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Abstract; Video inpainting aims to fill the holes across different frames upon limited spatio—temporal
contexts. The existing schemes still suffer from achieving precise spatio—temporal coherence especially in
hole areas due to inaccurate modeling of motion trajectories. In this paper, we introduce fexible shape-—
adaptive mesh as basic processing unit and mesh flow as motion representation, which has the capability
of describing complex motions in hole areas more precisely and efficiently. We propose a Mesh Oriented
Video Inpainting nEtwork, dubbed MOVIE, to estimate mesh flows then complete the hole region in the
video. Specifically, we first design a mesh flow estimation module and a mesh flow completion module
to estimate the mesh flow for visible contents and holes in a sequential way, which decouples the mesh
flow estimation for visible and corrupted contents for easy optimization. A hybrid loss function is further
introduced to optimize the flow estimation performance for the visible regions, the entire frames and the
inpainted regions respectively. Then we design a polishing network to correct the distortion of the
inpainted results caused by mesh flow transformation. Extensive experiments show that MOVIE not only
achieves over four—times speed—up in completing the missing area, but also yields more promising results

with much better inpainting quality in both quantitative and perceptual metrics.
Keywords: mesh flow; deep neural networks; video inpainting
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1 Introduction

Video inpainting is of high importance for many
professional ~ video  post-production  applications,
including video editing, scratch or damage video repair,
logo or watermark removal in broadcast videos,
etc!'™. The goal of video inpainting is to fill missed
regions of a given video sequence with spatially and
temporally consistent results. More challengeable than
image inpainting in which only spatial consistency need
be considered, improving aforementioned consistency
requires us to not only exploit spatial contexts but also
attach importance to exploiting the contents from nearby
frames. To this end, solving the temporal misalignment
problem for videos plays a dominant role.

For video data, temporal motions are complex due
to local human or objects motions, global camera
motions, and other environmental dynamics. The
previous works which target video tasks such as video
super-resolution and video stabilization"™®' achieve
promising results by explicitly taking advantage of
motion information including optical flow, motion
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Figure 1. Comparison of the state-of-the-art methods in term
of quality and speed on 37 video sequences with 2139 frames in
total.

vector, homography, etc. Despite this, aligning
features of adjacent frames in video inpainting is more
challenging than other video tasks due to the pixel
absence in the hole areas. Because the missed contents
introduce noises and make the motion information not
reliable as well.

For the task of video inpainting, several temporal
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alignment solutions have been investigated, including
patch matching methods, motion-based methods, 3D
convolutional neural networks and attention-based neural
networks. (D) Patch matching methods select the most
similar patch from adjacent frames for temporal
coherence'*™?!. These methods may give rise to block
artifact in the scenario with complex textures. @
Motion-based methods estimate motion information for
copying corresponding contents from nearby frames,
including optical flow and homography. Some works
compute optical flows between two adjacent frames
directly , which fail to provide precise flow prediction in
the absence of pixel information' "', A state-of-the-art
optical flow-based work uses a sequence of flow maps
from consecutive frames to complete the target optical
flow''*’. However, the dense computation of pixel-level
flow is a very time-consuming operation such that the
efficiency is still under-explored. Homography-based
methods use global affine transformation matrices to
align two frames'"*""”'. They only work well over plane
motions or motions caused by camera rotations. 33D
convolutional neural networks use 3D filters to convolve
the features from reference frames to target frame' ™.
They have limited window size and suffer from high
computation cost. @ Attention-based neural networks
compute similarities between the hole boundary pixels in
the target and the non-hole pixels in the references*"
via attention module. They are unstable because the
context information of the hole boundary are insufficient
for similarity computation. So far, an efficient and
accurate temporal alignment solution for video
inpainting still remains under-investigated.

In addressing the temporal alignment problem, we
propose to introduce flexible shape-adaptive mesh as
basic processing unit and mesh flow as motion
representation. We suggest that, in the case of videos
with holes, mesh flow is more efficient and effective
than other motion representations. First, mesh flow can
represent more complex and coherent motions than
homography and motion vector because it describes the
motion trajectory of each pixel with multi-parameter
model. Second, mesh flow can represent more accurate
and robust motions in the hole area than optical flow
because it can introduce richer spatial context
information. Third, mesh flow is more computationally
efficient than optical flow because it is a sparse motion
field. More detailed theoretical analysis is illustrated in
Section 3. 1.

