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1　 Introduction
Consider the following simple linear errors-in-variables
(EV) model:

ηi = θ + βxi + εi, ξi = xi + δi, 1 ≤ i ≤ n (1)
where θ and β are unknown parameters; ε1,δ1( ) ,
ε2,δ2( ) ,. . . are random errors with mean zero; x1,

x2,. . . are unobservable; ξi, ηi, i = 1, 2, 3,. . . are
observable. From the formula (1), we have

ηi = θ + βξi + Xi, Xi = εi - βδi, 1 ≤ i ≤ n (2)
　 　 We consider formally (2) as a usual regression
model of ηi on ξi, and get the least square ( LS)
estimators of θ and β:

β︿ n =
∑

n

i = 1
ξi - ξn( ) ηi - ηn( )

∑
n

i = 1
ξi - ξn( ) 2

, θ︿ n = ηn - β︿ nξn

(3)

where ξn = 1
n

∑
n

i=1
ξi, and ηn, δn, xn can be similarly

defined.
The linear EV model is also called the

measurement error model, that is, both independent
variables and dependent variables have measurement
errors. Since the model was proposed in the 20th
century, it has been studied and applied extensively.

Based on the finite sample distribution theory, Mittag[1]

studied the estimating parameters; Fuller[2] made a
detailed study of the linear EV model with measurement
errors. Under the independent errors, Liu and Chen[3]

discussed the consistency of LS estimators in the linear
EV model, and proved the necessary and sufficient
condition for β︿ n to be a strong and weak consistent

estimator of β: lim
n→∞

n-1Sn =∞, where Sn =∑
n

i=1
xi-xn( ) 2;

Miao et al. [4] and Miao and Yang[5]obtained the central
limit theorem and the law of iterated logarithm for the
LS estimators θ︿ n and β︿ n in the model (1); Miao et
al. [6] studied the consistency and asymptotic normality
of β︿ n and θ︿ n under weaker conditions, which improve
the corresponding results of Refs. [3] and [4]; under
the dependent errors, Fan et al. [7] established the strong
consistency, mean square consistency and the
asymptotic normality of θ︿ n and β︿ n with stationary α-
mixing errors; Yang[8] investigated the asymptotic
normality of the LS estimators of unknown parameters
under the assumption that the errors are a sequence of
stationary positively associated (PA) random variables;
Miao et al. [9] considered the asymptotic normality and
the strong consistency of the LS estimators of θ and β
under negatively associated (NA) random errors; Wang
et al. [10] and Wang et al. [11] studied the complete



consistency, strong and weak consistency in the model
(1) with negatively superadditive dependent (NSD),
respectively; under weakly negative dependent (WND)
random errors, Wang et al. [12] obtained the strong
consistency and complete consistency of the LS
estimators, which generalize the corresponding ones for
the NA random variables; by using the complete
convergence for weighted sums of a class of random
variables, Shen[13]gave the complete consistency of the
LS estimators θ︿ n and β︿ n with martingale difference
(MD) errors, and also studied the mean consistency,
which generalize the corresponding ones for independent
random variables and some dependent random variables.

In this paper, we investigate a much wider
dependent error structure: the φ-mixing random errors,
and study the asymptotic normality and the strong
consistency of the LS estimators (3) for the unknown
parameters θ and β in a simple linear EV model (1) .
Now, let us recall the concept of the φ-mixing random
variables.

Let Xn,n≥1{ } be a sequence of random variables
defined on a fixed probability space Ω,F,P( ) . Define
Fm

n =σ Xi,n≤i≤m( ) .
Definition 1 　 A sequence Xn,n≥1{ } of random

variables is said to be a φ-mixing sequence, if
φ n( ) = sup

k≥1
sup

A∈Fk
1,B∈F∞k+n,P A( ) > 0

P B A( ) - P B( ) ↓0,

n → ∞ .
　 　 The concept of the φ-mixing random variables was
first introduced by Dobrushin[14] in the Markov chain,
and has subsequently been studied by many scholars.
For example, Badu et al. [15] obtained the uniform and
non-uniform Berry-Esseen bounds for standardized sums
of non-stationary φ-mixing random variables; Utev[16]

