[1] |
Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms[J]. Protein Sci, 1998, 4: 1 029-1 038.
|
[2] |
Chou J J, Kaufman J D, Stahl S J, et al. Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel[J]. J Am Chem Soc, 2002, 11: 2 450-2 451.
|
[3] |
Al-Hashimi H M, Valafar H, Terrell M, et al. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings[J]. J Magn Reson, 2000, 2: 402-406.
|
[4] |
Ottiger M, Bax A. Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules[J]. J Biomol NMR, 1998, 3: 361-372.
|
[5] |
Opella S J, Marassi F M. Structure determination of membrane proteins by NMR spectroscopy[J]. Chem Rev, 2004, 8: 3 587-3 606.
|
[6] |
Nicholson L K, Moll F, Mixon T E, et al. Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A[J]. Biochemistry, 1987, 21: 6 621-6 626.
|
[7] |
Ketchem R, Roux B, Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints[J]. Structure, 1997, 12: 1 655-1 669.
|
[8] |
Quine J R, Brenneman M T, Cross T A. Protein structural analysis from solid-state NMR-derived orientational constraints[J]. Biophys J, 1997, 5: 2 342-2 348.
|
[9] |
Poget S F, Girvin M E. Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better[J]. Biochim Biophys Acta, 2007, 12: 3 098-3 106.
|
[10] |
Poget S F, Cahill S M, Girvin M E. Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies[J]. J Am Chem Soc, 2007,129(9):2 432-2 433.
|
[11] |
Tucker J, Grisshammer R. Purification of a rat neurotensin receptor expressed in Escherichia coli[J]. Biochem J, 1996, 891-899.
|
[12] |
Tian C, Karra M D, Ellis C D, et al. Membrane protein preparation for TROSY NMR screening[J]. Methods Enzymol, 2005, 321-334.
|
[13] |
Tian C, Vanoye C G, Kang C, et al. Preparation, functional characterization, and NMR studies of human KCNE1, a voltage-gated potassium channel accessory subunit associated with deafness and long QT syndrome[J]. Biochemistry, 2007, 41: 11 459-11 472.
|
[14] |
Tian C, Breyer R M, Kim H J, et al. Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor[J]. J Am Chem Soc, 2005, 22: 8 010-8 011.
|
[15] |
Sanders C R, Oxenoid K. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins[J]. Biochim Biophys Acta, 2000, 1-2: 129-145.
|
[16] |
Rigaud J L, Pitard B, Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins[J]. Biochim Biophys Acta, 1995, 3: 223-246.
|
[17] |
Angrand M, Briolay A, Ronzon F, et al. Detergent-mediated reconstitution of a glycosyl-phosphatidylinositol-protein into liposomes[J]. Eur J Biochem, 1997, 1: 168-176.
|
[18] |
Knol J, Sjollema K, Poolman B. Detergent-mediated reconstitution of membrane proteins[J]. Biochemistry, 1998, 46: 16 410-16 415.
|
[19] |
Moll F, 3rd Cross T A. Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D[J]. Biophys J, 1990, 2: 351-362.
|
[20] |
LoGrasso P V, Moll F, 3rd Cross T A. Solvent history dependence of gramicidin A conformations in hydrated lipid bilayers[J]. Biophys J, 1988, 2: 259-267.
|
[21] |
Tian C, Tobler K, Lamb R A, et al. Expression and initial structural insights from solid-state NMR of the M2 proton channel from influenza A virus[J]. Biochemistry, 2002, 37: 11 294-11 300.
|
[22] |
Quine J R, Cross T A. Protein Structure in Anisotropic Environments: Unique Structural Fold from Orientational Constrains[J]. Concepts in Magnetic Resonance, 2000, 2: 71-82.
|
[23] |
Quine J R, Cross T A, Chapman M S, et al. Mathematical aspects of protein structure determination with NMR orientational restraints[J]. Bull Math Biol, 2004, 6: 1 705-1 730.
|
[24] |
Pervushin K, Riek R, Wider G, et al. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution[J]. Proc Natl Acad Sci U S A, 1997, 23: 12 366-12 371.
|
[25] |
Voehler M W, Collier G, Young J K, et al. Performance of cryogenic probes as a function of ionic strength and sample tube geometry[J]. J Magn Reson, 2006, 1: 102-109.
|
[26] |
Kelly A E, Ou H D, Withers R, et al. Low-conductivity buffers for high-sensitivity NMR measurements[J]. J Am Chem Soc, 2002, 40: 12 013-12 019.
