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1　 Introduction
People want to quantify the risk of a decision, far
beyond the expectation or variance. Even though many
contributions have been made in this area[1,2], no one
ever constructed a perfect risk measure both satisfying
all the desired properties and applicable in economics.
Reference[3] introduced a new measure of riskiness and
proved several desired properties. They defined the risk
of a specific gamble, which yields both positive and
negative outcomes, with the same measurement unit as
gambles. However, the risk, according to them, is
totally based on the distribution of a gamble about which
one may doubt whether others take the gamble as serious
as him.

Almost all the measures of riskiness are objective,
without the interference of decision-makers[4] .
However, a risky asset may be taken as riskless to
someone but, as, at the same time, too risky to be
accepted by others. In this paper, based on the rank-
dependent expected utility (RDEU) model, we propose
a measure of riskiness of `̀gambles″ (risky assets) that is
subjective: it depends on both the gamble and the one
who is considering investing. Even though we have a
huge step up, the subjective measure is still ideal to
use. Meanwhile, the measure is applicable to all the
bounded gambles, making the comparison of different
gambles easier.

The RDEU theory is proposed by References[5,6]
in which the expectation can be defined as rank-

dependent, which permits the analysis of phenomena
associated with the distortion of subjective probability
and applies better in real than simply weighted
expectations, according to References[7,8] .

For the discussion of the distortion function, named
after the intuition that the expectation is “distorted”, it
can be concave: this rank-dependent way of modeling
pessimism and optimism was suggested before by
Reference [5] . It was described in full by Reference
[6], which can be convex, and even a mixed pattern of
both[8] .

In this paper, we apply a new model to the index
of riskiness and obtain desired properties. It is natural
that some of them are no longer satisfied. However,
after assuming the distortion function to be concave,
almost all of the properties still hold. Besides, we
extend the definition of risks to nearly all gambles, even
with no loss, without loss of desired properties.

The rest of the paper is organized as follows. In
Section 2, we introduce some preliminaries, such as the
RDEU model. In Section 3, we introduce the new risk
measure of riskiness based on the RDEU model. Section
4 shows our main results. In Section 5, we present a
simulation to illustrate the results.

2　 Preliminaries
2. 1　 The RDEU model
The rank-dependent expected utility (RDEU) model is
one of classic models in the economical behavior theory
introduced by References[5,6] . A decision decision-
maker behaves in accordance with the RDEU model if



the decision-maker is characterized by an increasing and
continuous utility function u:RR →RR and a probability-
perception function h: [0,1] o [0,1], that is, h is
increasing with h(0)= 0 and h(1)= 1. Such a decision-
maker prefers the random variable Y to the random
variable X if and only if

Vu,h(Y) ≥ Vu,h(X),
where Vu,h(Y), also denoted by Vu,h(G), is the RDEU
functional or the Quiggin-Yaari functional of Y[5,6] given
by

Vu,h(Y) = ∫∞
-∞

u(y), dh(G(y)) (1)

Here G is the cumulative distribution function (CDF) of
Y. Any decision maker in the REDU model makes
decision according to the RDEU functional Vu,h is
denoted by a (u,h)-decision-maker.

It is well-known that the RDEU model has the
classic expected utility (EU) model and the Yarri′s dual
theory as its special case. Specifically, if the
probability-perception function h ( s) = s, s∈[0,1],
then the RDEU functional reduces to the classic
expected utility functional.

Throughout the paper, the utility function u is the
von Neumann-Morgenstern utility function for money.
We confine the utility function u in the following set

U = u u(0) = 0, u′(0) = 1, u strictly increasing,
concave, twice continuously differentiable{ } .

　 　 If the utility function is the linear function
(identical function), that is, u(x)= x, x∈RR , then the
RDEU functional reduces to the Yarri’s dual utility

EE h(Y) = ∫∞
-∞

xdh(G(y)) = ∫1
0
G -1(s)dh(s) (2)

Figure 1. (a) A concave distortion function; (b) A distortion function concave for small probability and convex for moderate and high
probabilities.

where G-1(s)= inf{x∈RR : G(x)≥s}, s∈(0,1), is
the left-continuous inverse function of G. The Choquet
integral EE h is also called the distorted expectation and
the probability-perception function is also called the
distortion function. The integral follows the standard
definition of Lebesgue-Stieljes integral. Throughout the

paper, for an increasing R function g:RR →RR and a
function f: RR → RR , the Lebesgue-Stieltjes integral

∫
RR
f(x)dg(x) is defined ( see, for instance, Reference

[9] as ∫
RR
f(x)dg + (x) or ∫

RR
f(x)μg(dx) , where g+(x)=

g(x+) and μg is a measure defined by μg([a, b]) =
g(b+)-g ( a- ) for any a≤b. In other words, if an
increasing function g:RR →RR is not right-continuous,
g(x) in the Lebesgue-Stieltjes integral ∫

RR
f(x)dg(x) is

treated as its right-continuous copy g(x+) . In this way,
the integral is well defined. That is, the Yarri’ s dual
utility is expected values calculated based on “distorted”
CDFs h(FX(x)) . Hence, the formula (2) provides a
more clear justification of why the Yarri’s dual utility is
considered as (distorted) expectations.

