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1　 Introduction
Given a hyperplane arrangement A = {H0,…,Hd} in
CCPP n , let M(A) = CCPPn \ ∪Hi be the complement of A
and bn(A) = bn(M) be the n-th Betti number of M.
Dimca and Papadima classified the hyperplane
arrangements in the cases bn(A) = 1 or 2 [1] . The
purpose of this paper is to extend their results to the
cases bn(A) = 3,4 or 5 using the deletion-restriction
method.

We use [x0,…,xn] to denote the coordinates in
CCPP n . For each hyperplane Hi, let li denote its reduced
defining equation.

Theorem 1. 1　 Let A be a hyperplane arrangement
in CCPP n and bn(A) be its n-th Betti number of its
complement.

① bn(A) = 3 if and only if it is one of the
following cases, up to a change of coordinates and
reordering of the hyperplanes:

(ⅰ) li(x) = xi for 0 ≤ i ≤ n, ln+1(x) = x0 + x1 +
x2 .

(ⅱ) li(x) = xi for 0 ≤ i ≤ n, ln+1(x) = x0 + x1,
ln+2(x) = a0x0 + x1 with a0 ≠0,1.

② bn(A) = 4 if and only if it is one of the
following cases, up to a change of coordinates and
reordering of the hyperplanes:

(ⅰ) li(x) = xi for 0 ≤ i ≤ n, ln+1(x) = x0 + x1 +
x2 + x3 .

(ⅱ) li(x) = xi for 0 ≤ i ≤ n, ln+1(x) = x0 + x1,
ln+2(x) = x0 + x2 .

(ⅲ) li(x) = xi for 0 ≤ i ≤ n, ln+1(x) = x0 + x1,
ln+2(x) = x2 + x3 .

(ⅳ) li(x) = xi for 0 ≤ i ≤ n, ln+1(x) = x0 + x1,
ln+2(x) = a0x0 + x1 and ln+3(x)= b0x0 + x1 with a0,b0 ≠
0,1 and a0 ≠ b0 .

③ bn(A) = 5 if and only if it is one of the
following cases, up to a change of coordinates and
reordering of the hyperplanes:

(ⅰ) li(x) = xi for 0 ≤ i ≤ n, ln+1(x) = x0 + x1 +
x2 + x3 + x4 .

(ⅱ) li(x) = xi for 0 ≤ i ≤ n, ln+1(x) = x0 + x1 +
x2, ln+2(x) = a0x0 + x1 + x2 with a0 ≠0,1.

(ⅲ) li(x) = xi for 0 ≤ i ≤ n,
ln+1(x) = x0 + x1, ln+2(x) = a0x0 + x1,
ln+3(x) = b0x0 + x1, ln+4(x) = c0x0 + x1 .

Here a0,b0,c0 ≠ 0,1 and a0,b0 and c0 are all different
numbers.

2　 Preliminaries
We introduce some definitions and notations as in Ref.
[2] . For A a non-empty hyperplane arrangement in
CCPP n, we fix H0 ∈A as the hyperplane at infinity. Then
we can define an affine arrangement (A,H0) a, where
the total space of (A,H0) a is CC n = CCPP n \H0 and the
hyperplanes of (A,H0) a are { Hi ∩(CCPP n \H0) | Hi ≠
H0} . Note that the hyperplane arrangements A and
(A,H0) a have the same complement space. It is more
convenient to use the affine arrangement (A,H0) a to
compute the Betti number bn(A) . In the rest of the
paper, we always assume the infinity hyperplane H0 is
defined by x0 = 0 and abuse our language to identify the
hyperplane arrangementsA with (A,H0)a . When we say
two hyperplanes are parallel to each another, we mean



that they are parallel in the affine space CCn = CCPP n \H0 .
For any hyperplane in A, say H1, we can use it to

define two hyperplane arangementsA′: = A \{H1} and
A″: = {H∩ H1 ≠Ø | H≠H1} in H1,which are called
deleted arrangement and restricted arrangement
respectively. Then (A,A′,A″) is called a triple of
arrangements with respect to the distinguished
hyperplane H1 . Note that such triples (A,A′,A″) are
very useful in proofs by induction, both arrangements
A′ and A″ have less hyperplanes than A. This method
is so called the deletion-restriction method[3] .

