (S. D. ) of estimators (1×102) . n=100, p=12, K=2.

Method Est(B︿ ) Est(C︿ ) Err(B︿ ,C︿ ) Est(α︿ 1) Est(α︿ 2) K︿ K-per (% )

q=3

RRR 0.647 (0.111) 180.000 (0.000) 177.747 (0.102) - - - -

MCP 0.090 (0.031) 0.921 (0.256) 1.218 (0.280) 0.816 (0.292) 1.045 (0.418) 2.000 (0) 100.000

SCAD 0.120 (0.100) 0.889 (1.446) 1.053 (1.172) 0.218 (0.142) 0.402 (0.280) 2.000(0) 100.000

Lasso 0.381 (0.076) 99.901 (0.051) 99.115 (0.121) - -- 1.000 (0) 0.000

q=6

RRR 1.296 (0.101) 176.000 (0.000) 171.307 (0.074) - - - -

MCP 0.086 (0.022) 0.719 (0.225) 1.011 (0.236) 0.737 (0.250) 0.702 (0.287) 2.000 (0) 100.000

SCAD 0.080 (0.018) 0.170 (0.069) 0.487 (0.091) 0.180 (0.108) 0.160 (0.093) 2.000 (0) 100.000

Lasso 2.698 (0.234) 100.061 (0.052) 89.666 (0.120) - - 1.000 (0) 0.000
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　 　 In view of the results in Table 1, it is clear that our
proposed estimators using concave penalties MCP and
SCAD enjoy higher accuracy than utilizing convex
penalty Lasso or classic method RRR which does not
consider heterogeneous effects. Although similar to
MCP and SCAD, Lasso consider a heterogeneous
effects, but it tends to over-shrink large coefficients,
thus leads to biased estimates and unable to correctly
recover subgroups. In view of the heterogeneous
estimation results in Table 1, both MCP and SCAD can
identify the subgroups while RRR and Lasso have worse
performance than the MCP and SCAD penalties.
Specifically, the heterogeneity related measures do not
apply to Lasso and RRR since they do not recover the
latent subgroup structures. From another point of view,
Lasso and RRR can not recover and utilize the
heterogeneous structure, which in turn lowers its
estimation and prediction accuracies about coefficient
matrices B∗ and C∗ .

Figure 2. Solution paths for c︿ 11,c
︿
21,…, c︿ n1 against λ for

data in Section 4.

Figure 2 displays the fusiongram for c︿ 11, c
︿
21,…,

c︿ n1, the first element in c︿ i, i=1,…,n, against different
sparse parameter λ for the data. In view of the results,
it is clear that MCP and SCAD have similar solution
paths as shown in Figure 1 and their estimated values of
c︿ i1 converge to two different values 2 and 0, which
equal to the true heterogeneous intercept values. By
contrast, the L1 penalty shrinks the value quickly and
converges to one value once λ exceed a certain constant.

5 　 Application to the yeast cell cycle
data set

In this section, we will analyze the yeast cell cycle data
set originally studied in Ref. [19] . This data set consists

of 524 yeast genes, the RNA transcript levels (X) of
which can be regulated by transition factors (TF) within
the eukaryotic cell cycle. Specifically, 21 of the TFs
were experimentally confirmed related to cell cycle
process. It covers approximately two cell cycle periods
with measurements at 7 min intervals for 119 min with a
total of 18 time points (Y) . Similar to Ref. [13], we
considered the multi-response regression model to
estimate the association coefficient matrix between the
transition factors and the cell cycle gene expression
data. Then we artificially added the intercept matrix C
similarly as in Section 4 to generate subgroup structure,
where C = (c1,…, cn)T . Each row of C is generated
i. i. d. from from the distribution:

P(ci = α1) = P(ci = α2) = 1 / 2
with α1 =(2,…, 2) and α2 =(0,…, 0) . Based on the
processed data set, we identify the subgroups via Lasso,
SCAD and MCP. Since the underlying model is
unknown, we report the surrogate estimation error

Err(B︿ ,C︿ ) = ‖Y - XB︿ - C︿ ‖F / (nq)
with the true covariate matrix X to evaluate the
estimation accuracy of the regression coefficient matrix.
The results for our proposed method are summarized in
Table 2. In view of the results, MCP achieved the
highest accuracy in view of the estimation errors. Both
MCP and SCAD can successfully identify the true
subgroups.

