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Abstract: The simple linear errors-in-variables (EV) model with ¢-mixing random errors was mainly
studied. By using the central limit theorem and the Marcinkiewicz-type strong law of large numbers for
the ¢-mixing sequence, the asymptotic normality of the least square (LS) estimators for the unknown
parameters were established under some mild conditions. In addition, based on the strong convergence
for weighted sums of ¢-mixing random variables, the strong consistency of the LS estimators were
obtained. Finally, the simulation study was provided to verify the validity of the theoretical results.
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1 Introduction

Consider the following simple linear errors-in-variables
(EV) model.

n=0+Bx, +e,&=x+0,1<i<n (1)
where 6 and B are unknown parameters; (&,,6,),
(&,,6,),... are random errors with mean zero; x,,
X,,... are unobservable; &, m,,i=1,2,3,... are
observable. From the formula (1), we have

m=0+B+X, X, =g -B5,1<i<n(2)

We consider formally (2) as a usual regression
model of 7, on &, and get the least square (LS)
estimators of 6 and 3.

= z(fi—é?n) (771'—77”) N
i=1
Bn = n ’ 011 = 77” ~ PaSa

(3)
where £, = 1 ifi, and 7,,5,,x, can be similarly
n i-

defined.

The linear EV model is also called the
measurement error model, that is, both independent
variables and dependent variables have measurement
errors. Since the model was proposed in the 20th
century, it has been studied and applied extensively.

Based on the finite sample distribution theory, Mittag'"’
studied the estimating parameters; Fuller'’” made a
detailed study of the linear EV model with measurement
errors. Under the independent errors, Liu and Chen'’’
discussed the consistency of LS estimators in the linear
EV model, and proved the necessary and sufficient

condition for B, to be a strong and weak consistent

estimator of 8: limn™'S, = , where S, = ¥ (x,—x,)”;
n—o i=1
Miao et al. *)and Miao and Yang"*'obtained the central

limit theorem and the law of iterated logarithm for the
LS estimators 5,, and ,gn in the model (1); Miao et
al. ' studied the consistency and asymptotic normality

of En and gn under weaker conditions, which improve
the corresponding results of Refs. [3]and [4]; under
the dependent errors, Fan et al. ”'established the strong
consistency, mean square consistency and the
asymptotic normality of 5,1 and ,BA,, with stationary o-
mixing errors; Yang'®' investigated the asymptotic
normality of the LS estimators of unknown parameters
under the assumption that the errors are a sequence of
stationary positively associated (PA) random variables;
Miao et al. ' considered the asymptotic normality and
the strong consistency of the LS estimators of 6 and 8
under negatively associated (NA) random errors; Wang
et al.'" and Wang et al.'"! studied the complete
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consistency, strong and weak consistency in the model
(1) with negatively superadditive dependent (NSD) ,
respectively; under weakly negative dependent (WND)
random errors, Wang et al.'") obtained the strong
consistency and complete consistency of the LS
estimators, which generalize the corresponding ones for
the NA random variables; by using the complete
convergence for weighted sums of a class of random
variables, Shen'" gave the complete consistency of the

LS estimators 5,, and ,(?n with martingale difference
(MD) errors, and also studied the mean consistency,
which generalize the corresponding ones for independent
random variables and some dependent random variables.

In this paper, we investigate a much wider
dependent error structure: the ¢-mixing random errors,
and study the asymptotic normality and the strong
consistency of the LS estimators (3) for the unknown
parameters 6 and B in a simple linear EV model (1).
Now, let us recall the concept of the ¢-mixing random
variables.

Let {X,,n=1} be a sequence of random variables
defined on a fixed probability space ({),F,P). Define
F'=o0(X,,n<i<m).

Definition 1 A sequence {X,,n=1} of random
variables is said to be a ¢-mixing sequence, if

¢(n) = sup sup | P(B|A) -P(B) | 0,
AeFk, REF;@I P(A) >0
n— .

