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Abstract: A new type hybrid Hermite weighted essentially non-oscillatory (HWENO) schemes in the
implicit method of lines transpose (MOLT) framework is designed for solving one-dimensional linear
transport equations and further applied to the Vlasov-Poisson (VP) simulations via dimensional splitting.
Compared with the WENO-based MOLT method given in J. Comput. Phys. [2016, 327: 337-367], the
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schemes using the stencils narrower than those of the WENO schemes with the same order of accuracy.
The second is that the schemes can adapt between the linear scheme and the HWENO scheme
automatically. In summary, the hybrid HWENO scheme keeps the simplicity and robustness of the
simple WENO scheme, while it has higher efficiency with less numerical errors in smooth regions and
less computational costs as well. Benchmark examples are given to demonstrate the robustness and good
performance of the proposed scheme.
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1　 Introduction
In this paper, we develop efficient numerical solvers for
the Vlasov-Poisson (VP) system, which is considered a
fundamental model in plasma physics describing the
dynamics of charged particles due to the self-consistent
electric force. The VP system is given as follows:
ft + v· Δ

x f + E(x,t)· Δ

v f = 0, x × v ∈ Ωx ×Ωv

(1a)
E(x,t) = - Δ

xϕ(x,t), -Δxϕ(x,t) = - 1 + ρ(x,t)
(1b)

where f(x,v, t) describes the probability of finding a
particle with velocity v at position x at time t, E is the
electrostatic field, ϕ is the self-consistent electrostatic
potential, and ρ(x,t) = ∫

Ωv
f(x,v,t)dv is the electron

charge density and the 1 represents the uniformly
distributed infinitely massive ions in the background.

Besides the famous “curse of dimensionality”, the
main challenge of VP system is that the solution may
develop filamentation solution structures under the long-
range forces. Examples will be shown later.
Consequently, numerical scheme needs careful design

such that it can effectively capture filamentation
structures without producing spurious oscillations.

There exist a large amount of successful VP solvers
in the literature, such as Eulerian type approaches[1-4],
and the semi-Lagrangian approach[5-17], and the
Lagrangian methods, which including the particle-in-
cell ( PIC ) method[18-20] and Lagrangian particle
methods[21,22] . However, each method has its own
limitations. For example, Eulerian approaches are
suffering from the CFL time step restriction; general
boundary conditions are difficult to handle in a semi-
Lagrangian setting; and the Lagrangian methods are
known to suffer from low order sampling noise. Many
of these existing methods are in the method of line
(MOL) framework, meaning that the spatial variable is
first discretized, then the numerical solution is updated
in time by coupling a suitable time integrator.

Recently, an alternative approach to advance the
solution called the method of line transpose (MOLT) is
well designed to solve the VP system[23] . This method
is also known as the Rothe’s method or transversal
method of lines in the literature[24,25] . In this
framework, the discretization is first carried out for



temporal variable, resulting in a boundary value
problem (BVP) at the discrete time levels. Each BVP
can be inverted analytically in an integral formulation
based on a kernel function and then the numerical
solution is updated accordingly. A notable advantage of
such a scheme is that, even though it is implicit in
time, we do not need to explicitly solve a linear system,
while the BVP is inverted analytically in an integral
formulation. Moreover, this method is capable of
conveniently handling general boundary conditions. This
MOLT approach has been applied to solve the heat
equation, the Allen-Cahn equation[26], Maxwell’s
equations[27], transport equation and the VP system[23] .
Note that the MOLT framework is rarely applied to
general nonlinear problems, mainly because efficient
algorithms of inverting nonlinear BVPs are lacking. In
Ref. [ 23 ], the nonlinear multi-dimensional Vlasov
equation is first split into several lower-dimensional
linear transport equations, which have the analytical
BVP solver. Furthermore, in order to capture sharp
gradient of the solution of the transport equations and
distinctive filamentation solution structures of the VP
system effectively without producing spurious
oscillations, a robust weighted essential non-oscillatory
(WENO) methodology is incorporated when inverting
the BVP in the integral formulation. The key idea of
WENO methodology is a nonlinear combination of
numerical approximations on all candidate stencils.

In this paper, we consider to design a suitable
hybrid Hermite weighted essentially non-oscillatory
(HWENO) for the integral formulation. The main
difference of HWENO schemes from WENO schemes is
that both the function and its first-order derivative values
are evolved in time and used in the integration, not like
the WENO schemes in which only the function values
are evolved and used in the integration. This allows the
HWENO schemes to obtain the same order of accuracy
as the WENO schemes with narrower stencils. Hence,
less ghost points are needed near the boundaries. Note
that the cost of the computation of smoothness indicators
and nonlinear weights in HWENO methodology is very
high. Hence, we propose the hybrid HWENO scheme
in this paper, which can use the optimal linear weights
and avoid the computation of the nonlinear weights in
the smooth region. Therefore, the hybrid WENO
scheme keeps the robustness of the simple WENO
scheme, while it is very easy to implement in practice
and has higher efficiency.