|
[27] |
Sanders C R, Sonnichsen F. Solution NMR of membrane proteins: practice and challenges[J]. Magn Reson Chem, 2006, S24-40.
|
[28] |
Dosset P, Hus J C, Marion D, et al. A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings[J]. J Biomol NMR, 2001, 3: 223-231.
|
[29] |
Valafar H, Prestegard J H. REDCAT: a residual dipolar coupling analysis tool[J]. J Magn Reson, 2004, 2: 228-241.
|
[30] |
Battiste J L, Wagner G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data[J]. Biochemistry, 2000, 18: 5 355-5 365.
|
[31] |
Tugarinov V, Kay L E. An isotope labeling strategy for methyl TROSY spectroscopy[J]. J Biomol NMR, 2004, 2: 165-172.
|
[32] |
Tugarinov V, Kay L E. Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods[J]. J Am Chem Soc, 2003, 45: 13 868-13 878.
|
[33] |
Li C, Mo Y, Hu J, et al. Analysis of RF heating and sample stability in aligned static solid-state NMR spectroscopy[J]. J Magn Reson, 2006, 1: 51-57.
|
[34] |
Gorkov P L, Chekmenev E Y, Fu R, et al. A large volume flat coil probe for oriented membrane proteins[J]. J Magn Reson, 2006, 1: 9-20.
|
[35] |
Wang J, Denny J, Tian C, et al. Imaging membrane protein helical wheels[J]. J Magn Reson, 2000, 1: 162-167.
|
[36] |
Mesleh M F, Veglia G, DeSilva T M, et al. Dipolar waves as NMR maps of protein structure[J]. J Am Chem Soc, 2002, 16: 4 206-4 207.
|
[37] |
Mesleh M F, Opella S J. Dipolar Waves as NMR maps of helices in proteins[J]. J Magn Reson, 2003, 2: 288-299.
|
[38] |
Schaefer J. REDOR-determined distances from heterospins to clusters of 13C labels[J]. J Magn Reson, 1999, 1: 272-275.
|
[39] |
Castellani F, van Rossum B, Diehl A, et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy[J]. Nature, 2002, 6 911: 98-102.
|
[40] |
Li Y, Kijac A Z, Sligar S G, et al. Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy[J]. Biophys J, 2006, 10: 3 819-3 828.
|
[41] |
Lorch M, Fahem S, Kaiser C, et al. How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E[J]. coli. Chembiochem, 2005, 9: 1 693-1 700.
|
[42] |
Bechinger B, Aisenbrey C, Bertani P. The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy[J]. Biochim Biophys Acta, 2004, 1-2: 190-204.
|
[43] |
Shimba N, Kovacs H, Stern A S, et al. Optimization of 13C direct detection NMR methods[J]. J Biomol NMR, 2004, 2: 175-179.
|
[44] |
Bertini I, Felli I C, Kummerle R, et al. 13C-13C NOESY: A constructive use of 13C-13C spin-diffusion[J]. J Biomol NMR, 2004, 3: 245-251.
|
[45] |
Tugarinov V, Kay L E, Ibraghimov I, et al. High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition[J]. J Am Chem Soc, 2005, 8: 2 767-2 775.
|
[46] |
Shen Y, Lange O, Delaglio F, et al. Consistent blind protein structure generation from NMR chemical shift data[J]. Proc Natl Acad Sci U S A, 2008, 12: 4 685-4 690.
|
[47] |
Morcombe C R, Paulson E K, Gaponenko V, et al. 1H-15N correlation spectroscopy of nanocrystalline proteins[J]. J Biomol NMR, 2005, 3: 217-230.
|
[48] |
Lefman J, Zhang P, Hirai T, et al. Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the chemotaxis receptor Tsr[J]. J Bacteriol, 2004, 15: 5 052-5 061.
|
[49] |
Elmes M L, Scraba D G, Weiner J H. Isolation and characterization of the tubular organelles induced by fumarate reductase overproduction in Escherichia coli[J]. J Gen Microbiol, 1986, 1 429-1 439.
|
[50] |
Reif B, Griffin R G. 1H detected 1H,15N correlation spectroscopy in rotating solids[J]. J Magn Reson, 2003,1: 78-83.
|
[51] |
Zhou D H, Shah G, Cormos M, et al. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning[J]. J Am Chem Soc, 2007,38: 11 791-11 801.
|
[1] |
Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms[J]. Protein Sci, 1998, 4: 1 029-1 038.