Table 2. The performance measures of estimators (1×102) .

Method Err(B︿ ,C︿ ) Est(α︿ 1) Est(α︿ 2) K︿

Lasso 165. 590 - - -

MCP 10. 072 4. 164 4. 930 2. 000

SCAD 12. 368 6. 782 8. 976 2. 000

6　 Conclusions
In this paper, we have extended the method for
heterogeneous univariate-response regression to multi-
response regression, which recovers regression
coefficient matrix and latent heterogeneous factors by
concave pairwise fusion penalties. Numerical studies
demonstrate the statistical accuracy of the proposed
method. Our estimation procedure may be extended to
deal with data containing censoring, measurement errors
and outliers or more general model settings such as the
generalized linear model, which will be interesting
topics for future research.
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基于多响应回归的子群分析
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摘要: 由于研究异质效应可以消除个体差异的影响,使估计结果更加准确,因此在现代大数据应用中,正确识

别异质群体中的亚群越来越受欢迎. 尽管文献增长迅速,但现有的方法大多集中在异质单响应回归上,如何在

多响应问题中准确识别亚组仍不清楚. 本文提出了一种新的基于凹融合的异质多响应回归方法,该方法能同时

估计系数矩阵并识别子群结构. 此外,通过建立估计一致性,为所提出的方法提供了理论保证. 数值研究证明了

该方法的有效性.
关键词: 多响应回归;子群分析;凹惩罚;ADMM 算法

Appendix
A. 1　 Proof of Proposition 3. 1
By the definition of δm+1, we have

L(Cm+1,Bm+1,δm+1,vm) ≤ L(Cm+1,Bm+1,δ,vm)
for any δ. Define

fm+1 = inf
ACm+1-δ = 0

{ 1
2
‖Y - XBm+1 - Cm+1‖2

F + ∑
i < j

pr(‖δij‖2, λ )} = inf
ACm+1-δ = 0

L(Cm+1,Bm+1,δ,vm) .

Then
L(Cm+1,Bm+1,δm+1,vm) ≤ fm+1 .

　 　 Let t be an integer. Since vm+1 = vm+υ(ACm+1-δm+1), then we have

vm+t-1 = vm + ∑
t -1

i = 1
(ACm+i - δm+i),

and thus

L(Cm+t, Bm+t, δm+t, vm+t-1) = 1
2
‖Y - XBm+t - Cm+t‖2

F + 〈vm+t-1, ACm+t - δm+t〉 +

υ
2
‖ACm+t - δm+t‖2

F + ∑
i < j

pr(‖δij m
+t‖2,λ) = 1

2
‖Y - XBm+t - Cm+t‖2

F + 〈vm, ACm+t - δm+t〉 +

υ∑
t -1

i = 1
〈ACm+i - δm+i, ACm+t - δm+t〉 + υ

2
‖ACm+t - δm+t‖2

F + ∑
i < j

pr(‖δij m
+t‖2, λ) ≤ fm+t .

　 　 Since the objective function L(C, B, δ, v) is differentiable with respect to and is convex with respect to, by
applying the results in Theorem 4. 1 of Ref. [20], the sequence (Cm,Bm,δm) has a limit point, denoted by (C∗,
B∗, δ∗) . Then we have

f∗ = lim
m→∞

fm+1 = lim
m→∞

fm+t = inf
AC∗-δ = 0

{ 1
2
‖Y - XB∗ - C∗‖2

F + ∑
i < j

pr(‖δ∗
ij ‖2, λ)},

and for all t≥0
lim
m→∞

L(Cm+t, Bm+t, δm+t, vm+t-1) =
1
2
‖Y - XB∗ - C∗‖2

F + ∑
i < j

pr(‖δ∗
ij ‖2, λ) + lim

m→∞
〈vm, AC∗ - δ∗〉 + ( t - 1

2
)υ‖AC∗ - δ∗‖2

F ≤ f∗ .

Hence, lim
m→∞

‖rm‖2
F = r∗ =‖AC∗-δ∗‖2

F =0.