The rest of the paper is organized as follows. In
Section 2, we give the review of the MOLT approach for
one-dimensional linear transport equations. Details of
the hybrid HWENO method are given in Section 3. In
Section 4, the method is extended to two-dimensional
transport equations via dimensional splitting. Several

benchmark tests are presented in Section 5 to verify the
performance of the proposed scheme, including rigid
body rotation, as well as Landau damping, two-stream
instabilities, and bump-on-tail for VP simulations. We
conclude the paper in Section 6.

2　 MOLT framework
In this section, we give a short review of the MOLT

framework for the following one-dimensional advection
equation,

ut + cux = 0, x ∈ [a,b],
u(x,0) = u0(x) } (2)

where c is constant denoting the wave propagation
speed. The boundary condition is assumed to be
periodic, or Dirichlet boundary condition,

u(a,t) = g1(t), for c > 0,
or u(b,t) = g2(t), for c < 0} (3)

　 　 In the MOLT framework, the time variable is
discretized at first while leaving the spatial variable
continuous. We take the first order backward Euler
(BE) method as an example, and obtain

un+1 - un

Δ t
+ cun+1

x = 0 (4)

i. e. ,
un+1
x + sgn(c)·αun+1 = sgn(c)·αun (5)

where Δ t denotes the time step and α= 1
| cΔ t |

. For the

boundary value problem (BVP) (5), we can obtain an
explicit representation for solution un+1 at time level tn+1 .

un+1(x) = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
I L[un,α](x): = IL[un,α](x) + An+1e-α(x-a),
　 　 　 if c > 0,
I R[un,α](x): = IR[un,α](x) + Bn+1e-α(b-x),
　 　 　 if c < 0

ì

î

í

ï
ï

ï
ï

(6)
where

IL[un,α](x) = α∫
a

x
e -α(x-y)un(y)dy (7a)

IR[un,α](x) = α∫
x

b
e -α(y-x)un(y)dy (7b)

An+1 and Bn+1 are constants and should be determined by
the boundary conditions. The superscript L ( or R)
indicates that the characteristics traverse from the left to
the right (or from the right to the left) .

To obtain the second order accuracy in time, we
can use the Crank-Nicolson (CN) time discretization on
920 and obtain the semi-discrete scheme

un+1 - un

Δ t
+ 1

2
c(un+1

x + un
x) = 0 (8)

Based on the similar idea, solution of the BVP (8) can
be given analytically,

un+1(x) = 2I L[un,α](x) - un(x), if c > 0,
2I R[un,α](x) - un(x), if c < 0{

(9)
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with α = 2
| cΔ t |

. Again, An+1 and Bn+1 can be obtained

through the boundary conditions.
For both semi-discrete schemes (6) and (9), we

need to further discretize the spatial variable. Suppose
the domain [ a, b] is discretized by M + 1 uniformly
distributed grid points

a = x0 < x1 < … < xM-1 < xM = b,

with mesh size Δx = b-a
M

. We use un
i to denote the

numerical solution at location xi at time level tn . Next,
we will focus on how to evaluate the convolution
integral IL[un,α](x) or IR[un,α] in on each grid point
xi, denoted by ILi or IRi , based on the point values {ui} .
Note that

ILi = ILi-1e
-αΔx + JLi , i = 1,…,M, IL0 = 0 (10a)

IRi = IRi+1e
-αΔx + JRi , i = 0,…,M - 1, IRM = 0

(10b)
where

JLi = α∫xi
xi-1

un(y)e -α(xi-y)dy,

JRi = α∫xi+1
xi

un(y)e -α(y-xi)dy

ü

þ

ý

ï
ï

ï
ï

(11)

　 　 Therefore, once we have computed JLi or JRi for all
i, ILi or IRi can be obtained via the recursive relation
(10) .

After computing the integration ILi or IRi , we further
need to find the global coefficient A or B in (6) or (9)
to enforce the boundary condition. For a Dirichlet
boundary condition, the global coefficient can be
obtained by

An+1 = g1(tn
+1), or Bn+1 = g2(tn

+1) (12)
when coupling with the BE scheme (6), or

An+1 = 1
2
( g1(tn) + g1(tn

+1)),

or Bn+1 = 1
2
(g2(tn) + g2(tn

+1))

ü

þ

ý

ï
ï

ï
ï

(13)

when coupling with the CN scheme ( 9 ) . For the
periodic boundary condition, the coefficients can be
determined by using the mass conservation property of
the solutions, which leads to

An+1 = ∑
M-1

i = 0
un
i - ∑

M-1

i = 0
ILi( ) /∑

M-1

i = 0
e -iαΔx (14)

or

Bn+1 = ∑
M

i = 1
un
i - ∑

M

i = 1
IRi( ) /∑

M

i = 1
e -(M-i)αΔx (15)

3　 HWENO methodology
The HWENO has been widely studied to solve the
hyperbolic conservation laws in MOL framework,
including the finite difference method[28-30], the finite
volume method and the nonlinear limiter for the

discontinuous Galerkin (DG) method[31-34] . Here, we
will use the idea to approximate the integration.