studied the central limit theorem for φ-mixing arrays of
random variables; Kiesel[17] obtained the almost sure
convergence of stationary φ-mixing sequences of random
variables by summability methods; Hu and Wang[18]

investigated the large deviations of sums of the φ-mixing
sequence, and obtained the optimal upper bounds; Yang
et al. [19] derived the Berry-Esseen bound of sample
quantiles for the φ-mixing random variables under some
weak conditions; Shen et al. [20] studied the complete
convergence for non-stationary φ-mixing random
variables, and got the Baum-Katz-type theorem and
Hsu-Robbins-type theorem for φ-mixing random
variables. For more details about φ-mixing sequences,
one can refer to Refs. [21], [22]and so on. By using
the central limit theorem and the Marcinkiewicz-type
strong law of large numbers for the φ-mixing sequence,
the paper will establish the asymptotic normality of the
LS estimators θ︿ n and β︿ n in the model (1) under the
assumptions that the random errors are the identically

distributed φ-mixing sequence of random variables.
Moreover, the strong consistency will be investigated
based on the strong convergence for weighted sums of
φ-mixing random variables.

Throughout the paper, assume that εi,i≥1{ } and
δi,i≥1{ } , which are identically distributed sequences

of φ-mixing random variables with mixing coefficients
φ i( ) , are independent of each other. And assume that

Eεi =Eδi =0 and ∑
∞

i=1
φ1 / 2 i( ) <∞ . All limits are taken as

the sample size n→∞, unless it is specially mentioned.

1　 Main results
In this section, we give the asymptotic normality and
the strong consistency of the LS estimators β︿ n and θ︿ n for
unknown parameters β and θ.

Theorem 1　 In the model (1), let Sn = ∑
n

i =1
(xi - xn)2,

and assume that the following conditions are satisfied:

lim
n→∞

n
Sn

= 0 (4)

lim
n→∞

rn = 0, where rn = max
1≤i≤n

xi - xn
Sn

(5)

and there exists a constant c>0 such that:
xi - xj ≤ c i - j , ∀ 1 ≤ i < j ≤ n (6)

　 　 Furthermore, let Xi =εi-βδi, i≥1, Εε2
1<∞, Εδ21<

∞, and assume that

σ2 = EX2
1 + 2∑

∞

i = 2
EX1Xi > 0 (7)

and

∑
n

j = 2
j - 1( ) EX1Xj = ο 1

ln( ) (8)

where ln =rnmax rn,n / Sn{ } . Then,
Sn

σ
(β︿ n - β)

D
→ N(0,1) .

　 　 Theorem 2 　 Under the conditions of Theorem 1,
assume that

Sn

n xn( ) 2 → ∞ (9)

and

∑
∞

j = 2
Cov(X1,Xj) < ∞ (10)

Then,
n
σ

(θ︿ n - θ)
D
→ N(0,1) .

　 　 Remark 1 　 Under certain mixing coefficients and
moment conditions, Theorems 1 and 2 are also true for
α-mixing and ρ-mixing random errors. For example, if
{(εi,δi),i≥1} are identically distributed sequences of
the α-mixing random variables with α n( ) =
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O 1
n2 2+p( ) / p-1( ) logtn( ) , t > 3 2+p( )

p-1
, E ε1

2+p < ∞,

E δ1 2+p<∞ for some p>1, Theorems 1 and 2 will be
held by Theorem 2. 2 of Ref. [23]and Corollary 2. 5 of
Ref. [24] . Note that the moment conditions here are
stronger than Theorems 1 and 2 in this paper.

Theorem 3 　 Under the model (1), assume that
E ε1

p<∞,E δ1 p<∞ for some p>1 / δ,0<δ≤1 / 2. Let
τ>0. If

max
1≤i≤n

xi - xn
nτ-δ Sn

= O 1( ) , nτ

Sn

= O 1( ) ,n
1-τ

Sn

→0

(11)
Then,

Sn

nτ β︿ n - β( ) →0 a. s. .