Dimca and Papadima classified hyperplane
arrangements A when bn(A) = 1 or 2. We recall the
related results here.

Lemma 2. 1[1, Corollory 4] 　 With the above notations
and assumptions, we have the following:

① bn(A) = bn(A′) + bn-1(A″) .
② bn(A) > 0 if and only if A is essential.
③ If bn(A) > 0, then d ≤ n + bn(A) - 1.
Lemma 2. 2[2, Proposition 1. 1] 　 If A is an arrangement

in CC2, then b2(A) = ∑
k≥2

nk(k - 1), where nk denotes

the number of k-fold intersection points.
Theorem 2. 1[1, Corollory 4] 　 Let A be a hyperplane

arrangement in CCPP n .
① bn(A) = 1 if and only if d = n and up to a

linear coordinate change we have li(x) = xi for all 0 ≤
i ≤ n.

② bn(A) = 2 if and only if d = n + 1 and up to a
linear coordinate change and reordering of the
hyperplanes we have li(x) = xi for 0 ≤ i ≤ n and
ln+1(x) = x0 + x1 .

3　 Proof of Theorem 1. 1
By Lemma 2. 1③, we know that d ≤ n + bn(A) - 1.
On the other hand, bn(A) > 0 implies rank (A) = n,
so d≥ n. To classify the hyperplane arrangements when
bn(A) = 3,4 or 5, we analysis all the hyperplane
arrangements with n ≤ d ≤ n + 4.
3. 1　 Two formulas of top degree Betti number
In this subsection, we compute the top degree Betti
number of hyperplane arrangement complement for d =
n,n + 1,n + 2.

① If d = n and rank (A) = n, then bn(A) = 1.
Since bn(A) = 1 implies d≤ n, the converse statement
is also true. Hence up to a coordinate change, there is
only one case when bn(A) = 1:

d = n and li(x) = xi for all 0 ≤ i ≤ n.
　 　 ② When d = n + 1, after a change of coordinate
we may assume li(x) = xi for 0 ≤ i ≤ n and
ln+1(x) = a0x0 + … + anxn .

Theorem 3. 1　 Let A be a hyperplane arrangement
as above, then bn(A) = #{ai | ai ≠0} .

Proof　 After a coordinate change, we may write
ln+1(x) = a0x0 +… + amxm with ai ≠0 for 0≤ i≤m and
ai = 0 for i > m. It is easy to see M(A) = M(Am) ×
(CC∗) n-m, where

Am = { li(x) = xi for 0 ≤ i ≤ m,
lm+1(x) = a0x0 + … + amxm} .

　 　 Hence bn(A) = bm(Am) by Künneth formula, so
we only need to compute bm(Am) . Using hyperplane
{xm = 0} to produce a triple of arrangement, we get
bm(Am) = 1 + bm-1(Am-1), where

Am-1 = { li(x) = xi for 0 ≤ i ≤ m - 1,
lm(x) = a0x0 + … + am-1xm-1} .

　 　 Clearly Am-1 has the same type of Am, so we can
continue the induction. Note that b2(A2) = 3 by
Lemma 2. 2, hence bm(Am) = m + 1.

③ For a hyperplane arrangement with d = n + 2
and bn(A) > 0, up to a change of coordinates we
assume

A = {li(x) = xi for 0 ≤ i ≤ n,
ln+1(x) = a0x0 + … + anxn,
ln+2(x) = b0x0 + … + bnxn} .

　 　 It is easy to see after another coordinate change,

we may write a0…an

b0…bn( ) as

　 r1 　 　 　 r2 　 　 …　 　 rv 　 　 　 s　 　 　 t　 　 　 w
1…1 1 …1 … 1 …1 1…1 0 …0 0 …0
k1… k1 k2… k2 … kv… kv 0…0 1 …1 0 …0( ) ,

where all ki are different nonzero numbers and r1 ≥ r2 ≥
… ≥ rv . Set u = r1 + r2 + … + rv .

Theorem 3. 2 　 For the above hyperplane
arrangement, we have

bn(A) = ∑
1≤i < j≤v

rirj + u + st + tu + su.

　 　 By convention, if v = 0 or 1, then ∑
1≤i < j≤v

rirj is 0.