|
[2] |
Chou J J, Kaufman J D, Stahl S J, et al. Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel[J]. J Am Chem Soc, 2002, 11: 2 450-2 451.
|
[3] |
Al-Hashimi H M, Valafar H, Terrell M, et al. Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings[J]. J Magn Reson, 2000, 2: 402-406.
|
[4] |
Ottiger M, Bax A. Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules[J]. J Biomol NMR, 1998, 3: 361-372.
|
[5] |
Opella S J, Marassi F M. Structure determination of membrane proteins by NMR spectroscopy[J]. Chem Rev, 2004, 8: 3 587-3 606.
|
[6] |
Nicholson L K, Moll F, Mixon T E, et al. Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A[J]. Biochemistry, 1987, 21: 6 621-6 626.
|
[7] |
Ketchem R, Roux B, Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints[J]. Structure, 1997, 12: 1 655-1 669.
|
[8] |
Quine J R, Brenneman M T, Cross T A. Protein structural analysis from solid-state NMR-derived orientational constraints[J]. Biophys J, 1997, 5: 2 342-2 348.
|
[9] |
Poget S F, Girvin M E. Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better[J]. Biochim Biophys Acta, 2007, 12: 3 098-3 106.
|
[10] |
Poget S F, Cahill S M, Girvin M E. Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies[J]. J Am Chem Soc, 2007,129(9):2 432-2 433.
|
[11] |
Tucker J, Grisshammer R. Purification of a rat neurotensin receptor expressed in Escherichia coli[J]. Biochem J, 1996, 891-899.
|
[12] |
Tian C, Karra M D, Ellis C D, et al. Membrane protein preparation for TROSY NMR screening[J]. Methods Enzymol, 2005, 321-334.
|
[13] |
Tian C, Vanoye C G, Kang C, et al. Preparation, functional characterization, and NMR studies of human KCNE1, a voltage-gated potassium channel accessory subunit associated with deafness and long QT syndrome[J]. Biochemistry, 2007, 41: 11 459-11 472.
|
[14] |
Tian C, Breyer R M, Kim H J, et al. Solution NMR spectroscopy of the human vasopressin V2 receptor, a G protein-coupled receptor[J]. J Am Chem Soc, 2005, 22: 8 010-8 011.
|
[15] |
Sanders C R, Oxenoid K. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins[J]. Biochim Biophys Acta, 2000, 1-2: 129-145.
|
[16] |
Rigaud J L, Pitard B, Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins[J]. Biochim Biophys Acta, 1995, 3: 223-246.
|
[17] |
Angrand M, Briolay A, Ronzon F, et al. Detergent-mediated reconstitution of a glycosyl-phosphatidylinositol-protein into liposomes[J]. Eur J Biochem, 1997, 1: 168-176.
|
[18] |
Knol J, Sjollema K, Poolman B. Detergent-mediated reconstitution of membrane proteins[J]. Biochemistry, 1998, 46: 16 410-16 415.
|
[19] |
Moll F, 3rd Cross T A. Optimizing and characterizing alignment of oriented lipid bilayers containing gramicidin D[J]. Biophys J, 1990, 2: 351-362.
|
[20] |
LoGrasso P V, Moll F, 3rd Cross T A. Solvent history dependence of gramicidin A conformations in hydrated lipid bilayers[J]. Biophys J, 1988, 2: 259-267.
|
[21] |
Tian C, Tobler K, Lamb R A, et al. Expression and initial structural insights from solid-state NMR of the M2 proton channel from influenza A virus[J]. Biochemistry, 2002, 37: 11 294-11 300.
|
[22] |
Quine J R, Cross T A. Protein Structure in Anisotropic Environments: Unique Structural Fold from Orientational Constrains[J]. Concepts in Magnetic Resonance, 2000, 2: 71-82.
|
[23] |
Quine J R, Cross T A, Chapman M S, et al. Mathematical aspects of protein structure determination with NMR orientational restraints[J]. Bull Math Biol, 2004, 6: 1 705-1 730.
|
[24] |
Pervushin K, Riek R, Wider G, et al. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution[J]. Proc Natl Acad Sci U S A, 1997, 23: 12 366-12 371.
|
[25] |
Voehler M W, Collier G, Young J K, et al. Performance of cryogenic probes as a function of ionic strength and sample tube geometry[J]. J Magn Reson, 2006, 1: 102-109.