To take advantage of mesh flow towards more
effective and efficient video inpainting, we propose a
Mesh Oriented Video Inpainting nEtwork, called
MOVIE, which consists of a sequential mesh flow
estimation network and a polishing network. Since
computing the mesh flow based on frames directly is

unreliable and easily cause misalignments due to the
existence of the holes in video, we design two
sequential modules in the sequential mesh flow
estimation network. Specifically, the mesh flow
estimation module predicts mesh flows for the visible
contents of the frames to guarantee the accuracy of the
computed motions. Then the mesh flow completion
module completes the mesh flow in the hole regions of
the target frame by learning from a sequence of adjacent
mesh flows. We design a hybrid loss function to
optimize the flow estimation performance for the visible
regions, the entire frames and the inpainted regions
respectively, and train the sequential mesh flow
estimation network in an end-to-end and self-supervised
manner. For the polishing network, we align the frames
with the estimated mesh flows in a propagate manner
and feed them into the network for further refinement.
The polishing network is trained to correct the distortion
of the hole regions of each frame caused by mesh flow
transformation. Experimental results reveal the superior
of our method than the state-of-the-art schemes.

We summarize our contributions as follow :

(I) We are the first one to propose to take
advantage of mesh flows as motion representations in
addressing the misalignment problem for video
inpainting and demonstrate its superiority in both
effectiveness and efficiency compared to other motion
representations.

(II) We propose a simple yet effective model and a
hybrid loss function to better estimate mesh flows for the
video with holes and better take advantage of the mesh
flow for video inpainting.

(IT') We evaluate our method on various
challenging videos and demonstrate our proposed
approach can achieve impresive improvements in both
effectiveness and efficiency compared to the state-of-
the-art approaches.

2 related work

Recent years have witnessed remarkable progress in
video inpainting by deep learning-based approaches. In
this section, we provide an overview of the literature in
terms of alignment techniques given their effectiveness
in handling temporal consistency. We summarize the

existing methods on video inpainting into four
categories; patch matching methods, motion-based
methods, 3D convolutional neural networks and

attention-based neural networks.

2.1 Patch matching methods

Early works are mainly patch-based optimization
methods*™"?’. They split each frame of the video into
small patches and recover the hole region by pasting the
most similar patch from other frames in the video. Since
the patch-based alignment only describe simple
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translation motion for each patch, the block effects of
the completed videos are obvious. Furthermore, the
computation of patch similarity suffer from large search
space, which make the completing process extremely
slow.

2.2 Motion-based methods

Motion-based methods propose to estimate motion
information first, then warp the content from nearby
frames to target frame. The motion representations have
been investigated in deep learning-based approaches are
optical flow and homography.

Optical flow The widely wused motion
representation in deep learning based video inpainting is
optical flow, which describes per-pixel motions between
frames for warping the visible content of reference
frames to the hole area of target frame. Five optical
flow related works have been published, which explore

various strategies to exploit optical flow field
information'*~'***'. Three works estimated flows only
between the adjacent frames'”™'. Chang et al.

proposed a selective scheme to combine an optical flow
warping model and an image-based inpainting
model'”’. Ding et al. considered two branch optical
flows generated from images and deep features
separately'*). Woo et al. used the computed flow field
between the previous completed frame and the target
frame as an auxiliary model to enforce temporal
consistency' ', However, estimating optical flow on
the hole region directly is easy to lead incorrect flow
prediction. Further, Kim et al. proposes to estimate
flows of feature maps between the source and five
reference frames in multi-scales, and complete the hole
based on the aggregation of five aligned features*.
Despite consideration of long-range frames, the flows
are still computed on the hole area, which address the
above issue with little success. Xu et al. proposed a
Deep Flow Completion network to complete optical flow
by watching a sequence of flow maps from consecutive
frames, which further used to guide the propagation of
pixels to fill up the missing regions in the video''®.
This strategy can provide more accurate optical flow
estimation than previous approaches. Despite its
significant performance improvements, the dense
computation of pixel-level flow is a very time-
consuming operation such that the efficiency is still
under-explored.