Since Cm+1 minimizes L (C, Bm, δm, vm) by definition, we have that
L(C, Zm, δm, vm) / C = 0,

and moreover,
L(Cm+1, Bm, δm, vm) / C = XBm+1 + Cm - Y + AT Vm + υAT(ACm+1 - δm) =
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XBm+1 + Cm - Y + AT(Vm + υ(ACm+1 - δm)) =
XBm+1 + Cm - Y + AT(Vm+1 - υ(ACm+1 - δm+1) + υ(ACm+1 - δm)) =

XBm+1 + Cm - Y + AT Vm+1 + υAT(δm+1 - δm) .
Therefore,

sm+1 = υAT(δm+1 - δm) = - (XBm+1 + Cm - Y ) - AT Vm+1 .
　 　 Since ‖AC∗-δ∗‖2

F =0,
lim
m→∞

L(C, Bm, δm, vm) / C = lim
m→∞

XBm+1 + Cm - Y + AT Vm+1 = XB∗ + C∗ - Y + AT V∗ = 0.

Therefore, lim
m→∞

sm+1 =0.
A. 2　 Proof of Theorem 3. 1
For every C∈Mψ, it can be written as C=Wα. Recall U=(W, X) . We have

C︿ or

B︿ or( ) = arg min
α∈RRK×q, B∈RRp×q

1
2
‖Y - XB - C‖2

F = arg min
α∈RRK×q, B∈RRp×q

1
2
‖Y - XB - Wα‖2

F .

Thus
α︿ or

B︿ or( ) = [(W, X) T( W, X)] -1( W, X) T Y = (UT U) -1 UT Y.

Then
α︿ or - α0

B︿ or - B0( ) = (UT U) -1 UTE.

Hence
α︿ or - α0

B︿ or - B0( )
F
≤ ‖(UT U) -1‖2‖UTE‖F (A1)

By Condition 3. 1, we have
‖(UT U) -1‖2 ≤ C -1

1 | ψmin |
-1 (A2)

Moreover, since
E = [1,…, q],

where i∈RR n×1 is a vector with its elements i. i. d. sub-Gaussian variable. Since every row of the matrix E is i. i. d.
vectors, each element of the vectors i is i. i. d. sub-Gaussian variables.

‖UT E‖F = ‖UT(1,…, q)‖F = ∑
q

i∗ = 1
‖UT i∗‖2 .

Additionally,
P(‖UT i∗‖∞ > C nlogn ) ≤ P(‖WT i∗‖∞ > C nlogn ) + P(‖XT i∗‖∞ > C nlogn ),

for some constant 0<C <∞ . Then by Condition 3. 3,

P(‖WT i∗‖∞ > C nlogn ) ≤∑
K

k = 1
P ( | ∑

j∈ψk

i∗j | > C nlogn ) ≤

∑
K

k = 1
P ( | ∑

j∈ψk

i∗j | > | ψk | C logn ) ≤ 2 Kexp( - c1 C2 logn ) = 2Kn -c1C2 .

　 　 By union bound, Condition 3. 1 that ‖Xk‖2 = n , where Xk is the kth column of X, and Condition 3. 3,

P(‖XT i∗‖∞ > C nlogn ) ≤∑
p

j = 1
P ( | Xj

T  | > n C logn ) ≤ 2pexp ( - c1 C2 logn) = 2pn -c1C2 .

　 　 It follows that
P(‖UTi∗‖∞ > C nlogn ) ≤ 2(K + p) n -c1C2 .

　 　 Since ‖UT i∗‖2 = K+p‖UT i∗‖∞ , then
P(‖UT i∗‖2 > C K + p nlogn ) ≤ 2(K + p) n -c1C2 .

Then,

P(‖UTE‖F > Cq K + p nlogn ) = P (∑
q

i∗ = 1
‖UT i∗‖2 > C q K + p nlogn ) ≤

∑
q

i∗ = 1
P(‖UT i∗‖2 > C K + p nlogn ) ≤ 2q(K + p) n -c1C2 (A3)
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　 　 Therefore, by (A1), (A2) and (A3), we have with probability at least 1-2q(K+p)n-c1C2,
α︿ or - α0

B︿ or - B0( )
F
≤ CC -1

1 | ψmin |
-1q K + p nlogn .

　 　 The result (9) in Theorem 3. 1 is proved by letting C1 =c
-1 / 2
1 .