The concept of the ¢-mixing random variables was
first introduced by Dobrushin'"*' in the Markov chain,
and has subsequently been studied by many scholars.
For example, Badu et al. "' obtained the uniform and
non-uniform Berry-Esseen bounds for standardized sums
of non-stationary @-mixing random variables; Utev''®
studied the central limit theorem for go—mixing arrays of
random variables; Kiesel'””' obtained the almost sure
convergence of stationary ¢-mixing sequences of random
variables by summability methods; Hu and Wang'"®
investigated the large deviations of sums of the ¢-mixing
sequence, and obtained the optimal upper bounds; Yang
et al.'"" derived the Berry-Esseen bound of sample
quantiles for the ¢-mixing random variables under some
weak conditions; Shen et al. ' studied the complete
convergence for non-stationary ¢-mixing random
variables, and got the Baum-Katz-type theorem and
Hsu-Robbins-type theorem for ¢-mixing random
variables. For more details about ¢-mixing sequences,
one can refer to Refs. [21], [22]and so on. By using
the central limit theorem and the Marcinkiewicz-type
strong law of large numbers for the ¢-mixing sequence,
the paper will establish the asymptotic normality of the

LS estimators gn and ,én in the model (1) under the
assumptions that the random errors are the identically

distributed ¢-mixing sequence of random variables.
Moreover, the strong consistency will be investigated
based on the strong convergence for weighted sums of
@-mixing random variables.

Throughout the paper, assume that {g,,i=1} and
{6,,i=1}, which are identically distributed sequences
of ¢-mixing random variables with mixing coefficients
¢ (i), are independent of each other. And assume that

=E5,=0 and 2@'/2(1') <oo. All limits are taken as

the sample size n—oo , unless it is specially mentioned.

1 Main results

In this section, we give the asymptotic normality and

the strong consistency of the LS estimators ,§n and gn for
unknown parameters 8 and 6.

Z (, _';n)z’

i=1

Theorem 1 In the model (1), letS, =

and assume that the following conditions are satisfied :

lim——=0 (4)
n—o /
. ‘xi - 9;,, ‘
limr, = 0, where r, = = max —— —— (5)
n—oe <i<n S

n

and there exists a constant ¢>0 such that:
Visi<jsan (6)

Furthermore, let X,=¢,-85,, i=1, Esgi<o , E&'<
o , and assume that

2

‘xi—xj\Sc\i—j\,

- EXf+2iEX1Xi >0 (7)
and -
Z(,—l)\Exx\_ 0( ) (8)

where [, =r, max{r n/f} Then,

P, - N,

Theorem 2 Under the conditions of Theorem 1,
assume that

S
o ® (9)
n(x,)’
and
D [Cov(X,,X) | < oo (10)
j=2
Then,

g(@ —0) -5 N(0.1).

Remark 1 Under certain mixing coefficients and
moment conditions, Theorems 1 and 2 are also true for
a-mixing and p-mixing random errors. For example, if
{(&,,8,),i=1} are identically distributed sequences of
the o«-mixing random variables with « (n) =
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, E‘81‘2+p < o

b

1 +
0(n2(2+p)/(”1)10g’n 1> 3(])2—f)
E|8,|*<w for some p>1, Theorems 1 and 2 will be
held by Theorem 2.2 of Ref. [23]and Corollary 2.5 of
Ref. [24]. Note that the moment conditions here are
stronger than Theorems 1 and 2 in this paper.

Theorem 3 Under the model (1), assume that
Ele |"<w E|8, |"<o for some p>1/8,0<6<1/2. Let
>0. If

- T 1-7
max 5oy 2 gy

Then,

—0

(11)
/5,

- (,én -B)—0a.s..
n
Theorem 4 Under the assumptions of Theorem 3,
if
ey, = 01) (12)

/S

for some v e (0,1/2) , then,
n"(6, —0) —0a.s..

2 Simulation

In the subsection, we will carry out simulations to study
the numerical performance of the asymptotic normality
results and the strong consistency results.

The data are generated from model (1). For the

ii.d.
fixed positive integer m, let e, ~ N(0,0;) , where o =
1I/(m+1). Let ;=X e,, and 6,= X e,, for each i=1,
k=0 £=0

then {g,,i=1} and {6,,i=1} are sequences of the m-
dependent random variables, thus they are also ¢-
mixing random variables with &, ~ N(0,1) and 8, ~
N(0,1). Set B=2,0=4,m=4 and x,=(~1)" — for all
i
I<i<n We can calculate o =./5. By taking the
sample size n as n =300, 600, 900, 1200 respectively,
JS, .
—(B,—B) and@(ﬁn—ﬁ) for 1000 times
o o

and present the Q-Q plots of them in Figures 1-4. It is
easily seen that the Q-Q plots show a good fit of them to
normal distribution.

we compute

03 1.5 4
+ QM
o 027 & 1t s
o H [}
E —_—
& 0lr £ 05¢
=) »
g ot E O0r
= =
5 01} B 05
= 2
=] =
S 02} S -t
& S 5
o e
031 ++
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Figure 1. Q-Q plots of (a) ~="(8,-8) and (b) YX(8,-6) with n=300.
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Figure 2. Q-Q plots of (a)

o

(B,-B) and (b) ;”(é‘n—o) with 1= 600.
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Figure 3. Q-Q plots of (a) —"(B,-8) and (b) (6,-0) with n=900.
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In addition, we also compute