|
[26] |
Kelly A E, Ou H D, Withers R, et al. Low-conductivity buffers for high-sensitivity NMR measurements[J]. J Am Chem Soc, 2002, 40: 12 013-12 019.
|
[27] |
Sanders C R, Sonnichsen F. Solution NMR of membrane proteins: practice and challenges[J]. Magn Reson Chem, 2006, S24-40.
|
[28] |
Dosset P, Hus J C, Marion D, et al. A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings[J]. J Biomol NMR, 2001, 3: 223-231.
|
[29] |
Valafar H, Prestegard J H. REDCAT: a residual dipolar coupling analysis tool[J]. J Magn Reson, 2004, 2: 228-241.
|
[30] |
Battiste J L, Wagner G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data[J]. Biochemistry, 2000, 18: 5 355-5 365.
|
[31] |
Tugarinov V, Kay L E. An isotope labeling strategy for methyl TROSY spectroscopy[J]. J Biomol NMR, 2004, 2: 165-172.
|
[32] |
Tugarinov V, Kay L E. Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods[J]. J Am Chem Soc, 2003, 45: 13 868-13 878.
|
[33] |
Li C, Mo Y, Hu J, et al. Analysis of RF heating and sample stability in aligned static solid-state NMR spectroscopy[J]. J Magn Reson, 2006, 1: 51-57.
|
[34] |
Gorkov P L, Chekmenev E Y, Fu R, et al. A large volume flat coil probe for oriented membrane proteins[J]. J Magn Reson, 2006, 1: 9-20.
|
[35] |
Wang J, Denny J, Tian C, et al. Imaging membrane protein helical wheels[J]. J Magn Reson, 2000, 1: 162-167.
|
[36] |
Mesleh M F, Veglia G, DeSilva T M, et al. Dipolar waves as NMR maps of protein structure[J]. J Am Chem Soc, 2002, 16: 4 206-4 207.
|
[37] |
Mesleh M F, Opella S J. Dipolar Waves as NMR maps of helices in proteins[J]. J Magn Reson, 2003, 2: 288-299.
|
[38] |
Schaefer J. REDOR-determined distances from heterospins to clusters of 13C labels[J]. J Magn Reson, 1999, 1: 272-275.
|
[39] |
Castellani F, van Rossum B, Diehl A, et al. Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy[J]. Nature, 2002, 6 911: 98-102.
|
[40] |
Li Y, Kijac A Z, Sligar S G, et al. Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy[J]. Biophys J, 2006, 10: 3 819-3 828.
|
[41] |
Lorch M, Fahem S, Kaiser C, et al. How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E[J]. coli. Chembiochem, 2005, 9: 1 693-1 700.
|
[42] |
Bechinger B, Aisenbrey C, Bertani P. The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy[J]. Biochim Biophys Acta, 2004, 1-2: 190-204.
|
[43] |
Shimba N, Kovacs H, Stern A S, et al. Optimization of 13C direct detection NMR methods[J]. J Biomol NMR, 2004, 2: 175-179.
|
[44] |
Bertini I, Felli I C, Kummerle R, et al. 13C-13C NOESY: A constructive use of 13C-13C spin-diffusion[J]. J Biomol NMR, 2004, 3: 245-251.
|
[45] |
Tugarinov V, Kay L E, Ibraghimov I, et al. High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition[J]. J Am Chem Soc, 2005, 8: 2 767-2 775.
|
[46] |
Shen Y, Lange O, Delaglio F, et al. Consistent blind protein structure generation from NMR chemical shift data[J]. Proc Natl Acad Sci U S A, 2008, 12: 4 685-4 690.
|
[47] |
Morcombe C R, Paulson E K, Gaponenko V, et al. 1H-15N correlation spectroscopy of nanocrystalline proteins[J]. J Biomol NMR, 2005, 3: 217-230.
|
[48] |
Lefman J, Zhang P, Hirai T, et al. Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the chemotaxis receptor Tsr[J]. J Bacteriol, 2004, 15: 5 052-5 061.
|
[49] |
Elmes M L, Scraba D G, Weiner J H. Isolation and characterization of the tubular organelles induced by fumarate reductase overproduction in Escherichia coli[J]. J Gen Microbiol, 1986, 1 429-1 439.
|
[50] |
Reif B, Griffin R G. 1H detected 1H,15N correlation spectroscopy in rotating solids[J]. J Magn Reson, 2003,1: 78-83.
|
[51] |
Zhou D H, Shah G, Cormos M, et al. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning[J]. J Am Chem Soc, 2007,38: 11 791-11 801.
|