　 　 Theorem 4　 Under the assumptions of Theorem 3,
if

nτ+ν

Sn

xn = O 1( ) (12)

for some ν∈ 0,1 / 2( ) , then,
nν θ︿ n - θ( ) →0 a. s. .

2　 Simulation
In the subsection, we will carry out simulations to study
the numerical performance of the asymptotic normality
results and the strong consistency results.

The data are generated from model (1) . For the

fixed positive integer m, let ei ~
i. i. d.

N 0,σ2
0( ) , where σ2

0 =

1 / m+1( ) . Let εi =∑
m

k=0
ei+k and δi =∑

m

k=0
ei+k for each i≥1,

then εi,i≥1{ } and δi,i≥1{ } are sequences of the m-
dependent random variables, thus they are also φ-
mixing random variables with εi ~ N 0,1( ) and δi ~

N 0,1( ) . Set β=2,θ=4,m=4 and xi =(-1) i i
n0. 3 for all

1≤i≤ n. We can calculate σ = 5 . By taking the
sample size n as n = 300, 600, 900, 1200 respectively,

we compute
Sn

σ
(β︿ n-β) and n

σ
(θ︿ n-θ) for 1000 times

and present the Q-Q plots of them in Figures 1-4. It is
easily seen that the Q-Q plots show a good fit of them to
normal distribution.

Figure 1. Q-Q plots of (a)
Sn

σ
(β︿ n-β) and (b) n

σ
(θ︿ n-θ) with n=300.

Figure 2. Q-Q plots of (a)
Sn

σ
(β︿ n-β) and (b) n

σ
(θ︿ n-θ) with n=600.
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Figure 3. Q-Q plots of (a)
Sn

σ
(β︿ n-β) and (b) n

σ
(θ︿ n-θ) with n=900.

Figure 4. Q-Q plots of (a)
Sn

σ
(β︿ n-β) and (b) n

σ
(θ︿ n-θ) with n=1200.

In addition, we also compute
Sn

nτ β︿ n-β( ) and nν θ︿ n-θ( ) for 1000 times and depict the boxplots of them in

Figures 5 and 6. Here taking τ=0. 3 and ν=0. 2. We can see clearly that they approach to the zero line and the ranges
of them decrease as n increases.

Figure 5. Boxplots of
Sn

nτ β︿ n-β( ) . Figure 6. Boxplots of nν θ︿ n-θ( ) .
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3　 The proof of main results
By simple calculation, we have

β︿ n - β =
∑

n

i = 1
δi - δn( ) εi - ∑

n

i = 1
xi - xn( ) εi - βδi( ) - β∑

n

i = 1
δi - δn( ) 2

∑
n

i = 1
ξi - ξn( ) 2

(13)

and
θ︿ n - θ = β - β︿ n( ) xn + β - β︿ n( ) δn - βδn + εn

(14)
　 　 In order to prove the main results of this paper, we
need the following lemmas, which are the central limit
theorem, the Marcinkiewicz-type strong law of large
numbers for φ-mixing sequence and the strong
convergence for the weighted sums of the φ-mixing
random variables, respectively.

Lemma 1[23] 　 Let { Xn, n ≥1} be a centered
stochastic sequence of φ-mixing random variables and
{ani,1 ≤ i≤ n, n≥1} be a triangular array of real
numbers such that:

sup
n
∑

n

i = 1
a2
ni < ∞, max

1≤i≤n
ani →0, n → ∞ .

Assume that{X2
n,n≥1}is a uniformly integrable family,

and Var ∑
n

i = 1
aniXi( ) = 1. Then:

∑
n

i = 1
aniXi

D
→ N(0,1) .

　 　 Remark 2 　 According to Ref. [23], the result

still holds if we replace Var ∑
n

i = 1
aniXi( ) = 1 in Lemma 1

by Var ∑
n

i = 1
aniXi( ) →1.

Lemma 2[25] 　 Let {Xn,n≥1} be a sequence of φ-
mixing random variables which is stochastically
dominated by a random variable X with E X p <∞ for

some 0<p<2 and∑
∞

n = 1
φ1 / 2 n( ) < ∞ . Assume that EXk =0

for each k≥1if 1≤p<2. Then,
1
n1 / p∑

n

i = 1
Xi →0 a. s. .