　 　 Proof 　 We first introduce some notations. For m
≤ n, set

Am = {li(x) = xi for 1 ≤ i ≤ m,
lm+1(x) = a0 + a1x1 + … + amxm,
lm+2(x) = b0 + b1x1 + … + bmxm},

where a0,…,an,b0,…,bn are exactly the fixed elements
in the above matrix.

For hyperplane arrangement Am, we always use
hyperplane {xm = 0} to produce triple of arrangement.
For Am′, if bm ≠ 0, then we can find a coordinate
change Bm such that x0,…,xm-1 being fixed and lm+2(x)
becoming xm . If am ≠ 0, let Am denote the similar
coordinate change for ln+1(x) .

Since M(A) = M(Au+s+t-1) × (CC∗)w, by
Künneth formula we get bn(A) = bu+s+t-1(Au+s+t-1) .
Hence we can eliminate the last w coordinates.

For A′u+s+t-1, using coordinate change Bu+s+t-1 does
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not change the equation of lu+s+t(x) . Note that lu+s+t(x)
has s + u coefficients being non-zero. Then by Theorem
3. 1 we get bu+s+t-1(A′u+s+t-1) = s + u. Since A″u+s+t-1 =
Au+s+t-2, by induction we have

bn(A) = (s + u)t + bs+u-1(As+u-1) .
　 　 Using a similar argument for s we get

bn(A) = st + tu + su + bu-1(Au-1) .
　 　 For A′u-1, after using Au-1 the new equation of
lu+1(x) is

(k1 - kv) + (k1 - kv)x1 + … +
(kv-1 - kv)xr1+…+rv-1-1

+ kvxu-1 .
By Theorem 3.1 we know bu-1(A′u-1) = r1 + … + rv-1 +
1. We can repeat this argument and use induction to
compute bu-2(A″u-1) . Note that when we eliminate the
last r2 + … + rv coordinates, {1 + x1 + … + xr1-1 = 0}
and {k1 + k1x1 + … + k1xr1-1 = 0} give the same
hyperplane. By Theorem 3.1, the corresponding (r1-1)-
th Betti number is r1 . Hence we have

bu-1(Au-1) = (r1 + … + rv-1 + 1)rv + … +
(r1 + 1)r2 + r1 =

∑
1≤i < j≤v

rirj + ∑
v

i = 1
ri = ∑

1≤i < j≤v
rirj + u.

　 　 This completes our proof.
3. 2　 Classification of hyperplane arrangements when

bn(A)≤5
In this subsection, we use Theorems 3. 1 and 3. 2 to
prove Theorem 1. 1. In the rest of paper, we always
assume li(x) = xi for 0 ≤ i ≤ n.

When d = n or n + 1, the conclusion is clear.
When d = n + 2 we use Theorem 3. 2 to find out all

hyperplane arrangements with bn(A) ≤ 5. We use the
same notations as in Theorem 3. 2. Note that u ≥ v. If
v ≥3, then bn(A) ≥ 6. So we only need to analysis
hyperplane arrangements with v ≤2.

① The case v = 2.
If r1 ≥ 2, then there is only one case satisfying

bn(A) ≤ 5:
(ⅰ) bn(A)= 5, ln+1(x)= x0 + x1 + x2 and ln+2(x)

= a0x0 + x1 + x2, a0 ≠0,1.
If r1 = r2 = 1 and s + t ≥ 2, then bn(A) ≥ 7.

Hence there are only two cases under this condition:
(ⅰ′) bn(A) = 5, ln+1(x) = x0 + x1 + x2 and

ln+2(x) = a0x0 + x1,a0 ≠0,1,which is equivalent to the
case (ⅰ) after a coordinate change.

(ⅱ) bn(A) = 3, ln+1(x) = x0 + x1 and ln+2(x) =
a0x0 + x1,a0 ≠0,1.

② The case v = 1.
If u≥3, then bn(A) ≥6. If u = 2 and s + t≥2,

then we also have bn(A) ≥ 6.
Since hyperplanes ln+1(x) and ln+2(x) are different,

under the conditions v = 1 and u = 2 there is only one
case:

(ⅲ) bn(A) = 4, ln+1(x) = x0 + x1 + x2 and
ln+2(x) = x0 + x1 .