Figure 4. Q-Q plots of (a)

Sn

nT

(B,-B) and (b) “L(6,-6) with n=1200.
g g

(En -B) and n” (5”—0) for 1000 times and depict the boxplots of them in

Figures 5 and 6. Here taking 7=0.3 and »=0.2. We can see clearly that they approach to the zero line and the ranges
of them decrease as n increases.
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3 The proof of main results
By simple calculation, we have
N z(ai_gn)gi_z(x —x")(a _ﬁs)_BZ(Si_gn)z
B, -p= " (13)
2 ('ft - En) :
i=1
and Proof The proof of the lemma can be referred to
n - R x B8 S + 2 Lemma 2 of Wu'*'
0,-60= B-B)x, +(B-B)S, -B5, +¢&, :

(14)

In order to prove the main results of this paper, we
need the following lemmas, which are the central limit
theorem, the Marcinkiewicz-type strong law of large
numbers for ¢-mixing sequence and the strong
convergence for the weighted sums of the ¢-mixing
random variables, respectively.

Lemma 1'”'  Let {X,,n=>=1} be a centered
stochastic sequence of ¢-mixing random variables and
la,,1<i<n,n=1} be a triangular array of real
numbers such that

supZa < o, max\ab\—>0 n— .

n 1<i<n

Assume that { X,, ,n=11}is a uniformly integrable family,

and Var( 2 a,X,) = 1. Then:
i=1

Z a, X 2, N(0,1).

Remark 2 Accordmg to Ref. [23], the result

still holds if we replace Var( 2 am.Xi) = lin Lemma 1

i=1
by Var( 2 a, L) — 1.

Lemma 2121 Let {X,,n=1} be a sequence of ¢-
mixing random variables which is stochastically
dominated by a random variable X with E|X|” <o for
some 0<p<2 and Y, ¢"?(n) < . Assume that EX, =0

n=1

for each k=1if 1 <p<2 Then,
ZX —0 a.s.

l/p

Lemma 3 Let %X n=1} be a sequence of ¢-

no

mixing random variables with Z ¢"?(n) < o, EX,=0

n=1

and for some 0<6<1,¢>1/8, suPE\X |“<o0. Assume

that {a,,1<i<n,n=1} is an array of real numbers,
and satisfies
la,|= 0(n®) forl <i<n,

Z ‘ a/lb t =

where = mm(q 2). Then,

O(n™) for some a > 0,

i

za X. —0a.s..
i=1

The proof of Theorem 1
Firstly, by Markov’ s inequality and condition
(4), we can get that

P(}Z (6 -8,)° > e) <

Snz=1
Lo L p(Y 6 -5)%) =
1.1 N2 52
, EE(;@ nd,’) <

Loy e
L'LE(S?*)O,
>
Hence,
1 i o 2 P
— ) (6, -6,)"—0 (15)
\/Sni=l
By

n
i=1

‘ 2 (6, -8, (g, - &,) ‘s
i=1

X6 -0+ X -6)7)  (16)
i=1 i=1
and the proof of (15), we have that
1 < — ., P
(‘91' _gn) 0’
Thus,
LS5 -6)e o0 (17)
/\/Ilzl 13 n 12

Secondly , note that

Y€)= Xln o -(x,+8)] -
Z(x -x,)° +22(x —xn)(ﬁi—gn)+
Z(si—an)z.

For any y>0, v&je_ have that
‘ 2 (‘fz -
i=1
\22 (x,-x,) (8, -8)+ Y (5 -8)°|<
i=1
236

% (v, —x,) > +=

=1

—8)7+ 2 (8,-8)" =
i=1
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Y5 + Y2 (5 -5,)" (18) 2(5 -5,)° )

2 Y =1 Y ’
Thereby, S, 4 + 2y

which implies by (15) that:.
. _l/y)s §Z(§ §)Z—>1 (19)
i 5 - )2 From (13), we have that
Ply ,y+2. &5 ™ 27/):
2 y S,

(5. -8 ) e +

JS, (B, -

1 1
) o s A o5,

n

S -x) (e -ps) - P LY 5 -5,

i=1 g / i=1
n

o

Combined with (15),
sufficient to prove

(17) and (19), it is

= B5) > N(O,1).