One important property of distorted expectation is
that EE h(aX+b)= aEE h(X)+b holds for real numbers a≥0
and b∈RR . However, EE h(X+Y)= EE h(X)+EE h(Y) may
not be true for random variables X and Y, and it will
hold if X and Y are comonotonic. In the bivariate
setting, a random vector (X; Y) is comonotonic if there
exists increasing functions f and g such that X= f(X+Y)
and Y = g (X + Y) almost surely. This fact leads to
problems when dealing with the portfolio investment, a
linear combination of different risky assets. Thus,
additional presumptions are necessary for the distortion
function h. Throughout the paper, the distortion
function h is assumed in the following set
H = {h:[0,1] → [0,1] | h(0) = 0,h(1) = 1,

　 　 　 h is concave and has no jump at zero} .
We will also denote h′ by the left derivative of distortion
function h. There are some examples of distortion
functions, and Figure 1 presents a more intuitive
picture.

(Ⅰ) Proportional hazard transform function[10],
with the distortion function
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h(x) = x
1
ρ , ρ ≥1.

　 　 (Ⅱ) Dual-power function[11], with the distortion
function

h(x) = 1 - (1 - x) ν, ν ≥1.
　 　 (Ⅲ) Wang’s transform weighting function, known
as the WT weighting function[12], it is applied widely
into the pricing of financial derivatives for its fine
properties. It is usually represented by

h(x) = Φ(Φ-1(x) + α), α ∈ RR ,
where Φ(x) is the cumulative distribution function of a
standard normal distribution.
2. 2　 Comparative risk aversion
Risk aversion is an important concept in the decision
theory. We use the notation Reference[3] to describe
the comparative risk aversion. Agents i and j are going
to decide whether to accept or reject such a gamble.

Figure 2. The scale function for (a) with h(x)= x+x
2

and (b) with a linear h. The riskiness is 2. 79 for (a) and is 1. 69 for (b) .

Definition 2. 1　 (Ⅰ) A (u,h)-decision maker in the
RDEU model accepts gamble X at the wealth level w if

Vu,h(w + X) > u(w) .
　 　 (Ⅱ) For two agents i and j, we say j is uniformly
no less risk-averse than i if whenever j accepts gamble X
at wealth level w, i accepts X at any wealth level. It's
denoted by i◁j.

(Ⅲ) For agents i and j, we say j is no less risk-
averse than i if whenever j accepts gamble X at wealth
level w, i accepts X at some wealth level. It's denoted
by i◁wj.

As we can see from the definitions, the condition
◁ is stronger than that of ◁w, that is, i◁{ j} implies
i◁wj.

3 　 Measure of riskiness based on the
RDEU model

In this section, we will introduce a new measure of
riskiness based on the RDEU model. To this end, we

confine the gambles to some subsets of the family of all
gambles.

Definition 3. 1 　 For a given distortion function h
we define

G = {X:X is bounded and PP (X = 0) < 1}
and

Gh = {X | EE h(X) > 0, PP (X < 0) > 0} .
　 　 The condition EE h(X)>0 is due to that people will
not hesitate to reject a gamble that they think would be
nonprofitable, while violating the condition PP (X<0)>0
means that the gamble brings no loss at all.

For a utility function u, a distortion function h and
a gamble X, we define

fu,h,X(α): = f(α) = EE h(u(α X))
on [0,∞], which is called a scale function throughout
the paper. Then, f∈C2[0,∞] which means f is second
order continuously differentiable. In the following, we
state some basic properties for the scale function.

Theorem 3. 1 　 Suppose that the utility function
u∈U has an upper bound and h∈H. For X∈Gh, the
scale function f(α)= EE h(u(α X)) is concave on [0,
∞ ) with f(0)= 0. Moreover, there exists a real number
ρu,h(X)>0 uniquely determined by

f(1 / ρu,h(X)) = EE hu(X / ρu,h(X)) = 0 (3)
　 　 Proof　 It is clear that f(0)= EE h[u(0)] =0. Note
that f′(0)= EE h(Xu′(0))= EE h(X) >0 because of X∈
Gh . Hence, there exists an α small enough such that
f(α) > 0. Meanwhile, f″(α) = EE h(X2u″(α X)) ≤0
means f is concave on the positive axis.