Since hyperplanes ln+1(x) and ln+2(x) are not
coordinate hyperplanes, then we have s ≥1 and t ≥1 if
u = 1. If s ≥2 or t ≥ 2, then bn(A) ≥ 6. Hence we
must have s = 1 = t :

(ⅲ′) bn(A)= 4, ln+1(x)= x0 + x1 and ln+2(x)=
x0 + x2 . It easy to see after a change of coordinate this is
equivalent to (ⅲ) .

③ The case v = 0.
When v = 0 we must have s = 2 = t :
(ⅳ) bn(A)= 4, ln+1(x)= x0 + x1 and ln+2(x)=

x2 + x3 .
Note that in Case (ⅲ) there exists a point which

has exactly n hyperplanes passing through it, but in this
case there is no such points. Hence Cases (ⅲ) and
(ⅳ) are not projective equivalent.

We now analyze hyperplane arrangements with d =
n + 3. To have bn(A) ≤5, the deleted arrangement A′
with respect to ln+3(x) is a hyperplane arrangement with
n + 2 hyperplanes. Note that bn(A′) < 5 by Lemma
2. 1①. Hence there are only three possible cases for A′
by the above discussion. For Case ( iii) or ( iv), we
can use the hyperplane ln+3(x) to produce a triple of
arrangement. The coordinate hyperplanes restricting to
ln+3(x) contributes at least n - 1 hyperplanes. If this
number is n, then by Theorem 3. 1 we have bn(A)≥6.
If this number is n - 1, then ln+3(x) must have the form
axi + xj . But in this case ln+1(x) and ln+2(x) contributes
at least another hyperplane for the restricted
arrangement, so we always have bn(A) ≥ 6. For Case
( ii), if ln+3(x) is not parallel to {x1 = 0}, then up to a
coordinate change we can reduce it to the above
discussion. Hence the only possibility is Case (ii) with
ln+3(x) being parallel to {x1 = 0} :

(ⅴ) bn(A)= 4 and d = n + 3, ln+1(x)= x0 + x1,
ln+2(x) = a0x0 + x1, ln+3(x) = b0x0 + x1,a0,b0 ≠0,1,
a0 ≠ b0 .

For the hyperplane arrangements with d = n + 4 and
bn(A) ≤ 5, using a similar argument as above
discussion we get that there is only one possible case:

(ⅵ) bn(A) = 5 and d = n + 4,
ln+1(x) = x0 + x1, ln+2(x) = a0x0 + x1,
ln+3(x) = b0x0 + x1, ln+4(x) = c0x0 + x1 .

Here a0,b0,c0 ≠ 0,1 and a0,b0 and c0 are all different
numbers.

Putting all these results together, Theorem 1. 1
follows.
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一种预测高频价格的端到端双目标多任务方法
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摘要: 高频价格变动预测是预测价格在短时间内(比如 1 min 内)的变化方向(上涨、不变或下跌) . 用历史的高

频交易数据去预测价格变化是一个比较困难的任务,这是因为二者之间的关系是高噪声、非线性和复杂的. 为
提高高频价格预测准确率,提出了一个端到端的双目标多任务方法. 该方法引进了一个辅助目标(高频价格变

化率),它和主目标(高频价格变化方向)是高度相关的并且能够提高主目标的预测准确率. 此外,每一个任务

都有一个基于循环神经网络和卷积神经网络的特征提取模块,它可以学习出历史交易数据和两个目标之间的

高噪声、非线性和复杂的时空相依关系. 为了缓解多任务方法的潜在的负迁移问题,每个任务的任务间共享部

分和任务特有部分被显式地分开. 而且,通过一种梯度平衡方法利用两个目标之间的高相关性过滤掉从不一致

性中学到的噪声的同时保留从一致性中学到的相依规律,从而提高高频价格变化方向预测准确率. 在真实数据

集上的实验结果表明:所提方法能够利用高度相关的辅助目标帮助主任务的特征提取模块去学习出更有泛化

能力的时空相依规律,最终提高高频价格变化方向预测准确率. 此外,辅助目标(高频价格变化率)不仅能够提

高特征提取模块的总体效果,而且也提高特征提取模块的不同部分的效果.
关键词: 多任务学习;细粒度辅助目标;特征提取;共享方法;负迁移;高频价格动态预测
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具有较小的最高阶 Betti 数的超平面配置补空间
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摘要: 使用删除限制方法对补空间最高阶 Betti 数较小的超平面配置进行了分类.
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