　 　 Lemma 3 　 Let {Xn,n≥1} be a sequence of φ-

mixing random variables with∑
∞

n = 1
φ1 / 2 n( ) < ∞, EXn =0

and for some 0<δ≤1,q>1 / δ,sup
n≥1

E Xn
q <∞ . Assume

that {ani,1≤i≤n,n≥1} is an array of real numbers,
and satisfies

ani = O n -δ( ) for 1 ≤ i ≤ n,

∑
n

i = 1
ani

t = O n -α( ) for some α > 0,

where t=min q,2( ) . Then,

∑
n

i = 1
aniXi →0 a. s. .

　 　 Proof　 The proof of the lemma can be referred to
Lemma 2 of Wu[26] .

The proof of Theorem 1
Firstly, by Markov ’ s inequality and condition

(4), we can get that

P
1
Sn

∑
n

i = 1
δi - δn( ) 2 > ε( ) ≤

1
ε
· 1

Sn

E ∑
n

i = 1
δi - δn( ) 2( ) =

1
ε
· 1

Sn

E ∑
n

i = 1
δi2 - nδ 2

n( ) ≤

1
ε
· 1

Sn

∑
n

i = 1
Eδi2 =

1
ε
· n

Sn

Eδ21 →0,

Hence,
1
Sn

∑
n

i = 1
δi - δn( ) 2 P

→0 (15)

By

∑
n

i = 1
δi - δn( ) εi = ∑

n

i = 1
δi - δn( ) εi - εn( ) ≤

1
2 ∑

n

i = 1
δi - δn( ) 2 + ∑

n

i = 1
εi - εn( ) 2( ) (16)

and the proof of (15), we have that
1
Sn

∑
n

i = 1
εi - εn( ) 2 P

→0,

Thus,
1
Sn

∑
n

i = 1
δi - δn( ) εi

P
→0 (17)

　 　 Secondly, note that

∑
n

i = 1
ξi - ξn( ) 2 = ∑

n

i = 1
xi + δi - (xn + δn)[ ]

2 =

∑
n

i = 1
xi - xn( ) 2 + 2∑

n

i = 1
xi - xn( ) δi - δn( ) +

∑
n

i = 1
δi - δn( ) 2 .

　 　 For any γ>0, we have that

∑
n

i = 1
ξi - ξn( ) 2 - Sn =

2∑
n

i = 1
xi - xn( ) δi - δn( ) + ∑

n

i = 1
δi - δn( ) 2 ≤

γ
2 ∑

n

i = 1
xi - xn( ) 2 + 2

γ∑
n

i = 1
δi - δn( ) 2 + ∑

n

i = 1
δi - δn( ) 2 =
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γ
2
Sn + γ + 2

γ ∑
n

i = 1
δi - δn( ) 2 (18)

Thereby,

P
∑

n

i = 1
ξi - ξn( ) 2

Sn

- 1 ≥ γ( ) ≤

P γ
2

+ γ + 2
γ

·
∑

n

i = 1
δi - δn( ) 2

Sn
≥ γ( ) =

P
∑

n

i = 1
δi - δn( ) 2

Sn
≥ γ2

4 + 2γ( ) ,

which implies by (15) that:
1
Sn
∑

n

i = 1
ξi - ξn( ) 2 P

→1 (19)

　 　 From (13), we have that

Sn β︿ n - β( )

σ
=

1
σ
· 1

Sn

∑
n

i = 1
δi - δn( ) εi +

1
σ Sn

∑
n

i = 1
xi - xn( ) εi - βδi( ) - β

σ
· 1

Sn

∑
n

i = 1
δi - δn( ) 2

1
Sn
∑

n

i = 1
ξi - ξn( ) 2

.

　 　 Combined with (15 ), (17 ) and (19 ), it is
sufficient to prove

1
σ Sn

∑
n

i = 1
xi - xn( ) εi - βδi( )

D
→ N 0,1( ) .