Assuming now that p0 =PP (X<-􀆠)>0 and PP ( |X |≤
M) = 1, let X0 be a gamble that yields M with
probability 1 - p0 and - 􀆠 with p0 . It is obvious that
FX0(x)≤FX(x) for all x . Then

f(α) = ∫1
0
u(α F -1

X (q))dh(q) ≤
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∫1
0
u(α F -1

X0(q))dh(q) =

h(p0)u( - α􀆠) + (1 - h(p0))u(α M) .
　 　 Thus, the scale function f ( α ) becomes non-
positive for α large enough since u has an upper bound.
Up to now, we obtain three observations of the function
f:

(Ⅰ) f(0)= 0 and f′(0)>0;
(Ⅱ) f is concave on [0,∞);
(Ⅲ) There exists an α large enough such that

f(α)<0.
Hence, there exists a unique ρu,h ( X) > 0 such that
equation (3) holds.

Here, we set u( x) = 1 -e-x for all x∈R. Let X
yield 6 with probability 0. 2, 2 with probability 0. 3 and
-1 with probability 0. 5. Checking that it meets all the
requirements, for different h, we draw its scale function
in Figure 2.

Definition 3. 2　 For u∈U and h∈H, the measure
of riskiness based on (u,h)-RDEU model is defined by
a functional ρu,h:G→[0,+∞] as the following way

ρu,h(X) =
0, PP (X < 0) = 0,
+ ∞, EE h(X) ≤ 0,
the solution of equation (3), X ∈ Gh .

{
　 　 For the case EE hu(X)≤0, a decision maker with
distortion function h won’ t take it. Thus, we set its
riskiness to be +∞ . For another case that PP (X<0)= 0,
people accepts the gamble violating the condition with
absolutely no loss. For this one, we set its riskiness to
be 0 because nobody would be afraid of it for any
reasons.

Example 1 　 (Ⅰ) If h is the identical function,
i. e. , h(p)= p for p∈[0,1] and u(x)= 1-exp(-x) for
x∈RR . The measure of riskiness ρu,h reduces to the case
introduced in Reference[3] .

(Ⅱ) If h is the identical function and u ( x) =
log(1+x) for x ∈ RR . The measure of riskiness ρu,h
reduces to the case introduced in Reference[4] .

(Ⅲ) If u(x)= x-1 for x∈RR , we have ρu,h(X)=
EE h(X) for all X∈Gh .

The third one of the above examples illustrates that
the constraint of u in Theorem 3. 1 is not necessary to
guarantee that equation (3) has an unique solution. For
some feasible utility function u, ρu,h can be the Yarri’s
dual utility.

4　 Main results
It follows directly from the definition that two axiomatic
characterizations are identical to those of Reference[3] .
Hence, the similar results are also obtained for the
distorted riskiness.
4. 1　 Basic properties for the measure of riskiness

Definition 4. 1 　 For any two lotteries with

cumulative distribution functions F and G, respectively.
We say F first-order stochastic dominates G, denoted
by F⪰1 G, if for any increasing function u

∫u(x)dF ≥ ∫u(x)dG.
Proposition 4. 1 　 For u∈U with a upper bound and
h∈H, the measure of riskiness based on RDEU model
has following properties:

(Ⅰ) Monotonicity with respect to the first-order
stochastic dominance: For X,Y∈G, if X⪯1 Y, then ρu,h
(X)≥ρu,h(Y) .

(Ⅱ) Positive Homogeneity: ρu,h(λX)= λ{ρu,h(X)
for λ>0 and X∈G;

(Ⅲ) Subdilution: ρu,h (Xp ) ≥ ρu,h (X) holds for
p∈(0,1] and X∈G, where Xp is a compound gamble
that yields X with probability p and 0 with probability
1-p;

(Ⅳ) Continuity on Gh: ρu,h (Xn ) → ρu,h (X), if

gamble Xn →
d
X, X ∈ Gh and Xn ∈ Gh are uniformly

bounded.
Proof　 We first consider the properties of ρu,h on

Gh . For X, Y ∈ Gh such that X ⪯1 Y, we have 0=
EE hu(X1 / ρu,h(X)) ≤ EE hu ( Y / ρu,h ( X )) . Recall the
properties of scale function in Theorem 3. 1, we obtain
1 / ρu,h(Y)≥1 / ρu,h(X), and hence, ρu,h(X)≥ρu,h(Y) .
The positive homogeneity is trivial by the definition of
ρu,h .

To prove the subdilution, first note that X∈Gh

implies Xp∈Gh for p∈(0,1] . We use the third form of
the rank-dependent expectation for this part. i. e.