Homography Two homography-based methods
are proposed to predict global transformation parameters
for aligning frames'™>'"'. They both computed affine
matrices between multiple reference frames and the
target frame for the alignment, followed by an
aggregation and refinement process. In the aggregation
stage, Woo et al. proposed a non-local attention model
to pick up the best matching patches in aligned

frames'*’ | Lee et al.

module to assign weights for each aligned frames
However, homography cannot be used to describe
complex motions, limiting its application. Besides, to
ensure long time dependency, they complete current
frame by visiting the reference frames over a long-range
distances, even the whole video shot. This strategy will
result in intensive computational cost despite the
simplicity of homography.

2.3 3D convolutional neural network

Several 3D convolutional networks are proposed to use
3D filters to convolve the features from reference frames
to target frame, which equivalent to temporal
alignment'™®™’.  Wang et al. proposed a 3D-2D
encoder-decoder network, which uses the output from
3D completion network to guide the 2D completion
network'"®’. Chang et al. did video inpainting with 3d
gated convolutional and temporal patch
discriminator'™ | and further introduced a learnable
gated temporal shift module to replace the computation-
intensive 3D convolutional layer, which leads to a 3x
reduction in computation'*'. However, the computation
cost is still heavy. The temporal window size is limited
in these 3D convolutional-based methods, hence they
lack the ability to handle long time dependency
challenge.

2.4 Attention-based neural network

Since attention module can be wused for feature
matching, Oh et al. proposed an asymmetric attention
block to compute similarities between the hole boundary
pixels in the target and the non-hole pixels in the
references in a non-local manner'”'’. The results are
unstable regarding the complex situation and small
dimension of the hole boundary.

proposed a context matching
[17]

3 Mesh oriented video inpainting network

3.1 Representations of motion information
Towards better understanding of mesh flow, we first
formulate the concept of mesh flow and compare it with
other motion representations.

Given a target frame 7 (x, y) and a reference
frame R(x, y), we aim to find mapping functions x' =
f(x, y) and y'=g(x, y) to minimize the following
objective function;

E=d{T(x, y), R(x", y') | (1)

To compute mesh flow, we first need to partition
the frame into non-overlapped regular blocks and treat
each block as a basic processing unit mesh. Each mesh
is a flexible shape-adaptive quadrilateral and can be
arbitrarily transformed according to its four vertices.
Then we compute motions of the pixels at the vertices
of the mesh quadrilaterals, and interpolate the motions
of other pixels based on the motions of the vertexes
with bilinear interpolation kernel. The model of the
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Figure 2. Motion representations, including homography,
optical flow, motion vector and mesh flow.

motions of the vertices in the mesh quadrilaterals can
be expressed as followed .

) = -4 ) )
g(x,, y,)=y, —d
where v denotes the vertices in the mesh quadrilaterals.

Mesh flow possesses several characteristics; @
mesh flow describes the motion trajectory of each pixel
with multi-parameter model, namely, the motion of
each pixel is computed with four nodal motions in its
belonged mesh quadrilateral, (2 mesh flow represents
coherent motion trajectories across mesh quadrilaterals
( see Figure 2), 3 mesh flow computes the motions of
the vertices according to their four belonged
quadrilaterals, which can introduce rich context
information for each vertice, @ mesh flow is a sparse
motion field.

Homography describes affine mapping between
two images, which is formulated as below:

f(x,y)=a0+a,x+a2y} (3)
g(x,y) =by +bx + byy
where all the pixel share the same affine transformation
parameters a,,qa, ,d,,b,,b, ,b,.

Since homography can only represents camera
moving over a stationary scene, it cannot handle
complex scenarios with multi-object motions.

Optical flow computes motion information in
pixel-level, the motion model of each pixel can be
expressed as followed;

f(x,y)=x—d.f} "
glx,y)=y-d,

It is worth noting that what we need are the
motion trajectories of the pixels in the hole area. While
optical flow cannot introduce rich context information
for these pixels as mesh flow, the optical flow
estimation in the hole area is not reliable. In addition,
optical flow is a dense motion field, which makes the
flow estimation computation-intensive and time-
consuming.

Motion vector describes motion information in a
patch-based manner. Since realistic motion in a patch
may be more complicated than translation, motion
vector cannot provide precise motion representation.
Further, applying motion vectors as the description of
motion information is easy to render blocking effect
when predicting image due to discontinuity across block
boundary ( see Figure 2). In comparison, mesh flow
can represent more complex non-linear motion
transformation and produce more continuous results.