　 　 Let Xi =εi-βδi,a∗
n,i =

xi-xn
Sn

, then,

Var
1

σ Sn

∑
n

i = 1
xi - xn( ) εi - βδi( )( ) =

1
σ2E ∑

n

i = 1
a∗
n,iXi( )

2 =

1
σ2 EX2

1 + 2∑
n-1

i = 1
∑

n

j = i+1
a∗
n,ia∗

n,jEXiXj( ) =

1
σ2 EX2

1 + 2∑
n

j = 2
∑
n+1-j

i = 1
a∗
n,ia∗

n,i +j-1EX1Xj( ) =

1
σ2(EX

2
1 + 2∑

n

j = 2
∑
n+1-j

i = 1
a∗
n,i(a∗

n,i +j-1 - a∗
n,i)EX1Xj +

∑
n

j = 2
∑
n+1-j

i = 1
a∗
n,i( ) 2EX1Xj) =

1
σ2(EX

2
1 + 2∑

n

j = 2
EX1Xj +

2∑
n

j = 2
∑
n+1-j

i = 1
a∗
n,i(a∗

n,i +j-1 - a∗
n,i)EX1Xj -

2∑
n

j = 2
∑

n

i = n+2-j
(a∗

n,i)2EX1Xj) .

　 　 Next, we prove:

∑
n

j = 2
∑
n+1-j

i = 1
a∗
n,i a∗

n,i +j-1 - a∗
n,i( ) EX1Xj →0 (20)

and

∑
n

j = 2
∑

n

i = n+2-j
(a∗

n,i)2EX1Xj →0 (21)

　 　 For (20), by conditions (6) and (8), we can
obtain that

∑
n

j = 2
∑
n+1-j

i = 1
a∗
n,i a∗

n,i +j-1 - a∗
n,i( ) EX1Xj ≤

∑
n

j = 2
∑
n+1-j

i = 1
a∗
n,i

xi +j-1 - xi
Sn

EX1Xj ≤

∑
n

j = 2
∑
n+1-j

i = 1
a∗
n,i

c( j - 1)
Sn

EX1Xj ≤

cn
Sn

max
1≤i≤n

xi - xn
Sn

∑
n

j = 2
( j - 1) EX1Xj =

crn
n
Sn

∑
n

j = 2
( j - 1) EX1Xj →0.

　 　 For (21), by condition (8), we can get that

∑
n

j = 2
∑

n

i = n+2-j
(a∗

n,i)2 EX1Xj ≤

max
1≤i≤n

(a∗
n,i)2∑

n

j = 2
( j - 1) EX1Xj =

r2n∑
n

j = 2
( j - 1) EX1Xj →0.

　 　 Hence,Var ∑
n

i =1
an,iXi( ) → 1

σ2 EX1 + 2∑
∞

j =2
EX1Xj( ) = 1.

Therefore, the theorem is proved by using Lemma 1.
The proof of Theorem 2
According to (14), we have that

n
σ

θ︿ n - θ( ) = Sn

σ
β - β︿ n( )·

n
Sn

xn + δn( ) + n
σ

εn - βδn( ) (22)

　 　 Note by condition (9) that
n
Sn

xn = 1
Sn

n
·1

xn

= 1
Sn

n xn( ) 2

→0.

　 　 From Lemma 2, it is followed by
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n
Sn

δn = n
Sn

·1
n∑

n

i = 1
δi =

n
Sn

· 1
n

3
2
∑

n

i = 1
δi →0 a. s. .