EE h(u(X)) = u(M) - ∫M
-M
h(F(x))du(x),

where M is the bound of X. For the diluted gamble Xp,
one writes the CDF FXp(x) as pFX(x)+(1-p)I[0,∞](x).
Thus,

fXp(α) = EE hu(αXp) =

u(α M) - ∫M
-M
h(pFX(x) +

(1 - p) I[0,∞ ](x))du(αx) ≤

u(α M) - ∫M
-M
ph(FX(x)) +

(1 - p)h( I[0,∞ ](x))du(αx) =

p ≤ (u(αM) - ∫M
-M
h(FX(x))du(αx)) +

(1 - p)(u(αM) - ∫M
-M
h( I[0,∞ ](x))du(αx)) =

pfX(α) .

This implies fXp≤ 1
ρu,h(X)( ) ≤0, and hence ρu,h(Xp)≥

ρu,h(X) .
For continuity, denote fn (α) = EE hu (αXn ) and

f(α)= EE hu (αX) . Since Xn →
d
X and Xn is uniformly
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bounded, it then follows from the dominated
convergence theorem that fn(α)→ f(α) pointwisely.
Denote an = ρu,h (Xn ) and a = ρu,h (X) . Arguing by
contradiction, we assume that there exists 􀆠0>0 such that
|an-a | >􀆠0 for all n. If there is a subsequence {ank}
such that ank>a+􀆠0 . Then we have 0 = fnk(ank)≥fnk(a+
􀆠0 ) → f(a+􀆠0) < 0. This yields a contradiction.
Similarly, we can also get a contradiction if there is a
subsequence { ank } such that ank < a - 􀆠0 . Hence, we
complete the proof of all properties on Gh .

For gambles on G, one can easily verify the
monotonicity, positive homogeneity and subdilution of
ρu,h after classification discussions.
4. 2　 Measure of riskiness for CARA utility function
The exponential utility function is the only one class of
utility functions such that the Arrow-Pratt coefficient is
constant, that is, the utility function with constant
absolute risk aversion[13] . In this section, we set the
utility function u ( x ) to be 1 - exp ( - x ) . For
convenience, we denote by Rh the measure of riskiness
in this case, i. e.

Rh(X): = ρu,h(X) .
In the following, more properties of Rh will be found.
To present the result, we need the following lemma
which is coming from Reference[14] .

Lemma 4. 1 　 For any random variables X and Y,
denote the inverse of their CDFs by F-1

X (q) and F-1
Y (q).

Let ϕ(q) = F-1
X+Y (q) -F-1

X (q) -F-1
Y (q) and Φ(q) =

∫q
0
ϕ(t)dt on [0,1] . Then the following properties hold

for ϕ(q).
(Ⅰ) ∫1

0
ϕ(q)dq = 0;

(Ⅱ) Φ(q) ≥ 0, q ∈ [0,1] .
　 　 Proposition 4. 2 　 The following two properties
hold for gambles X1,X2∈G.

(Ⅰ) Subadditivity: Rh ( X1 + X2 ) ≤ Rh ( X1 )+
Rh(X2), if X1+X2∈G;

(Ⅱ) Convexity: Rh ( λ X1 + ( 1 - λ ) X2 ) ≤
λRh(X1)+(1-λ)Rh(X2) if λ X1+(1-λ)X2∈G.

Proof　 (Ⅰ) First, assume that X1,X2∈Gh and
X1 +X2 ∈Gh . The scale function of X is denoted by
fX(α) = EE h(1 - exp ( -αX)) . By Theorem 3. 1, to
show the subadditivity Rh(·), we only need to prove

that fX1+X2(
1

r1+r2
)≥0 where rk =Rh(Xk) for k=1,2. i. e.

∫1
0
1 - exp -

F -1
X1+X2

(q)
r1 + r2( )( ) dh(q) ≥ 0.

To this end, we turn to prove the next two inequalities
hold

∫1
0
1 - exp -

F -1
X1+X2

(q)
r1 + r2( )( ) dh(q) ≥

∫1
0
1 - exp -

F -1
X1
(q) + F -1

X2
(q)

r1 + r2( )( ) dh(q) (4)

∫1
0
1 - exp -

F -1
X1
(q) + F -1

X2
(q)

r1 + r2( )( ) dh(q) ≥ 0

(5)
Note that formula (4) is equivalent to

∫1
0
exp -

F -1
X1+X2

(q)
r1 + r2( ) exp

F -1
X1+X2

(q) - F -1
X1
(q) - F -1

X2
(q)

r1 + r2( ) - 1( ) dh(q) ≥ 0.