A. 3　 Proof of Theorem 3. 2
In this section we show the results in Theorem 3. 2. Define

Ln(C, B) = 1
2
‖Y - XB - C‖2

F, Pn(C) = λ∑
i < j

ρ (‖ci - cj‖2),

Lψ
n(α, B) = 1

2
‖Y - XB - Wα‖2

F, Pψ
n(α) = λ∑

k < k′
| ψk | | ψk′ | ρ (‖αi - αj‖2),

and let
Qn(C, B) = Ln(C,B) + Pn(C), Qψ

n(α, B) = Lψ
n(α,B) + Pψ

n(α) .
　 　 Let T: Mψ→RR K×q be the mapping that T(C) is the K×q matrix consisting of K vectors with dimension q×1 and
its kth vector component equals to the common value of ci for i∈ψk . Let T∗: RR n×q→RR K×q be the mapping that
T∗(C)= { |ψ | -1 ∑

i∈ψk
ci, k=1,…, K} T . Clearly, when C∈Mψ, T(C)= T∗(C) .

By calculation, for every C∈Mψ, we have Pn (C) = Pψ
n ( T (C)) and for every α ∈ RR K×q, we have

Pn (T-1(α))= Pψ
n(α) . Hence

Qn(C, B) = Qψ
n(T(C), B), Qψ

n(α, B) = Qn(T
-1(α), B) (A4)

　 　 Consider the neighborhood of (C0, B0):
Θ = {C ∈ RR n×q, B ∈ RR p×q :‖((C - C0)T, (B - B0)T)T‖F ≤ ϕn} .

By Theorem 3. 1, there exists an event E1 in which
‖((C - C0)T, (B - B0)T)T‖F ≤ ϕn,

and P(EC
1 )≤2q(K+p)n-1 . Hence (C︿ or, B︿ or)∈Θ in E1 . For any C∈RR n×q, let C∗ =T-1(T∗(C)) . We show that

(C︿ or, Z︿ or) is a strictly local minimizer of the objective function (6) with probability approaching 1 through the
following two steps.

(Ⅰ) In the event E1, Qn(C∗, B)>Qn(C
︿ or, B︿ or) for any (CT, BT)T∈Θ and ((C∗)T, (B)T)T≠ ((C︿ or)T,

(B︿ or)T)T .
(Ⅱ) There is an event E2 such that P(EC

2 )≤2n-1 . In E1∩E2, there is a neighborhood of ((C︿ or)T, (B︿ or)T)T,
denoted by Θn such that Qn(C, B )≥Qn(C∗, B) for any ((C∗)T, (B)T)T∈Θ∩Θn for sufficiently large n.

Therefore, by the results in (Ⅰ) and (Ⅱ), we have Qn(C, B )≥Qn(C
︿ or, B︿ or) for any ((C)T, (B)T)T∈ Θ∩

Θn and ((C∗)T, (B)T)T≠ ((C︿ or)T, (Z︿ or)T)T in E1∩E2, so that ((C︿ or)T,B︿ or)T)T is a strict local minimizer of
Qn(C, B) (A4) over the event E1∩E2 with P(E1∩E2)≥1-2q(K+p+1)n-1 for sufficiently large n.

In the following we prove the result in (Ⅰ) . We first show Pψ
n(T∗(C))= Cn for any C∈Θ, where Cn is a

constant which does not depend on C. Let T∗(C)= α=(αT
1 ,…,αT

K)T . It suffices to show that ‖αk-αk′‖2>a λ for
all k and k′. Then by Condition 3. 1, ρ (‖αk -αk′‖2) is a constant, and as a result Pψ

n(T∗( C)) is a constant.
Since

‖αk - αk′‖2 ≥ ‖α0
k - α0

k′‖2 - sup
k

‖αk - α0
k‖2,

and
sup
k

‖αk - α0
k‖2

2 = sup
k

‖ | ψk |
-1∑

i∈ψk

ci - α0
k‖2

2 = sup
k

‖ | ψk |
-1∑

i∈ψk

(ci - c0i )‖2
2 =

sup
k

| ψk |
-2‖∑

i∈ψk

(ci - c0i )‖2
2 ≤ sup

k
| ψk |

-1∑
i∈ψk

‖(ci - c0i )‖2
2 ≤ sup

i
‖(ci - c0i )‖2

2 ≤ ϕ2
n (A5)