Overall, mesh flow is more efficient and effective
compared with other motion representations for the
video inpainting task, in which the video has holes.

3.2 Sequential mesh flow estimation
network

Given a sequence of frames {/,| t=1,---,n} with holes
{H,(| t=1,---,n}, our goal is to estimate the meshes
{M,l t=1,---,n—1} between frames wherein we also
need take into account corrupted contents
( corresponding to the holes).

Since the spatial information is not sufficient due
to the holes in video, computing the meshes based on
frames directly is unreliable and easily cause
misalignments. Thus, we propose to estimate the mesh
flow of each entire frame in a sequential manner. The
first step is to compute the mesh flow corresponding to
visible regions of frames. Afterwards, we estimate the
mesh flow corresponding to the corrupted parts (i.e. ,
holes) based on adjacent mesh flows. The framework
is illustrated in Figure 3.

As the left part of Figure 3 shown, we first build a
mesh estimation module to infer the mesh flows of
visible regions between two adjacent frames /,_, and ,.
The module encodes each frame with hole, I,& 1-H,)
and I_, & 1-H,_,), then feeds the concatenation of the
features into a sequence of residual blocks'?’, and
finally outputs the estimated mesh flow. Note that the
final mesh flow M’ _, is generated by multiplying the
output mesh flow with the two holes H,_, xH,. The size
of mesh is decided by the size of video and partitioned
block. If the size of video is W * H and the size of
block is S, xS,, then the size of mesh is W/S,xH/S,.

The right part of Figure 3 illustrates the process of
completing invisible region of mesh flow. To complete
the target mesh flow M’',_,, we first collect N
consecutive mesh flows M’ _,, ---, M',_, before the
target mesh flow and N consecutive mesh flows M’,,

--,M',,, after it as references. Then we concatenate
these NX2 mesh flows with the target mesh flow, and
feed them into a residual block-based module to
generate the final completed mesh flow. We set Nx2 =
10 based on experimental analysis.
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Figure 3. Overview of the sequential mesh estimation network. The network consists of two modules: mesh estimation module and
mesh completion module. The mesh estimation module predicts meshes for the visible regions of the frames, and the mesh
completion module completes the missing area of mesh of the target frame by learning from a sequence of adjacent meshes.

3.3 The hybrid loss function for the sequential
mesh flow estimation network

We optimize the sequential mesh flow estimation
network in a self-supervised manner. Firstly, we
upsample the mesh flows to pixel-level flow maps by
interpolating from nodal motions with bilinear
interpolation kernel. Then we align the frames based
on the pixel-level flow maps, and optimize for
minimizing the Z, distance between the target frames
and the aligned frames.

For the first mesh flow estimation module, we
adopt the Z, loss for visible regions. Since (2XN+1)
mesh flows are needed for completing one mesh flow,
we compute the average value of these (2xN+1)\ %,
distances.

o

"Jﬁl(visih]c region)
t+N-1
> H OHO | Vertl —'(I, 0) |,
i=t-N-1

2 xN+1 ()
where I denotes the input frame, H denotes the holes,
' denotes the warping function with the predicted
mesh flow 6'.

For the second mesh flow completion module, we
propose two %, loss functions, loss for the entire frame
and loss for the inpainted regions.

L tramey = 1M, = @"(1,,0") ||,
‘f%}l(inpaimed region) =
o"(H,_,0")O(1 ~H)O || 1, —o"({_,, 0") ||,
(6)
where I denotes the input frame, H denotes the holes,
" denotes the warping function with the final
completed mesh flow 6".

In summary, the hybrid loss function of the
sequential mesh flow estimation network is as follows:

£ =% + % + %

71 ( visible region) "1 (the frame) ';l(inpaimed region)

(7)