Since h′(q) is non-negative and ex-1≥x for all x∈RR , to prove formula(4), we only need to show that

∫1
0
exp -

F -1
X1+X2

(q)
r1 + r2( ) [F -1

X1+X2
(q) - F -1

X1
(q) - F -1

X2
(q)]dh(q) ≥ 0,

or, equivalently,

∫1
0
exp -

F -1
X1+X2

(q)
r1 + r2( ) ϕ(q)h′(q)dq ≥0,

where ϕ( q) = F-1
X1+X2

( q) - F-1
X1
( q) - F-1

X2
( q) . After

substituting exp -
F-1

X1+X2
(q)

r1+r2( ) h′ ( q) by S ( q), it is

obvious that S(q) is non-increasing. We only need to
show that ∫1

0
S(q)ϕ(q)dq ≥0. Note that

∫1
0
S(q)ϕ(q)dq = ∫1

0
S(q)dΦ(q) =

S(q)Φ(q) | 1
0 - ∫1

0
Φ(q)dS(q) = - ∫1

0
Φ(q)dS(q) ≥ 0,

where Φ(q) = ∫q
0
ϕ( s)ds and the last part from the fact

that Φ(q)≥0 by Lemma 4. 1. For formula (5),

∫1
0
1 - exp -

F -1
X1
(q) + F -1

X2
(q)

r1 + r2( )( ) dh(q) =

∫1
0
1 - exp

-
F -1

X1
(q)
r1

r1
r1 + r2

-

F -1
X2
(q)
r2

r2
r1 + r2

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

dh(q) ≥

∫1
0

r1
r1 + r2

1 - exp -
F -1

X1
(q)
r1( )( ) +

r2
r1 + r2

1 - exp -
F -1

X2
(q)
r2( )( ) dh(q) =
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r1
r1 + r2

EE h 1 - exp - X1

r1( )( ) +

r2
r1 + r2

EE h 1 - exp - X2

r2( )( ) = 0.

Next assume that X1,X2∈G and X1+X2∈G. There are
just two kinds of potential violation of Rh(X1 +X2 )≤
Rh(X1)+Rh(X2):

(ⅰ) Rh(X1 +X2) = ∞ but Rh(X1) and Rh(X2 )
are positive and finite;

(ⅱ) Rh(X1)= 0 and Rh(X1+X2)>Rh(X2) .
Here we define G∗ = {X:X is bounded} . For the

first one, note that the mapping EE h: G∗→RR satisfies
the subadditivity, i. e. , EE h( X1 + X2 ) ≥ EE h( X1 )+
EE h(X2) for all X1,X2∈G∗(see e. g. , Theorem 2. 2 in
Reference [ 15 ] . Since Rh ( X1 ) and Rh ( X2 ) are
positive and the finite it follows that EE h(X1),EE h(X2)
>0, we have EE h(X1 +X2) is finite. The second case
can’ t happen since Rh is monotonic with respect to
first-order stochastic dominance.

(Ⅱ)The convexity follows immediately from that
Rh is positively homogeneous.
4. 3　 The necessary of concavity of distortion function
As someone doubts whether the presumptions of
distortion function h can be revised, we claim that
concavity is necessary for subadditivity property. We
prove it in the following part that there is some violation
of subadditivity unless h is concave on [0,1] .

Proposition 4. 3 　 Suppose the distortion function
has no jump at zero, the validity of subadditivity forces
h to be concave.

Proof 　 By reducing absurdity, the violation of
concavity of distortion function h implies that there exist
p1 and p2 such that p1 <p2 and 2h(p) <h(p1) +h(p2),

where p=
p1+p2

2
. Note that we can move p1 and p2 in a

small scale, which keeps the inequality unchanged but
makes p1>0 and p2<1. Then we construct a gamble X as
follows

X =

- x1, p1,
- δ, p - p1,

δ, p2 - p,
x2, 1 - p2,

ì

î

í

ï
ïï

ï
ïï

where -x1<-δ<0<δ<x2 . Denote f(α)= EE hu(α X) ,
then

EE hu(αX) = h(p1)u( - αx1) +
(1 - h(p2))u(αx2) +

(h(p) - h(p1))u( - αδ) +

(h(p2) - h(p))u(αδ) .
Meanwhile, the derivative of f at zero is

f′(0) = - x1h(p1) + x2(1 - h(p2)) -

δ(h(p) - h(p1)) + δ(h(p2) - h(p)) .
Let the summation of the first two terms be zero, that

is, -x1h(p1)+x2(1-h(p2))= 0. Then x2 =
h(p1)

1-h(p2)
x1 .

One can find f′(0) = δ (( h ( p2 ) -h ( p)) -( h ( p) -

h(p1)))= δ(h(p2)+h(p1)-2h(p)) >0. According to
the proof of Theorem 3. 1, gamble X has a finite and
non - zero riskiness r > 0. Then we construct a pair
gambles (X1,X2) with joint distribution

(X1,X2) =

( - x1, - x1), p1,

( - δ,δ), p - p1,

(δ, - δ), p2 - p,
(x2,x2), 1 - p2 .

ì

î

í

ï
ïï

ï
ïï

　 　 As we can see, the marginal distributions of both
X1 and X2 are the same as that of X, so they have the
same riskinesses r. Noting that

X1 + X2 =
- 2x1, p1,
0, p2 - p1,
2x2, 1 - p2 .