In the Hermite framework, both the function and
its spatial derivative are needed to be evolved in time.
Denote the spatical derivative of function u ( x, t) as
v(x,t) . Then from (2) and its spatial derivative, we
have the governing equation:

Ut + cUx = 0 (16)
where

U(x,t) = u(x,t)
v(x,t)( ) .

　 　 The boundary conditions can be obtained corre-
spondingly, for instance, Dirichlet boundary condition

U(a,t) =
g1(t)

- 1
c
g′1(t)( ) , for c > 0,

or U(b,t) =
g2(t)

- 1
c
g′2(t)( ) , for c < 0

ü

þ

ý

ï
ï
ïï

ï
ï
ï

(17)

　 　 Note that each component of system (16) satisfies
the 1D advection equation (2) . Hence, we can apply
the MOLT framework introduced in Section 2 directly on
u and v respectively. For instance, when c > 0 and
coupling the BE scheme, we have

un+1(xi) = IL[un,α](xi) + An+1
u e -α(xi-a) (18a)

vn+1(xi) = IL[vn,α](xi) + An+1
v e -α(xi-a) (18b)

That is, we will compute the integral IL for u and v,
respectively. After that, coefficients An+1

u and An+1
v can

be obtained with corresponding boundary conditions.
Instead of evaluating the increment JLi or JRi for u

and v based on themselves respectively, the main
difference of the HWENO algorithm is to calculate the
increment using u and v at the same time. In particular,
when the solution is smooth enough, we can use the
linear Hermite interpolation method to involve J∗

i ,
where ∗ can be L or R. In the following, we will show
how to get JLi in detail. The process to obtain JRi is
mirror-symmetric to that for JLi with respect to the point
xi .

Here, taking the stencil S = {ui-1, ui, vi-1, vi} as
an example, there is a unique Hermite interpolation
polynomial p(x) of degree at most 3, such that

p(xj) = uj, p′(xj) = vj, j = i - 1,i.
Then, we can obtain that the approximations

JLu,i ≈ α∫xi
xi-1

p(y) e -α(xi-y)dy = ∑
1

j = 0
cjui -1+j + ∑

1

j = 0
cj vi -1+j

(19)
JLv,i ≈ α∫xi

xi-1
p′(y) e -α(xi-y)dy (20)

where the coefficients cj and cj depend on α and Δx, but
not on u or v.
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c0 = e -γ(12 + 6γ - γ3) + 6 ( - 2 + γ)
γ3 ,

c1 = - e -γ(12 + 6 γ) + (12 - 6 γ + γ3)
γ3 ,

c0 = e -γ(6 + 4 γ + γ2) + ( - 6 + 2 γ)
γ3 Δx,

c1 = e -γ(6 + 2 γ) - (6 - 4 γ + γ2)
γ3 Δx,

with γ=αΔ x. The schemes (19) and (20) will give us
third order accuracy in space. It is worth noting that we
can perform the integration by parts ( IBP ) to the
polynomial p(x), and obtain that

α∫xi
xi-1

p′(y) e -α(xi-y)dy = 　 　 　 　 　 　 　 　 　 　

p(xi) - p(xi -1)e
-αΔx - α2∫xi

xi-1
p(y) e -α(xi-y)dy ,

which means
JLv,i ≈ ui - ui -1e

-αΔx - αJLu,i (21)
Hence, we can obtain JLv,i from JLu,i and {ui} via (21)
rather than computing the integral (20), which can
reduce computational cost. This is also true for JRv,i and
JRu,i,

JRv,i ≈- ui + ui +1e
-αΔx + αJRu,i (22)

　 　 Both linear interpolation method (19) and the IBP
algorithm (21) to compute increment JLi work well for
smooth problems. However, they may generate spurious
oscillations when the solution has discontinuities. In
order to control such undesired oscillations, we will
incorporate a hybrid high order HWENO methodology
to evaluate JLi .

The main procedures of the hybrid HWENO
scheme are given as follows. On each cell, we will
identify the troubled cell. However, different troubled-
cell indicators may have different effects for the hybrid
HWENO scheme. Here, we follow the idea in Ref.
[30,35] that looking at the locations of all extreme
points of the big interpolation polynomial. Then
calculate the integrations by HWENO approximation in
troubled cell and linear approximation in other regions.
A series of unequal-sized hierarchical stencils are used
in designing high order HWENO schemes. This kind of
unequal-sized hierarchical stencils WENO scheme is
proposed in Ref. [ 36 ] for solving hyperbolic
conservation laws with the good properties such as the
linear weights can also be any positive numbers if their
sum equals one.