3.4 Polishing network
We illustrate the procedure of the polishing network in
Figure 4. Given the mesh flows estimated by the
sequential mesh flow estimation network, we perform
the alignment procedure between two frames as
described in section 3. 3. To get the final aligned
results, we perform the alignment operations for the
frames ( with the holes) pair by pair from the first two
frames to the last two frames, and then repeat the same
procedure backwardly. Then we concatenate the
aligned frames and holes with the input frames and
holes, and feed them into a residual block-based
polishing network to generate the final refined output.
We illustrate the procedure of the polishing
network in Figure 4. The whole procedure has three
steps: forward propagation, backward propagation and
refinement. In the first step, we first warp the visible
content of the first frame to the hole of the second
frame with mesh flow, and update the mask of the
second frame. We do the same warping operation one
by one from the first frame to the last frame. In the
second step, we do the same procedure as the first step
backwardly. In the final step, we concatenate the
aligned frames and holes with the input frames and
holes, and feed them into a residual block-based
polishing network to generate the final refined output.
We design two loss functions specific to the
inpainted region and the entire frame respectively to
train the polishing network. Among them, .7, based
loss function is designed for refining adopted contents
in the hole regions of the frame, while the adversarial
loss'*! is designed for making the completed contents
more realistic and more consistent with visible regions.

k7 =(1 -H)O || I-w(l, 0) |,

Z
1 (inpainted region)

Ezv(l,y)[eloge(] _D((IN)(], 5)))]
(8)
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Figure 4. The process of video polishing. We first use the
estimated mesh flows to warp the contents in a propagation
manner forwardly, and then repeat the same procedure
backwardly. Finally, we concatenate the aligned frames and
holes with the input frames and holes, and feed them into a
residual block-based polishing network to generate the final
refined output.

where I denotes the input frame, H denotes the holes,
 denotes the forward and backward warping function

with the completed mesh flows 6.

In summary, the total loss of the polishing
network is as follows:

z =‘%;l(inpaimed region) T 2 (9)
3.5 Implementation detail
We train our method in two stage, first the sequential
mesh flow estimation network, then the polishing
network. The two models both run on hardware with
the Intel(R) Xeon(R) CPU E5-2620 v4 and GeForce
GTX 1080Ti GPUs.

We train the sequential mesh flow estimation
network on 3471 videos in the YouTubVOS'*’ dataset.
For each sample, we select 12 frames with random
frame step between 1 to 5 in one video. To collect the
hole mask, we use the irregular mask dataset provided
by an image inpainting work PartialConv'*’', which
contains 12000 mask files. We further augment the
mask dataset to 480000 mask files by performing
random translation, flipping and rotation. During
training, we randomly select 12 masks for each
sample.

We use the Adam Optimizer with 8 = (0. 9,
0.999) and learning rates =10*. Using one GeForce
GTX 1080Ti GPU, the early convergency takes about

Ground Truth

Figure 5. Video sequence for quantitative comparisons. The
masks are selected from other videos in the DAVIS dataset.

8 hours, and the final convergency takes about one
week (the PSNR improves about 1dB).

Then we build training data for the polishing
network by performing temporal alignment operations
on the 3471 videos of the YouTubeVOS dataset. For
each video, the alignment operation propagates
forwardly and backwardly with the output of the
sequential mesh flow estimation network. The random
selected masks are also saved with the aligned results.

We use the Adam Optimizer with 8 = (0. 9,
0.999) and learning rates =107*. Using one GeForce
GTX 1080Ti GPU, the early convergency takes about
2 hours, and the final convergency takes about 3 days
(the PSNR improves about 1dB).

4 Experiments

4.1 Evaluation datasets

To demonstrate the qualitative and quantitative
performance of our proposed method MOVIE, we
evaluate it on DAVIS'?*) dataset, which consists of
pixel-wise foreground object annotation.

For qualitative evaluation, we test on several
video sequences with large motions and use the labeled
pixel-wise foreground objects as holes. For quantitative
evaluation, we randomly select 37 video sequences
with 2139 frames in total in DAVIS dataset. Since the
ground-truths of removed regions are not available
while removing the objects directly in the video, we
randomly select a mask sequence for each video from
other videos in the DAVIS dataset. Figure 5 shows two
samples of the test sequences, which contain large
foreground objects in the hole region and the motions
are complicated. We report the evaluation in terms of
PSNR and SSIM, which are commonly used in video
inpainting tasks. We also conduct ablation studies on
these 37 video sequences. Inference speed is computed
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Original

Figure 6. Qualitative results compared with the state-of-the-art methods on DAVIS dog-agility video sequence. Our method can
complete the white and red pole with more precise and coherent structure.

Original

Patch-based

Flow-guided

GatedTSM

OnionPeel 3DGatedConv

Figure 7. Qualitative results compared with the state-of-the-art methods on DAVIS motocross-bumps video sequence. Our method

can complete the two white-stripe warning lines more continuously.

on a NVIDIA GTX 1080 Ti GPU for frames of
256x256 pixels.