ì

î

í
ïï

ïï

One can calculate the riskiness of X1+X2 with the similar
method. The distorted expectation of X1+X2 is u(-2x1).
h(p1)+u (2x2 ) (1 - h ( p2 )) . With a useful fact that
u(x)≤x for all x on R, we find u ( -2x1 ) h ( p1 ) +
u(2x2)(1-h(p2))≤-2x1h(p1) +2x2(1-h(p2))= 0,
which indicates that gamble X1+X2 has infinite riskiness.
We can conclude that Rh(X1 +X2)= ∞ >2r = 2Rh(X)=
Rh(X1)+Rh(X2), a violation of subadditivity.
4. 4　 Application in comparative risk aversion
Mentioned by Reference[3], duality implies that less
risk-averse agents accept riskier gambles. Once they
share the same distortion function, duality holds for the
two agents.

Theorem 4. 1(Duality)　 Given that agents i and j
are two decision-maker in the RDEU model, the utility
functions of i and j are ui and uj, respectively, and they
share the same distortion function h∈H. For X1,X2∈
G, if j◁ i, i accepts X1 at w and Rh(X1)≥Rh(X2),
then j accepts X2 at w.

To prove Theorem 4. 1, we denote ρ(w) by the
Arrow-Pratt coefficient of absolute risk aversion for an
agent with the utility function u at wealth level w, i. e. ,
ρ(w)= -u″(w) / u′(w) . Besides, we need some extra
lemmas, some of which are the direct results in
Reference[3] .

Lemma 4. 2 (Lemma 2 in Reference [3]) 　 For
some δ>0, suppose that ρi(w) >ρj(w) at each w with
|w | <δ, then ui(w)<uj(w) whenever |w | <δ and w≠0.

From Lemma 4. 2, we can immediately get the

07 中国科学技术大学学报 第 51 卷



following corollary.
Corollary 4. 1 (Corollary 3 in Reference[3]) 　 If

ρi(w)≤ρj(w) for all w, then ui(w)≥uj(w) for all w.
Given the changes compared with the definitions by

Reference [ 3 ], some lemmas also need to be
generalized.

Lemma 4. 3　 If ρi(0)>ρj(0), there is a gamble X
that agent j accepts at 0 but agent i rejects at 0.

Proof　 By the precondition that utility function is
twice continuously differentiable, ρ(w) is continuous.
There exists δ>0 such that ρi(w) >ρj(w) for all | w | <
2δ. For -δ≤x≤δ,let XX be a gamble yielding x-δ and
x+δ with probability p0∈(0,1) and 1-p0, respectively,
where p0 satisfies h(p0)∈(0,1) . By lemma 4. 2, we
can get ui (w) ≤uj (w) for all | w | < 2δ, where the
equation is satisfied if and only if w = 0. Then denote
EE hkuk(XX ) - uk (0) by gk ( x) for k = i, j. One can
compute for k= i,j that

gk(x) = ∫1
0
uk(F

-1
XX(q))dh(q) = 　 　 　 　 　

h(p0)uk(x - δ) + (1 - h(p0))uk(x + δ) .
Under the condition that ui(w)≤uj(w), inequality gi

(x)<gj(x) holds for -δ<x<δ. Besides, we find gk(δ)=
(1-h(p0))uk(2δ)>0 and gk(-δ)= h(p0)uk(-2δ)<0.
Thus, it follows from the continuity and monotonic of
gk that there exists some x0 between -δ and δ such that
gi(x0 )≤0 <gj ( x0 ) holds. Gamble Xx0 is the gamble
desired.

Lemma 4. 4 　 If ρi(wi) >ρj(wj), then there is a
gamble X such that agent j accepts at wj but agent i
rejects at wi .

Simplification: By standardizing ui and uj with u∗
i

(w) = ui(w)-ui(wi)
u′i(wi)

and u∗
j (w) = uj(w)-uj(wj)

u′j(wj)
,

there is no difference in their decision-makings and
Arrow-Pratt coefficients after substituting u with u∗, so
that uk(wk)= 0 and u′k(wk)= 1 hold at any wealth level

for k= i; j. ui and uj with u∗
i (w)=

ui(w)-ui(wi)
ui′(wi)

and

u∗
j (w) = uj(w)-uj(wj)

uj′(wj)
, we can directly derive the

result by Lemma 4. 3.
Proposition 4. 4　 i◁wj if and only if for all wealth

level w, ρi(w)≤ρj(w) .
Proof　 If i◁wj and there exists w such that ρi(w)>

ρj(w) . Using Lemma 4. 4 above, we find there is a
gamble X that j accepts at w, but i rejects it at w which
contradicts to our assumption that i should accept X at
any wealth level. Suppose that ρi(w)≤ρj(w) holds for
all wealth level w, we need to verify that if j accepts at

w, then i accepts it at w. Without loss of generality, we
assume w=0. By Corollary 4. 1, we have ui(x)≥uj(x)
for all x∈RR . Thus, we obtain EE h ui(X)≥EE h uj(X),
and this completes the proof.