In the following, a third order scheme to obtain JLi
is shown as an example. Here, we take the big stencil
as S={ui-1, ui, vi-1, vi} .

Algorithm 3. 1 The hybrid HWENO method for the
1D system (16) .

Step 1 The discontinuity indicator is applied to

identify troubled cell, namely the locations of
discontinuity of the numerical solution. Here, the
discontinuity indicator relies on the locations of all
extreme points of the Hermite interpolation polynomial
p(x) on the big spatial stencil S. Since the integral JLv,i
depends on p′(x), we will look at the extreme points of
p′(x) as well.

If all of the extreme points of p(x) and p′(x) are
outside the interval Ii = [ xi-1, xi ], which means the
polynomials are monotone in this cell, then we will use
linear schemes (19) and (21) .

However, if the interval Ii is indexed as a troubled
cell, then, we approximate the integrations JLu,i and JLv,i
based on the HWENO approximation.

Step 2 We first consider the HWENO
approximation of JLu,i based on the big stencil is S. Two
candidate stencils are chosen as S1 ={ui-1, ui} and S2 =
S. The procedure of the algorithm is as below:

Step 2. 1 On each candidate stencil Sr, construct
(Hermite ) interpolation polynomials with degree at
most 2r-1, denoted by pr(x) . The integration can be
approximated by

JL,(r)
u,i = α∫xi

xi-1
eα(xi-y) pr(y) dy (23)

In particular,

JL,(1)
u,i = 1 - e -γ(1 + γ)

γ
ui -1 + - 1 + γ + e -γ

γ
ui,

and JL,(2)
u,i is exactly the same as (19) .
Step 2. 2 Obtain equivalent expressions for these

( Hermite ) interpolation polynomials of different
degrees, denoted by qr(x) .

q1(x) = p1(x), q2(x) = 1
θ2
p2(x) - θ1

θ2
q1(x)

(24)
with θ2 >0, θ1 ≥0 and θ1 +θ2 = 1. Moreover, we can
define a linear weight dr =θr, r=1, 2, such that

p2(x) = d1 q1(x) + d2 q2(x) .
Hence, we can see that all linear weights are positive and
d1+d2 = 1. Note that the choice of θr is not unique.

Here, we take them as θ1 =
1

101
and θ2 =

100
101

. This means

that
q2(x) = 1. 01p2(x) - 0. 01q1(x) .

　 　 Moreover, we can obtain the corresponding integral
JL,(r)u,i = α∫xi

xi-1
eα(xi-y) qr(y) dy.

In particular,

JL,(1)u,i = JL,(1)
u,i , JL,(2)u,i = 1. 01JL,(2)

u,i - 0. 01 JL,(1)u,i .
　 　 Step 2. 3 Compute the nonlinear weights based on
the linear weights and the smoothness indicators βr,
which are given as
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βr = ∑
2( l -1)

l = 1
∫xi
xi-1

Δ x2l -1 dlpr(x)
dxl( )

2

dx.

　 　 The explicit formulations of βr are given as
following,

β1 = (ui -1 - ui)2,

β2 = 781
20

( 2ui -1 - 2ui + Δxvi -1 + Δxvi)2 +

13
12

Δx2(vi -1 - vi)2 + (ui -1 - ui)2 .

　 　 And we can obtain the nonlinear weights as

ωr =
αr

α1 + α2
, r = 1,2 (25)

where

αr = dr 1 + τ
 + βr

( ) , τ = β1 - β2( ) 2 (26)

　 　 Here, we take  = 10-10 to avoid the denominator
becoming zero.

Step 2. 4 Finally, the integral can be obtained as
JLu,i = ω1 JL,(1)u,i + ω2 JL,(2)u,i (27)

　 　 Step 3 Construct the HWENO approximation of JLv,i .

Here, the big stencil S and S2 are taken as the same as

those for JLu,i, that is S2 = S = {ui-1, ui, vi-1, vi} . But

we change the small stencil S1 to S1 ={vi-1, vi} .
Step 3. 1 On each small stencils, construct the

approximation, denoted by JL,(r)
v,i . In particular, on S2,

JL,(r)
v,i are obtained with the help of integration by parts

to reduce the computational cost,

JL,(2)
v,i = ui - e -αΔx ui -1 - αJL,(2)

u,i .