then for all k and k′.
‖αk - αk′‖2 ≥ ‖α0

k - α0
k′‖2 - sup

k
‖αk - α0

k‖2 ≥ bn - a ϕn > a λ,
where the last inequality follows from the assumption that bn>aλ≫ϕn . Therefore, we have Pψ

n( T∗(C))= Cn, and
hence Qψ

n( T∗(C), B)= Lψ
n(T∗(C), B)+Cn for all (CT, BT)T∈Θ. Since ((C︿ or)T, (B︿ or)T)T is the unique global

minimizer of Lψ
n(T∗(α), B), then Lψ

n(T∗(C), B)>Ln(α
︿ or, B︿ or) for all (T∗(C)T, BT)T≠ ((α︿ or)T, (B︿ or)T)T and

hence Qψ
n(T∗(C), B)>Qψ

n(α
︿ or, B︿ or) for all T∗(C)≠α︿ or . By (A4), we have Qψ

n(α
︿ or,B︿ or)= Qn(C

︿ or,B︿ or) and
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Qψ
n(T∗(C), B) = Qn(T

-1(T∗(C)), B) = Qn(C∗, B) .
Therefore, Qn( C∗, B)≤Qn(C

︿ or, B︿ or) for all C∗≠C︿ or, and the result in (i) is proved.
Next we prove the result in (Ⅱ) . For a positive sequence tn, let Θn ={ci: sup

i
‖ci-c

︿ or
i ‖2} . For (CT, BT)T∈Θ

∩Θn, by Taylor’s expansion, we have
Qn(C, B) - Qn(C∗, B) = Γ1 + Γ2,

where
Γ1 = - (Y - (In, X) ((Cm)T,(B)T)T)·(C - C∗),

Γ2 = ∑
n

i = 1

Pn(Cm)
cTi

·(ci - c∗i ) .

Here “·” denotes a dot product and Cm =αC+(1-α)C∗ for some constant α∈(0,1) . Moreover,
Γ2 = λ∑

j > i
ρ′(‖cmi - cmj ‖2)‖cmi - cmj ‖

-1
2 (cmi - cmj )T(ci - c∗i ) +

λ∑
j < i

ρ′(‖cmi - cmj ‖2)‖cmi - cmj ‖
-1
2 (cmi - cmj )T(ci - c∗i ) =

λ∑
j > i

ρ′(‖cmi - cmj ‖2)‖cmi - cmj ‖
-1
2 (cmi - cmj )T(ci - c∗i ) +

λ∑
i < j

ρ′(‖cmj - cmi ‖2)‖cmj - cmi ‖
-1
2 (cmj - cmi )T(cj - c∗j ) =

λ∑
j > i

ρ′(‖cmi - cmj ‖2)‖cmi - cmj ‖
-1
2 (cmi - cmj )T{(ci - c∗i ) - (cj - c∗j )} (A6)

　 　 When i,j∈ϕk, c∗
i =c∗

j , and cmi -cmj =α(ci-cj) . Thus,

Γ2 = λ∑
K

k = 1
∑

i,j∈ψk,i < j
ρ′(‖cmi - cmj ‖2)‖cmi - cmj ‖

-1
2 (cmi - cmj )T(ci - cj) +

λ∑
k < k′

∑
i∈ψk, j∈ψk′

ρ′(‖cmi - cmj ‖2)‖cmi - cmj ‖
-1
2 (cmi - cmj )T{(ci - c∗i ) - ( cj - c∗j )} .

Moreover,
sup

i
‖c∗i - c0i ‖2

2 = sup
k

‖αk - α0
k‖2

2 ≤ ϕ2
n (A7)

where the last inequality follows from (A5) . Since cmi is between ci and c∗
i ,

sup
i
‖cmi - c0i ‖2 = α sup

i
‖ci - c0i ‖2 + (1 - α) sup

i
‖c∗i - c0i ‖2 ≤ αϕn + (1 - α)ϕn = ϕn (A8)

Hence for k≠k′, i∈ψk, j′∈ψk′,
‖cmi - cmj ‖2 ≥ min

i∈ψk, j′∈ ψk′
‖c0i - c0j ‖2 - 2max

i
‖cmi - c0i ‖2 ≥ bn - 2 ϕn > aλ,

and thus ρ′(‖cmi -cmj ‖2)= 0. Therefore,

Γ2 = λ∑
K

k = 1
∑

i,j∈ψk,i < j
ρ′(‖cmi - cmj ‖2)‖cmi - cmj ‖

-1
2 (cmi - cmj )T(ci - cj) =

λ∑
K

k = 1
∑

i,j∈ψk,i < j
ρ′ (‖cmi - cmj ‖2)‖ci - cj‖2,

where the last step follows from cmi -cmj =α(ci-cj) . Furthermore, by the same reasoning as (A5), we have
sup
i

‖c∗i - c︿ or
i ‖2 = sup

k
‖αk - α︿ k

or‖2 ≤ sup
i

‖c - c︿ or
i ‖2 .