Let X,=¢,-B5,,a, ,=——, then,

n

Y (-5 (e, ﬁ&))

e
E(Se) -

(EX2 + 22 2 a,a, EXX;) =
i=1j =i+l
n n+l-j
(EX2 +2) Zja,” @y - 1EX|X/-) =

Jj=2 1=

n n+l-j

7<EX2 + 22 Zla”l(an e a”l)EXX +
j=2 i=1

n n+l-j

D 2( COCEX X)) =

j=2 i=

—2<Exf + ZZEX]Xj +
(o j=2
n on+l-j

22 Zanl(an i+j-1

j=2 i=

22 2 (a,)°EX,X)).

j=2i=n+2-j
Next, we prove;

n n+l-j

2 Zanx(an i+j-1 an,)EXX —0

j=2 i=

a:,i )EXI)(j -

(20)

and

2 i (a:,i)2EX1Xj —0

j=2 i=n+2-j
For (20), by conditions (6) and (8), we can
obtain that

(21)

Ly -¢g)°

Sni=l
n n+l-j
‘ 2 zanl(an i+j-1
j=2 i=
n n+|—] x. . - x.
\a,:‘,f\M\Ex]xj\s
j=2 i=1 /Sn
n n+l-j
> 3 e [ pr <
I 2 l S”
| x

i_xn c .
> G- IEXX|=
j=2

/\/71\1\11 x/‘5’7"

n

For (21), by condition (8), we can get that

i i (an*,i)z ‘EX1X_,' <

j=2i=n+2-j

max(a”,) Z(]—l) \EXX |=

Isisn

riZ(j— 1) |EX, X, |—0.
j=2

Hence, Var( i anini) H%(Exl + Zi EXIXJ) =L
i=1 g j=2

Therefore, the theorem is proved by using Lemma 1.
The proof of Theorem 2
According to (14), we have that

g —gy= g
ag ag
e 4) +£< By ()

7(‘xn
s,
Note by condition (9) that
\/E ij = 1 = 1 _>0
/S, S,

vy n SII
Jn

n(x,)’
From Lemma 2, it is followed by

1
x,
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It is observed that

i=1 n ;-
1 l 1 1 v
N -ps)= —-—3X
Uﬁ;(el B3;) - nZ
and
Var(l = ” X,) = s LVaI‘(iX) =
o Jni=i a n i=1
n-1 n
Lo Lome 23 Y Exx) =
g n i=1j=i+l ’
n-1 n-k
L. 1(nEX +2) ZEXXA )=
g k=1 i=

n-1

(nEX +2Z (n - k) EX,X,,,) =

2

n—1 n-1

1
;(EXf+ZZEX1XM 22 EXXM)z

—(EXZ +2ZEXX —22 Cov(Xl,X) +

;Z Cov(X,,X,) ).

By Kronecker’ s Lemma and condition (10), it is
easy to obtain that.

n

z LCOV(XI ,X;) —0.

j=2 n

It is followed by conditions (7) and (10) that:.

1 1 n
—— > X | >
Var(a_ f; L) 1,

which is implied in Lemma 1 that

Jn e, —Bgn)LN(O,l).
g

Finally, the desired result follows from the result of
Theorem 1 and (22).
The proof of Theorem 3

(I) If 2<p=<4, by taking q=% e (1,2] in Lemma

3 and (11), we can get:

1-7
2(52 ES’) + X —ES* -0 a.s. (23)
s /5,
Similar to the proof of (23),
! Y (s, -¢,)> >0as..
Sn i=1

we can obtain

Hence,

2(5 -8,) e, —0a.s. (24)

]’L i=

by (16).
According to (11) and Lemma 3 (taking g =p>
2), we can obtain;

Z(x -x,) (&, =B6,) —0as. (25)
n\/TL

From (18), (23) and (11), we have that
5 2 Z (& -¢)

Y L2t Y Iy s _s5y LY
5 y Sn;(l ) e

which implies in the arbitrariness of y that;
SLE (& -&) > 1as..
ni=1
f

n

(I) If p>4, with the similar proofs as the case 2<
p=<4, the desired result can be obtained easily. This
completes the proof of the theorem.

The proof of Theorem 4

Applying Lemma 3 (taking g =p>2),
difficult to show that

n(e, —p8,) = n"" 2 (e, =B5,) =0 a.s..
i=1

Furthermore , from condition (12), Theorem 3 and
Lemma 3 (taking g=p>2), we have

nT o /Sn
A
n T
n

n

it is not

n(B-B,) (x, +5,) =

T+y-1 I e
n ZSi-E(ﬁ—B,,)—»Oa.s..
JS. = n’

Therefore, the desired result can be obtained from
(14).

n
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