　 　 While, on S1, we approximate JL,(1)
v,i based the

polynomial interpolating the derivative function directly,

p1(x) = vi -1
x - xi

xi -1 - xi
+ vi

x - xi -1
xi - xi -1

,

and

JL,(1)
v,i = α∫xi

xi-1
e -α(y-xi) p1(y)dy = 　 　 　 　 　 　

1 - e -γ(1 + γ)
γ

vi -1 + - 1 + γ + e -γ

γ
vi,

with γ=αΔ x.
Step 3. 2 Obtain equivalent expressions for these

integrals with different accuracy, denoted by JL,(r)v,i

JL,(1)v,i = JL,(1)
v,i , JL,(2)v,i = 1. 01JL,(2)

v,i - 0. 01 JL,(1)v,i

(28)
　 　 Step 3. 3 Compute the nonlinear weights based on
the linear weights and the smoothness indicators.

ωr =
αr

α1 + α2

, r = 1,2 (29)

where

αr = dr
1 + τ

 + βr
( ) , τ = β1 - β2( ) 2

and the linear weights are given as

d1 = 1
101

, d2 = 100
101

.

　 　 The smoothness indicators βr are computed as

β1 = ∫xi
xi-1

Δ x
dp1(x)

dx( )
2

dx = Δx2(vi -1 - vi)2,

β2 = ∑
3

l = 2
∫xi
xi-1

Δ x2l -1 dlp2(x)
dxl( )

2

dx =

39 2ui -1 - 2ui + Δxvi -1 + Δxvi( ) 2 + Δx2 vi -1 - vi( ) 2

ü

þ

ý

ï
ï
ï

ï
ï
ï

(30)
　 　 Note that p2 ( x) is the interpolation polynomial
obtained in Step 2.

Step 3. 4 The new approximation is given by
JLv,i = ω1JL,(1)v,i + ω2 JL,(2)v,i .

　 　 Remark 3. 1 We want to remark that the third order
WENO integration of JLi depends on the big stencil S =
{xi-2,…, xi+1}, leading to the necessity of ghost points
near the boundaries. Therefore, special treatment, e. g.
the WENO extrapolation, is required for complex
boundary conditions, see Ref. [23] . But this is not
needed for the HWENO method due to the narrow
stencil, which is one main advantage of HWENO
scheme.

Remark 3. 2 The exact solution u of (16) satisfies
the boundary-preserving principle, meaning that if the
initial condition m ≤ u ( x, 0 ) ≤ M, then the exact
solution m≤u(x,t)≤M for any time t>0. To maintain
the numerical schemes also satisfy such a property on
the discrete level, we will employ the boundary-
preserving limiter introduced in Ref. [12] . It can work
for both periodic and Dirichlet boundary conditions.
Details would not be given here.

4　 Two-dimensional implementation
In this section, we extend the algorithm to two-
dimensional problems in the following form:

ut + f(y,t) ux + g(x,t) uy = 0,
(x,y) ∈ Ω = [ax,bx] × [ay,by]} (31)

　 　 For the Hermite method, we give not only the
solution u but also its derivatives in x- and in y-
directions. We have the following equations for ux and
uy,

ux

t
+ f(y,t)

ux

x
+ (g(x,t)uy)

x
= 0,

uy

t
+ (f(y,t) ux)

y
+ g(x,t)

uy

y
= 0

ü

þ

ý

ï
ï

ï
ï

(32)

　 　 In this paper, the system (31) and (32)are solved
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based on the Strang splitting method[8], which gives us
the second order accurate in time. Firstly, we decouple
the 2D system (31 ) and (32 ) into a sequence of
independent 1D systems

u
t

+ f(y,t) u
x

= 0, (MOLT
x)

ux

t
+ f(y,t)

ux

x
= 0, (MOLT

x)

uy

t
+ (f(y,t) ux)

y
= 0, (FDx)

ü

þ

ý

ï
ï
ïï

ï
ï
ï

(33)

and
u
t

+ g(x,t) u
y

= 0, (MOLT
y)

uy

t
+ g(x,t)

uy

y
= 0, (MOLT

y)

ux

t
+ (g(x,t)uy)

x
= 0. (FDy)

ü

þ

ý

ï
ï
ïï

ï
ï
ï

(34)

　 　 Suppose Q1 and Q2 be the approximate solvers for
each system, that is Un+1 = Q1 ( Δt ) Un is an
approximation of (33), and Un+1 = Q2 (Δt) Un is an
approximation of (34), with U=(u, ux, uy)T . Then,
second order semi-discrete scheme for one step evolution
from Un to Un+1 can be achieved in by employing Q1 and
Q2 consecutively,

Un+1 = Q1(
1
2
Δt)·Q2(Δt)·Q1(

1
2
Δt)Un (35)

　 　 Note that, the first two equations in system (33)
and (34) can be solved by the 1D MOLT-HWENO
method given in Section 3. However, the third
equations need different treatment. Here, Below, we
focus our discussion on the solver Q1 for (33) . The
solver Q2 and would be similar.