4.2 Baselines

We compare our approach with the state-of-the-art
approaches which can be categorized as follows:

Patch-based Patch-based''"’ completes the hole
of a video via patch-based similar matching.

Optical flow-based  DVI'? is a two-frame
optical flow-based method, and Flow-guided''®’ uses a
sequence of flow maps from consecutive frames to
complete the target optical flow.

Homography-based ~ CPnet''”) does temporal
alignment by computing affine matrices between two
frames.

3D convolution-based GateTSM'™’  and
3DGatedConv'"®’ both introduce new modules in 3D
convolution layers for better performance and faster
computation speed.

Attention-based OnionPee uses  an
asymmetric attention block to compute similarities

1[21]

between the hole boundary pixel in the target and the
non-hole pixels in the references in a non-local
manner.

4.3 Qualitative results

We illustrate the qualitative results in Figures 6 and 7,
where the video sequence is a large motion video. As
shown in the Figures, our method can complete the
white and red pole with more precise and coherent
structure. Our method is able to deal with the
complicated situations, while the state-of-the-art
methods have limitations in inpainting consistent results
in which obvious artifacts can be observed. We
illustrate the qualitative results in Figures 6 and 7,
where these two video sequences are both large motion
videos. As shown in the Figures, our method can
complete the white and red pole with more precise and
coherent structure (in Figure 6) , and can complete the
two white-stripe warning lines more continuously (in
Figure 7). Our method is able to deal with these
complicated situations, while the state-of-the-art
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methods have limitations in inpainting consistent results
in which obvious artifacts can be observed.

The performance improvement would come from
two aspects: the superiority of mesh flow and the
design of the sequential mesh flow estimation network.
Mesh flow can represent complex non-linear motion
transformations and coherent motion trajectories across
mesh quadrilaterals. Further, the design of the
sequential mesh flow estimation network can guarantee
the precise estimation of the mesh flow in the hole
areas of the video.

4.4 Quantitative results

We show the quantitative results in Table 1. Our
method produces significant improvement ( more than
1dB PSNR) over the current state-of-the-arts on the
challenging datasets which contain complex motions
from foreground objects, and show speedups of up to
about 4x against the fastest method and more than 20x
against the best method.

The reconstruction values demonstrate that several
methods fail to produce high reconstructed values due
to the complex foreground motions in the hole region,
including patch-based method'""’ | two-frame optical
flow-based method DVI'*' homography-based
method CPnet''”’, 3D convolution-based methods
GateTSM'™' and 3DGatedConv'"®'. Their weaknesses
have been analyzed in detail in section related work.
Further, Flow-guided''®’ and OnionPeel'*’ can inpaint
with higher PSNR but not reliable. Flow-guided' "' is
easily affected by the noise introduced by the missed
contents while estimates motion trajectories of the hole
area in pixel-level. OnionPeel'?'’ is failed due to the

Table 1. Quantitative comparison with the state-of-the-art
methods. Our method produces signicant improvement ( more
than 1dB PSNR) over the current state-of-the-art methods, and
show speedups of up to about 4x against the fastest method and
more than 20x against the best method.

Speed

Method Type PSNR SSIM
P (fps)

Patch-based""" Patch-based 24.92 0.8%2 0.04

DI Optical flow-based 25.52 0.860 7.42
GatedTSM™ 3Dconv-based 25.81 0.867 2.38
CPret!"” Homography-based 25.94 0.869 2.86

3DGatedConv' ™ 3Dconv-based 26.79 0.893 2.74

OnionPeel ! Attention-based ~ 28.79 0.942 6.74
Flow-guided'"®’  Optical flow-based 29.31 0.945 1.24
Ours Mesh flow-based  30.31 0.948 29.19

small dimension of the hole boundary which used for
computing similarities.

In comparison, our method can handle complex
motions more precisely and efficiently. The results show
that mesh flow can be used to provide more precise
temporal alignment with the well-designed sequential
mesh flow estimation network. Meanwhile, our method
is a computationally efficient solution.