　 　 It is observed that
n
σ

εn - βδn( ) = n
σ

1
n∑

n

i = 1
εi - β·1

n∑
n

i = 1
δi( ) =

1
σ
·1

n
∑

n

i = 1
εi - βδi( ) = 1

σ
·1

n
∑

n

i = 1
Xi

and

Var
1
σ
·1

n
∑

n

i = 1
Xi( ) = 1

σ2·
1
n
Var ∑

n

i = 1
Xi( ) =

1
σ2·

1
n

nEX2
1 + 2∑

n-1

i = 1
∑

n

j = i+1
EXiXj( ) =

1
σ2·

1
n

nEX2
1 + 2∑

n-1

k = 1
∑
n-k

i = 1
EXiXk+i( ) =

1
σ2·

1
n

nEX2
1 + 2∑

n-1

k = 1
n - k( ) EX1Xk+1( ) =

1
σ2

EX2
1 + 2∑

n-1

k = 1
EX1Xk+1 - 2∑

n-1

k = 1

k
n
EX1Xk+1( ) =

1
σ2(EX

2
1 + 2∑

n

j = 2
EX1Xj - 2∑

n

j = 2

j
n
Cov X1,Xj( ) +

2
n∑

n

j = 2
Cov X1,Xj( ) ) .

　 　 By Kronecker’s Lemma and condition (10), it is
easy to obtain that:

∑
n

j = 2

j
n
Cov(X1,Xj) → 0.

　 　 It is followed by conditions (7) and (10) that:

Var
1
σ
·1

n
∑

n

i = 1
Xi( ) →1,

which is implied in Lemma 1 that
n
σ

εn - βδn( )
D
→ N(0,1) .

　 　 Finally, the desired result follows from the result of
Theorem 1 and (22) .

The proof of Theorem 3

(Ⅰ) If 2<p≤4, by taking q= p
2
∈ 1,2( ] in Lemma

3 and (11), we can get:
1

nτ Sn

∑
n

i = 1
δi - δn( ) 2 ≤ 　 　 　 　 　 　 　

1
nτ Sn

∑
n

i = 1
δ2i - Eδ2i( ) + n1-τ

Sn

Eδ21 →0 a. s. (23)

　 　 Similar to the proof of (23 ), we can obtain
1

nτ Sn

∑
n

i = 1
εi - εn( ) 2 →0 a. s. . Hence,

1
nτ Sn

∑
n

i = 1
δi - δn( ) εi →0 a. s. (24)

by (16) .
According to (11) and Lemma 3 ( taking q = p>

2), we can obtain:
1

nτ Sn

∑
n

i = 1
xi - xn( ) εi - βδi( ) →0 a. s. (25)

　 　 From (18), (23) and (11), we have that
1
Sn
∑

n

i = 1
ξi - ξn( ) 2 - 1 ≤ 　 　 　 　 　 　 　 　

γ
2

+ 2 + γ
γ

1
Sn
∑

n

i = 1
δi - δn( ) 2 → γ

2
a. s. ,

which implies in the arbitrariness of γ that:
1
Sn
∑

n

i = 1
ξi - ξn( ) 2 →1 a. s. .

　 　 Combining (23)-(25), we get
Sn

nτ β︿ n-β( ) →0 a. s. .

(Ⅱ) If p>4, with the similar proofs as the case 2<
p≤4, the desired result can be obtained easily. This
completes the proof of the theorem.

The proof of Theorem 4
Applying Lemma 3 ( taking q = p > 2), it is not

difficult to show that

nν εn - βδn( ) = nν-1∑
n

i = 1
εi - βδi( ) →0 a. s. .

　 　 Furthermore,from condition (12), Theorem 3 and
Lemma 3 (taking q=p>2), we have

nν β - β︿ n( ) xn + δn( ) = nτ+ν

Sn

xn·
Sn

nτ β - β︿ n( ) +

nτ+ν-1

Sn

∑
n

i = 1
δi·

Sn

nτ β - β︿ n( ) →0 a. s. .

　 　 Therefore, the desired result can be obtained from
(14) .
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φ-混合误差下线性 EV 模型中最小二乘估计的渐近性质
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摘要: 本文主要研究 φ-混合随机误差下的简单线性 EV 模型. 借助于 φ -混合序列的中心极限定理和

Marcinkiewicz 型强大数定律, 在较弱的假设条件下,建立了未知参数最小二乘估计的渐近正态性. 另外,利用

φ-混合随机变量加权和的强收敛性,得到了该最小二乘估计的强相合性. 最后,给出了相关理论结果的数值模

拟.
关键词: EV 模型;渐近正态性;强相合性;最小二乘估计;φ-混合序列
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