Let (xi,yj) be the node of a 2D orthogonal grid
with uniform mesh size in each direction

ax = x0 < x1 < … < xMx
= bx,

ay = y0 < y1 < … < yMy
= by,

with Δx = bx-ax

Mx
and Δy = by-ay

My
. The numerical

approximation to the solution u(xi,yj), ux(xi,vj) and
uy(xi,yj) at the time tn are denoted by un

i,j, (ux) n
i,j and

(ux) n
i,j, respectively.
Algorithm 4. 1 The solver Q1(Δt) for the system

(33) .
Step 1 Apply the 1D hybrid HWENO method on

(MOLT
x ) with BE time discretization or CN time

discretization, obtaining un+1
i,j and (ux) n+1

i,j .
Step 2 Apply the same time discretization on

(FDx) . For instance, when using the BE method, we
have that

(uy) n+1
i,j - (uy) n

i,j

Δ t
+ 
y

f(y,tn+1)un+1
x( ) i,j = 0.

　 　 Or we can obtain the following semi-discrete
scheme when employing the CN time discretization,

(uy) n+1
i,j - (uy) n

i,j

Δ t
+ 　 　 　 　 　 　 　 　 　 　

1
2


y

( f(y,tn+1)un+1
x + f(y,tn)un

x) i,j = 0.

　 　 Note that ( ux ) n+1
i,j is already known via Step 1.

Hence, we can discretize the spatial derivative by the
central scheme

y

f(y,t∗)u∗
x( ) i,j = 　 　 　 　 　 　 　 　 　 　 　 　 　 　

1
2Δy

f(yj +1,t∗)(ux)∗
i,j +1 - f(yj -1,t∗)(ux)∗

i,j -1( ) ,

where ∗ can be n or n+1.
Note that the 1D1V VP system can be split into

two systems as well
u
t

+ f(y,t) u
x

= 0,

ux

t
+ f(y,t)

ux

x
= 0,

uy

t
+ (f(y,t) ux)

y
= 0

ü

þ

ý

ï
ï
ïï

ï
ï
ï

(36a)

and
u
t

+ g(x,t) u
y

= 0,

uy

t
+ g(x,t)

uy

y
= 0,

ux

t
+ (g(x,t)uy)

x
= 0

ü

þ

ý

ï
ï
ïï

ï
ï
ï

(36b)

Similarly, the VP system can be approximated by the
Strang splitting method. And the electrostatic field
E(x,t) is obtained by solving Poisson’s equation when
it is needed.

5　 Numerical results
In this section, we present the numerical results with the
schemes described in the previous sections. Both
backward Euler ( BE ) scheme and Crank-Nicolson
(CN) scheme are used in time discretization, coupling
with the 4-point hybrid HWENO integration. For 2D
problems the time steps are chosen as

Δt = CFL / max( | cx | / Δ x, | cy | / Δy) (37)
with | cx | =max

y
| f(y,t) | and | cy | =max

x
| g(x,t) | . We

want to remark that the fully discrete schemes are
unconditionally stable. Hence, CFL can be arbitrary
positive number.
5. 1　 Basic 2D test
Here, we consider the rigid body rotation problem.

ut + yux - xuy = 0, (x,y) ∈ Ω = [ - 1
2
π, 1

2
π]2

(38)
with two different initial conditions:
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① continuous initial condition:
u(x,y,0) = 0. 5B( x2 + 8y2 ) + 0. 5B( 8x2 + y2 )

(39)
where

B(r) = cos(r)6, if r ≤ 1
2
π,

0, otherwise;
{

Table 1. Under periodic boundary condition, errors and orders of accuracy for solving (38) with continuous initial condition (39) at T=2π.
Mx×My L1 errors order L∞ error order