Then
sup
i

‖cmi - cmj ‖2 ≤2 sup
i
‖cmi - c∗i ‖2 ≤2 sup

i
‖ci - c∗i ‖2 ≤

2 (sup
i
‖ci - c︿ or

i ‖2 + ‖c∗i - c∗i ‖2) ≤ 4 sup
i

‖ci - c︿ or
i ‖2 ≤4 tn .

Hence, ρ′(‖cmi -cmj ‖2)≥ρ′(4 tn) by concavity of ρ(·) . As a result,

Γ2 ≥∑
K

k = 1
∑

i,j∈ψk, i < j
λ ρ′(4 tn)‖ci - cj‖F (A9)

Let
Q = (QT

1,…, QT
n)T = (Y - XB - Cm)T .

Then

Γ1 = - QT·(C - C∗) = ∑
K

k = 1
∑
i,j∈ψk

Qi
T·(ci - cj)
| ψk |

=
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- ∑
K

k = 1
∑
i,j∈ψk

Qi(ci - cj)T

2 | ψk |
- ∑

K

k = 1
∑
i,j∈ψk

Qi(ci - cj)T

2 | ψk |
=

- ∑
K

k = 1
∑
i,j∈ψk

(Qi - Qj) (ci - cj)T

2 | ψk |
=

- ∑
K

k = 1
∑

i,j∈ψk, i < j

(Qi - Qj) (ci - cj)T

| ψk |
(A10)

Moreover,
Qi = yi - xi B - cmi = Ei + xi(B0 - B) + (c0i - cmi ),

and then
sup
i

‖Qi‖2 ≤ sup
i

‖Ei + xi(B0 - B) + (c0i - cmi )‖2 .

By Condition 3. 3 that sup
i
‖Xi‖2≤C2 p , (A8) that sup

i
‖cmi -c0

i ‖2≤ϕn and ‖B0-B‖F≤ϕn, we have

sup
i

‖Qi‖2 ≤ ‖Ei‖2 + C2 pϕn + ϕn,
By Condition 3. 2

P(‖Ei‖2
2 > 2c-11 qlogn) ≤ P(∑

q

i = 1
e2ij ≥2c-11 qlogn) =

∑
q

i = 1
P(e2ij ≥2c-11 logn ) = ∑

q

i = 1
P( | eij | ≥ 2c-11 logn ) ≤ 2qn -2 .

　 　 Thus there is an event E2 such that P(E2
C)≤2qn-2, and over the event E2,

sup
i
‖Qi‖2 ≤ 2c-11 qlogn + C2 pϕn + ϕn,

Then

|
(Qi - Qj)(ci - cj)T

| ψk |
| ≤| ψmin |

-1 2 sup
i

Qi(ci - cj)T ≤| ψmin |
-1 2 sup

i
‖Qi‖2‖ci - cj‖2 ≤

2 | ψmin |
-1( 2c-11 qlogn + C2 pϕn + ϕn) ‖ci - cj‖2 .

　 　 Therefore, the above results together with (A9) and (A10) yield that

Qn(C, B) - Qn(C∗, B) ≥∑
K

k = 1
∑

i,j∈ψk, i < j
{λ ρ′(4 tn) - 2 | ψmin |

-1( 2c-11 qlogn + C2 pϕn + ϕn)}‖ci - cj‖2 .

Let tn =o(1), then ρ′(4 tn)→1. Since λ≫ϕn, p =o(n), and |ψmin |
-1 p = o(1), then λ≫|ψmin |

-1 qlogn , λ≫
|ψmin |

-1 pϕn and λ≫|ψmin |
-1 p ϕn . Therefore, Qn(C, B)-Qn(C∗, B)>0 for sufficiently large n, so that the result

in (Ⅱ) is proved.
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