Proposition 4. 5　 i◁j if and only if for all wealth
level wi and wj, ρi(wi)≤ρj(wj) .

Proof 　 If i◁ j and ∃ wi,wj such that ρi(wi )>
ρj(wj), using Lemma 4 above, we find there is a
gamble X such that j accepts at wj, but i rejects it at wi

which contradicts to our assumption that i should accepts
X at any wealth level. Suppose that ρi(wi )≤ρj(wj )
holds for all wealth level wi and wj . Without loss of
generality, we let wj =0, and assume that EE h uj(X)>0.
For w ∈ RR , we define u(w)

i ( x ) = ui ( w + x ) . By
Proposition 4.4, we have EE h(ui(w+X))= EE hu(w)

i (X)≥
EE huj(X)>0. This completes the proof.

Proof of Theorem 4. 1 　 Let i, j, X1, X2, w be
the notations above. With the simplification method,
one can set w to be 0 and ui, uj ∈U, and we first
consider the case X1,X2∈Gh . Let fk(α)= EE hu(α Xk)

for k=1,2 with u(x)= 1-exp(-x) . We set αk =
1

Rh(Xk)
for k= 1,2, then f1(α1 ) = f2(α2 ) = 0. By hypothesis,
α1≤α2 and the condition j◁ i implies ρi(wi)≥ρj(wj)
for all wi and wj . Set βi = inf ρi(x) and βj = sup ρj(x),
so that βi ≥βj . It can be easily shown that ui ( x)≤
u(βix) / βi by Corollary 4. 1, since the Arrow-Pratt
coefficient of the utility function u ( βix ) / βi ( to
standardize) is constantly βi, which is no larger than
ρi(x) for all x. Similarly, one can find uj ( x ) ≥
u(βjx) / βj .

Now we assume i accepts the gamble X1, then we
need to show that j accepts the gamble X2 . By
definition, EE hui(X1)>0, thus

EE h
u(α1X1)

α1

= f1(α1)
α1

= 0 < EE hui(X1) ≤ EE h
u(βiX1)

βi
,

resulting in βi <α1 . Then one gets βj ≤ βi <α1 ≤α2 .
Hence, βj<α2 . The following inequality holds

EE huj(X2) ≥ EE h
u(βjX2)

βj
> 　 　 　 　

EE h
u(α2X2)

α2

= f2(α2)
α2

= 0.

Thus, the duality axiom is satisfied when X1,X2∈Gh .
Suppose now Rh(X2)= 0, so that X2∈G and P(X2<0)= 0.
It is obvious that Ehuj(X2)>uj(0)= 0. Finally, we will
show that i accepts X1 at 0 and Rh(X1)≥Rh(X2) imply
Rh(X2)<∞ . Otherwise, we have Rh(X1)= ∞, which
implies X1∈G with EE h(X1)≤0. However, it follows
from Jessen′s inequality that
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EE hui(X1) ≤ ui(EE h(X1)) ≤ 0.
This means i rejects X1 at 0, yielding a contradiction.

5　 Simulation
For this part, we first show that it is possible to
substitute the random variable X by its realizations x1,
x2,…,xn to estimate its riskiness by continuity property;
then we replace the distortion function f with its estimate
f︿ and draw the same conclusion.

With data of a gamble, we can estimate the
distribution function from the empirical distribution
function. Suppose the data { xk } n

k=1 is a sequence
independent and identically distributed as the gamble X.
For simplification, let distortion function be WT
weighting function, with parameter α = 0. 25. i. e. ,
h(x)= Φ (Φ-1(x)+0. 25), where Φ(x) stands for the
CDF of Gaussian distribution.

Let F︿ n(x) be the empirical distribution function of
n samples. By Glivenk-Cantelli Theorem, the
convergence F︿ n→ F holds, which fulfills the condition
for continuity property. By the continuity property, rn,
the risk under x1, x2,…,xn, converges to the risk of the
real gamble as n→ ∞, even though some rn can be
infinite or zero. Note that rn is the solution of θ to the
equation

∫M
-M

u(x / θ) dh(F︿ n(x)) = 0.

　 　 As for discrete random variables yielding vi with
probability pi for i = 1, 2, …, K, we can simply
summarize the total number of each value by the data.
Suppose that value vi appears ni times for i=1,2,…,K,
where K is the total kinds of values appeared. After

substituting pi by p︿ i =
ni

n
, one can get the estimated scale

function

f︿(θ) = ∑
K

i = 1
u(vi / θ) h

∑
i

j = 1
nj

n( ) - h
∑
i -1

j = 1
nj

n( )( ) ,

n = ∑
K

j = 1
nj .