BE

CFL=0. 5



CFL=1



CFL=2



20×20 1. 272E-02 - 1. 613E-01 -

40×40 7. 792E-03 0. 706 8. 850E-02 0. 866

80×80 4. 839E-03 0. 687 5. 823E-02 0. 604

160×160 2. 830E-03 0. 774 3. 478E-02 0. 743

320×320 1. 573E-03 0. 847 1. 938E-02 0. 844

20×20 1. 514E-02 - 1. 993E-01 -


40×40 1. 084E-02 0. 482 1. 144E-01 0. 801

80×80 7. 563E-03 0. 519 8. 746E-02 0. 387

160×160 4. 794E-03 0. 658 5. 796E-02 0. 594

320×320 2. 825E-03 0. 763 3. 473E-02 0. 739

20×20 1. 956E-02 - 2. 782E-01 -


40×40 1. 423E-02 0. 459 1. 363E-01 1. 029

80×80 1. 075E-02 0. 405 1. 157E-01 0. 236

160×160 7. 530E-03 0. 514 8. 739E-02 0. 405

320×320 4. 790E-03 0. 652 5. 793E-02 0. 593

CN

CFL=0. 5



CFL=1



CFL=2



20×20 6. 555E-03 - 1. 088E-01 -

40×40 1. 092E-03 2. 586 2. 399E-02 2. 181

80×80 1. 811E-04 2. 592 3. 265E-03 2. 877

160×160 2. 801E-05 2. 692 4. 791E-04 2. 769

320×320 4. 913E-06 2. 512 5. 853E-05 3. 033

20×20 6. 831E-03 - 1. 063E-01 -


40×40 1. 283E-03 2. 412 2. 303E-02 2. 206

80×80 2. 819E-04 2. 187 3. 131E-03 2. 879

160×160 6. 233E-05 2. 177 6. 173E-04 2. 342

320×320 1. 458E-05 2. 096 1. 505E-04 2. 036

20×20 8. 588E-03 - 1. 027E-01 -


40×40 2. 572E-03 1. 739 3. 250E-02 1. 660

80×80 7. 561E-04 1. 766 9. 582E-03 1. 762

160×160 2. 118E-04 1. 836 2. 401E-03 1. 996

320×320 5. 504E-05 1. 944 5. 933E-04 2. 017
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Table 2. Under Dirichlet boundary condition, errors and orders of accuracy for solving (38) with continuous initial condition at T=2π.
Mx×My L1 errors order L∞ error order

BE

CFL=0. 5

CFL=1



CFL=2



20×20 1. 083E-02 - 1. 177E-01 -

40×40 7. 500E-03 0. 530 8. 763E-02 0. 426

80×80 4. 792E-03 0. 646 5. 777E-02 0. 601

160×160 2. 824E-03 0. 763 3. 472E-02 0. 735

320×320 1. 572E-03 0. 845 1. 937E-02 0. 842

20×20 1. 338E-02 - 1. 707E-01 -


40×40 1. 062E-02 0. 333 1. 147E-01 0. 573

80×80 7. 530E-03 0. 496 8. 739E-02 0. 393

160×160 4. 789E-03 0. 653 5. 793E-02 0. 593

320×320 2. 825E-03 0. 762 3. 472E-02 0. 739

20×20 1. 692E-02 - 2. 629E-01 -


40×40 1. 384E-02 0. 290 1. 372E-01 0. 938

80×80 1. 068E-02 0. 374 1. 158E-01 0. 245

160×160 7. 519E-03 0. 506 8. 738E-02 0. 406

320×320 4. 789E-03 0. 651 5. 793E-02 0. 593

CN

CFL=0. 5



CFL=1



CFL=2



20×20 6. 550E-03 - 1. 027E-01 -

40×40 1. 085E-03 2. 593 2. 399E-02 2. 098

80×80 1. 799E-04 2. 593 3. 265E-03 2. 877

160×160 2. 794E-05 2. 687 4. 791E-04 2. 769

320×320 2. 794E-05 2. 687 4. 791E-04 2. 769

20×20 6. 549E-03 - 1. 008E-01 -


40×40 1. 286E-03 2. 348 2. 303E-02 2. 130

80×80 2. 840E-04 2. 180 3. 131E-03 2. 879

160×160 6. 263E-05 2. 181 6. 173E-04 2. 342

320×320 1. 461E-05 2. 100 1. 505E-04 2. 036

20×20 8. 494E-03 - 1. 019E-01 -


40×40 2. 551E-03 1. 736 3. 239E-02 1. 653

80×80 7. 823E-04 1. 705 9. 656E-03 1. 746

160×160 2. 154E-04 1. 861 2. 402E-03 2. 007

320×320 5. 536E-05 1. 960 5. 933E-04 2. 017



　 　 ② discontinuous initial condition:
u(x,y,0) = 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　

1, (x,y) ∈ [ - 3
8
π, 3

8
π] × [ - 1

8
π, 1

8
π] ∪

　 　 [ - 1
8
π, 1

8
π] × [ - 3

8
π, 3

8
π];

0, otherwise.

ì

î

í

ï
ïï

ï
ïï

　 　 We simulate both problems with periodic boundary
condition and zero Dirichlet boundary condition.

In Tables 1 and 2, we summarize the convergence
study of the continuous problem at the final time T=2π,
where the exact solution is as the same as the initial
condition. The norm of the error is computed according
to
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Figure 1. Under periodic boundary condition, numerical solutions for solving (38) with discontinuous initial
condition at T=2π. 160×160 grid points.

Figure 2. Under Dirichlet boundary condition, numerical solutions for solving (38) with discontinuous initial
condition at T=2π. 160×160 grid points.
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L1 = 1
Mx × My

∑
Mx

i = 0
∑
My

j = 0
| un

i,j - ue(xi,yj, t) | ,

L∞ = max
0≤i≤Mx, 0≤j≤My

| un
i,j - ue(xi,yj, t) | ,

where ue(xi,yj, t) denotes the exact solution. We test
both the BE scheme and the CN scheme with CFL =
0. 5, 1, 2. We can see that all schemes are stable and
converge to the designed order of accuracy. Moreover,
when using CN scheme with CFL=2, numerical results
show higher order than 2. This because spatial errors
play a leading role in errors due to the small time step,
and the 4-point HWENO scheme is third order
accuracy.