4.5 Ablation study on the sequential mesh flow
estimation network
In this section, we conduct a series of ablation studies to
analyze the effectiveness of each component in the
sequential mesh flow estimation network. Quantitative
analyses are conducted on 37 video sequences described
in Section 4.1 whose mask sequences are selected from
other videos. We train each model in 50,000 iterations
and optimize the models in the same training settings for
fair compirason. The training process takes about 8 hours.

(I) The effectiveness of the sequential mesh flow
estimation: Our model estimates mesh flows in a
sequential manner; first estimates mesh flows for visible
contents of the frames, then completes the mesh flows
of hole areas by learning from the adjacent mesh flows.
To analyze the effectiveness of this sequential strategy,
we compare with a direct mesh flow estimation model
which estimates the mesh flows directly given a
sequence of frames and holes. As illustrated in Figure
8, estimating mesh flow in sequential manner can
generate more accurate mesh flows, while estimating
mesh flows directly totally fails.

(I) Ablation study on mesh size: As shown in
Table 2, we analyze the influence of mesh size.

The results show that setting the mesh size to 8 can
achieve better performance. The mesh size larger than 8
may fail to describe the complex motions in the holes.
And the mesh size smaller than 8 cannot exploit
sufficient information for aligning frames.

Estimate mesh flow Estimate mesh flow

Input

in sequential manner directly

Figure 8. Ablation study on the effectiveness of the
sequential mesh flow estimation strategy.
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Table 2. Ablation study on different mesh sizes.

mesh size PSNR SSIM
4 26.96 0.921
8 28.25 0.930
16 26.01 0.901
32 26.35 0.916

Table 3. Ablation study on number of references.

number of references PSNR SSIM
6 27.21 0.924
8 27.83 0.929
10 28.25 0.930

Figure 9. Ablation study on the hybrid loss function in the
sequential mesh flow estimation network. The symbols in
the left-top corner of each frame represent the three loss
functions respectively: L1 loss for visible region, Ll loss
for the entire frame, L1 loss for inpainted region.

(1) Ablation study on number of references: We
further analyze the influence of number of references.
Note that the number of mesh flows larger than 12 will
lead to out-of-memory error, hence we set the number
of mesh flows up to 10. As shown in Table 3, larger
number can lead to better performance.

(IV) Ablation study on the hybrid loss function:
To evaluate the hybrid loss function of the sequential
mesh flow estimation network, we train the model in
different combination settings of the three loss functions
in the hybrid loss function. As shown in Table 4, each
of the three loss functions make positive contribution to
the final performance.

The aligned results are illustrated in Figure 9.
Specifically, the two results in the left column indicate
that the results are totally failed without 41 loss for the
entire frame. The comparison between the results in the
right column and the middle column shows that £, loss
for inpainted region can lead to more consistent texture.

Table 4. Ablation study on the hybrid loss function of the
sequential mesh flow estimation network.

L1 loss for L1 loss for L1 loss for

visible region the entire frame inpainted region Lol L
X x vV 26.19 0.914
% v x 28.68 0.934
X 4 vV 28.75 0.936
v x vV 23.07 0.881
v 4 x 28.75 0.936
v % vV 28.89 0.936

Table 5. Ablation study on Polishing Network. The polishing
network can achieve 1dB PSNR improvement.

polishing network PSNR SSIM
with 29.25 0.945
w/o 30.31 0.948

Before refinement

Figure 10. Ablation study on the polishing network. The
polishing network can smooth the artifact of the result and
make it more visually plausible.

And the effectiveness of L1 loss for visible region is
illustrated in the comparison between the two results in
the right column.

4.6 Ablation study on the polishing network

In this section, we conduct ablation study regarding the
polishing network. The results in Table 5 indicate that
the polishing network can achieve 1dB PSNR
improvement. Figure 10 shows that the polishing
network can smooth the artifact of the result and make it
more visually plausible.

5 Conclusion

In this paper, we propose an efficient and effective
method for video inpainting. In essence, our main idea
is to introduce mesh flow as a more proper
representation of motion information so as to better
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target the temporal misalignment problem for video
inpainting. Specifically, We design a sequential mesh
flow estimation network which firstly predicts mesh flow
only for visible regions of frames, then completes the
holes of mesh flow by learning from the adjacent mesh
flows. We further design a polishing network to polish
the aligned results. Experiment results show that our
method yields more promising results with higher
inpainting quality in both quantitative and perceptual
metrics, and achieves four-time speed-up at least in
completing the missing area.
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