　 　 It is fast for computers to find the unique solution
to f︿(θ)= 0 under 0<θ<∞ . However, chances are that f︿

(θ) is always under or above zero. Then let it be in
consistent with the extended measure of riskiness. That
is to say setting the riskiness to be 0 or ∞, which
depends on f︿ if there is no solution. As long as the
number of samples is sufficient to reflect the real
distribution, the equation has a unique positive solution.
Now consider three discrete gambles X1, X2, X3 with
probability mass functions given by

X1 =

- 1, 0. 5,
2, 0. 3,
6, 0. 15,
10, 0. 05,

ì

î

í

ï
ï

ï
ï

X2 =

- 4, 0. 5,
2, 0. 3,
6, 0. 15,
10, 0. 05,

ì

î

í

ï
ï

ï
ï

X3 =

1, 0. 5,
2, 0. 3,
6, 0. 15,
10, 0. 05.

ì

î

í

ï
ï

ï
ï

Figure 3. Estimated riskiness of distribution X1(wave line)
with real riskiness (beeline) .

Figure 4. Estimated riskiness of distribution X2(wave line)
with real riskiness (beeline) .

Figure 5. Estimated riskiness of distribution X3(wave line)
with real riskiness (beeline) .

　 　 We can check with computer that their risk value
are respectively 2. 77, ∞ and 0. Figures 3,4 and 5 show
how the calculated riskinesses approaches the real
riskinesses.

However, it is computational expensive to solve
such an equation with a large n in practice for a
continuously distributed random variable. By the
enlightment of the generalized method of moments,
computing the numeric solution can be seen as an
optimization problem.
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Figure 6. Estimated riskiness of normal distribution with mean
1 and standard deviation 1 under a linear distortion function.

Figure 7. Estimated riskiness of normal distribution with mean
1 and standard deviation 1 under the WT distortion function.

Let m(θ)= EE hu(X / θ) . We expect to find θ0 such
that m ( θ0 ) = 0, which is the unique solution by
Theorem 3. 1. After blending the distortion function into
the distribution of X, another distribution, with CDF
G(x)= h(F(x)), replaces the original one, making the
expectation undistorted. That is, m(θ) = EE hu(Y / θ),
where Y ~ G. But how can we get sample of Y out of
xn? We need to compute the quantile, denoted by qk of
F︿ at each xk, k=1,2,…,n. Then calculate yk by the left
inverse of h(F︿ ), i. e. h(F︿ (yk))= qk for all k=1,2,…,

n. By the law of large numbers, m︿ (θ)= ∑
n

i=1
u(yi / θ) is a

fine estimator for m(θ) as long as n is large enough,
then by the implementation method, we have to find θ︿

θ︿ = argmin
θ∈Θ

m︿ (θ)Wm︿ (θ),

where W is the inverse of var(Y), estimated by

W︿ n(θ
︿) = ( 1

n∑
n

i = 1
U(yi / θ

︿)2) -1 .

Note that m︿ (θ)Wm︿ (θ) ranges from 0 to 1, while m︿ (θ)
can be extraordinary large with the exponential operator.

Suppose a continuous distribution is a normal
distribution with mean 1 and standard deviation 1, we
can then compute that the riskiness of such an random
varible is 0. 5 with a linear distortion function and 1 with
the WT distortion function. Figures 6 and 7 show how
the calculated estimators approach the real riskiness.
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基于 RDEU 模型的风险度量

郭传凤1,杜昕泽2,吴钦宇2,毛甜甜2∗

1. 中国科学技术大学大数据学院,安徽合肥 230026;
2. 中国科学技术大学管理学院,安徽合肥 230026

摘要: 风险度量主要应用于人们面对未知风险的情况下,如何准确地量化风险从而做出损失最小化或收益最大化

的决策. 准确的风险度量可以极大地帮助投资者调整投资组合进而规避风险,以期实现最大化收益. 为了准确地

度量风险,学者根据风险资产服从的客观分布进行量化,但是这种方法的问题在于度量方法是基于人们怀疑的分

布,而不同人对待风险资产的态度是不一样的,风险资产可能对某些人来说是无风险的,同时又太过冒险而不被

其他人接受. 为了将客观分布和主观感受更好的结合,在秩相依期望效用(rank dependent expected utility) 模型的

基础上提出一种主观的“赌博”(风险资产) 风险度量: 它既取决于赌博本身,也取决于决策者的态度. 同时,这种

度量方法适用于所有有界赌博,使得不同赌博的比较更加容易.
关键词: 风险度量;RDEU 模型;扭曲函数
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