For the discontinuous problems, we test our
scheme with CFL =0. 5 and 2. The HWENO
methodology removes unphysical oscillations as
expected (Figures 1 and 2) . And the CN schemes give
sharper interface than the BE schemes.
5. 2　 The VP systems
Here, we will consider the Vlasov-Poisson equation (1)
with the following initial condition:

① Strong Landau damping:

f(x,v,0) = 1
2π

(1 + αcos(kx))exp( - v2
2
),

x ∈ [0,L], v ∈ [ - Vc,Vc],
where α=0. 5, k=0. 5, L=4π and Vc =2π.

② Two-stream instability I:

f(x,v,0) = 2
7 2π

(1 + 5v2)(1 + α((cos(2kx) +

cos(3kx)) / 1. 2 + cos(kx)))exp( - v2
2
),

x ∈ [0,L], v ∈ [ - Vc,Vc],
where α=0. 01, k=0. 5, L=4π and Vc =2π.

③ Two-stream instability II:

f(x,v,0) = 1
2π

(1 + αcos(kx))v2exp( - v2
2
),

x ∈ [0,L], v ∈ [ - Vc,Vc],
where α=0. 05, k=0. 5, L=4π and Vc =2π.

④ Bump-on-tail instability:

f(x,v,0) = 1
2π

(1 + αcos(kx)) (0. 9exp( - 0. 5v2) +

0. 2exp( - 4(v - 4. 5)2)),
x ∈ [ - L,L], v ∈ [ - Vc,Vc],

where α=0. 04, k=0. 3, L=10
3
π and Vc =10.

In our numerical tests, the periodic boundary
condition is imposed in x-direction and the zero
boundary condition is imposed in v-direction. A fast
Fourier transform (FFT) is used to solve the 1D Poisson
equation. We only test the VP systems with the CN
scheme and CFL = 1. Numerical results are plotted in
Figures 3 -6. It is observed that solution will develop
filamentation solution structures after a long time
evolution, and the scheme is able to effectively capture
those structures without producing spurious oscillations.

Figure 3. Strong Landau damping. 128×256 grid points.
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Figure 4. Two-stream instability I. 128×256 grid points.

Figure 5. Two-stream instability II. 128×256 grid points.
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Figure 6. Bump-on-tail instability. 128×256 grid points.

6　 Conclusions
In this paper, we proposed a new type hybrid Hermite
weighted essentially non-oscillatory ( HWENO )
schemes coupled with the implicit method of lines
transpose (MOLT ) framework for the Vlasov-Poisson
(VP) system for plasma simulations. The main idea of
the hybrid HWENO scheme is that if all extreme points
of the big interpolation polynomial and its derivative are
located outside of the big stencil, then we will use linear
approximation straightforwardly to increase the
efficiency of the scheme, otherwise use the HWENO
procedure to avoid the oscillations nearby
discontinuities. The algorithm was extended to multi-
dimensional problems and the VP system via
dimensional splitting. Comparing them with the WENO-

based MOLT schemes[23], the new HWENO-based
MOLT schemes are more efficient and compact, hence,
less ghost points are needed near the boundary. In this
paper, we consider the first order backward Euler
scheme and the second order Crank-Nicolson scheme,
coupling with a 4-points HWENO integration, which are
unconditionally stable. A collection of numerical tests
demonstrated good performance of the proposed
scheme. Higher order numerical scheme will be
considered in the future.
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用于 Vlasov 模拟的一类基于混合 HWENO 的转秩直线法

王恺鹏,蒋琰∗,张梦萍
中国科学技术大学数学科学学院,安徽合肥 230026

∗通讯作者. E-mail: jiangy@ ustc. edu. cn

摘要: 在隐式转秩直线法(MOLT) 框架下,针对一维线性输运方程设计了一类新型的混合 Hermite 加权本质无

震荡(HWENO)格式,并进一步用于求解 Vlasov-Poisson (VP) 方程组. 相较于之前的基于加权本质无震荡

(WENO)的 MOLT 方法 [J. Comput. Phys. , 2016,327:337-367],该新方法主要有两个优点:第一,在满足相

同精度的情况下,HWENO 格式比 WENO 格式使用更窄的模版;第二,该方法可以自动调节选取线性格式或

HWENO 格式. 因此,混合 HWENO 方法既保持了 WENO 方法的简便性和鲁棒性,同时,又能在光滑区域减小

计算误差,降低计算时间,提高计算效率. 我们将设计的算法用于模拟一系列基准算例,以展示其鲁棒性和高效

性.
关键词: 转秩直线法;隐式时间离散;HWEMO 方法;混合方法;Vlasov-Poisson 方程组
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