ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry; Physics 15 July 2024

Large and nonlinear electric field response in a two-dimensional ferroelectric Rashba material

Cite this:
https://doi.org/10.52396/JUSTC-2024-0004
More Information
  • Author Bio:

    Li Sheng is currently a graduate student in the Department of Chemical Physics, University of Science and Technology of China, under the supervision of Prof. Qunxiang Li. His research mainly focuses on computer simulations of catalytic and magnetic properties of two-dimensional materials

    Xiaomin Fu is currently a graduate student in the Department of Chemical Physics, University of Science and Technology of China, under the supervision of Prof. Qunxiang Li. Her research mainly focuses on computer simulations of two-dimensional Rashba materials

    Xingxing Li is a Professor in the Department of Chemical Physics, University of Science and Technology of China (USTC). He received his Ph.D. degree in Physical Chemistry from USTC in 2015. His research mainly focuses on the first-principles studies of low-dimensional spintronic materials and molecular devices

    Qunxiang Li is a Professor in the Department of Chemical Physics, University of Science and Technology of China (USTC). He received his Ph.D. degree in Condensed Matter Physics from USTC in 1999. His research mainly focuses on single molecule chemical physics, molecular electronics, and computational materials science

  • Corresponding author: E-mail: lixx@ustc.edu.cn; E-mail: liqun@ustc.edu.cn
  • Received Date: 23 January 2024
  • Accepted Date: 02 April 2024
  • Available Online: 15 July 2024
  • The achievement of electrical spin control is highly desirable. One promising strategy involves electrically modulating the Rashba spin orbital coupling effect in materials. A semiconductor with high sensitivity in its Rashba constant to external electric fields holds great potential for short channel lengths in spin field-effect transistors, which is crucial for preserving spin coherence and enhancing integration density. Hence, two-dimensional (2D) Rashba semiconductors with large Rashba constants and significant electric field responses are highly desirable. Herein, by employing first-principles calculations, we design a thermodynamically stable 2D Rashba semiconductor, YSbTe3, which possesses an indirect band gap of 1.04 eV, a large Rashba constant of 1.54 eV·Å and a strong electric field response of up to 4.80 e·Å2. In particular, the Rashba constant dependence on the electric field shows an unusual nonlinear relationship. At the same time, YSbTe3 has been identified as a 2D ferroelectric material with a moderate polarization switching energy barrier (~ 0.33 eV per formula). By changing the electric polarization direction, the Rashba spin texture of YSbTe3 can be reversed. These outstanding properties make the ferroelectric Rashba semiconductor YSbTe3 quite promising for spintronic applications.
    To date, monolayer YSbTe 3 has been identified as a ferroelectric Rashba semiconductor with the largest electric field response.
    The achievement of electrical spin control is highly desirable. One promising strategy involves electrically modulating the Rashba spin orbital coupling effect in materials. A semiconductor with high sensitivity in its Rashba constant to external electric fields holds great potential for short channel lengths in spin field-effect transistors, which is crucial for preserving spin coherence and enhancing integration density. Hence, two-dimensional (2D) Rashba semiconductors with large Rashba constants and significant electric field responses are highly desirable. Herein, by employing first-principles calculations, we design a thermodynamically stable 2D Rashba semiconductor, YSbTe3, which possesses an indirect band gap of 1.04 eV, a large Rashba constant of 1.54 eV·Å and a strong electric field response of up to 4.80 e·Å2. In particular, the Rashba constant dependence on the electric field shows an unusual nonlinear relationship. At the same time, YSbTe3 has been identified as a 2D ferroelectric material with a moderate polarization switching energy barrier (~ 0.33 eV per formula). By changing the electric polarization direction, the Rashba spin texture of YSbTe3 can be reversed. These outstanding properties make the ferroelectric Rashba semiconductor YSbTe3 quite promising for spintronic applications.
    • This work designs a thermodynamically stable two-dimensional Rashba semiconductor, YSbTe3, with an indirect band gap of 1.04 eV, a large Rashba constant of 1.54 eV·Å, and a strong electric field response up to 4.80 e·Å².
    • YSbTe3 exhibits an unusual nonlinear relationship between the Rashba constant and the electric field, and the Rashba spin texture of YSbTe3 can be reversed by changing the electric polarization direction.
    • These properties make the ferroelectric Rashba semiconductor YSbTe3 quite a promising candidate for spintronic applications.

  • loading
  • [1]
    Chen J J, Wu K, Hu W, et al. Spin–orbit coupling in 2D semiconductors: a theoretical perspective. J. Phys. Chem. Lett., 2021, 12 (51): 12256–12268. doi: 10.1021/acs.jpclett.1c03662
    [2]
    Koo H C, Kim S B, Kim H, et al. Rashba effect in functional spintronic devices. Adv. Mater., 2020, 32 (51): 2002117. doi: 10.1002/adma.202002117
    [3]
    Lee S, Koike H, Goto M, et al. Synthetic Rashba spin–orbit system using a silicon metal-oxide semiconductor. Nat. Mater., 2021, 20 (9): 1228–1232. doi: 10.1038/s41563-021-01026-y
    [4]
    Lin W, Li L, Doğan F, et al. Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3 d electrons. Nat. Commun., 2019, 10 (1): 3052. doi: 10.1038/s41467-019-10961-z
    [5]
    Lyu J K, Ji W X, Zhang S F, et al. Strain-tuned topological insulator and Rashba-induced anisotropic momentum-locked Dirac cones in two-dimensional SeTe monolayers. ACS Appl. Mater. Interfaces, 2018, 10 (50): 43962–43969. doi: 10.1021/acsami.8b18582
    [6]
    Ciocys S T, Maksimovic N, Analytis J G, et al. Driving ultrafast spin and energy modulation in quantum well states via photo-induced electric fields. npj Quantum Mater., 2022, 7 (1): 79. doi: 10.1038/s41535-022-00490-2
    [7]
    Jolie W, Hung T C, Niggli L, et al. Creating tunable quantum corrals on a Rashba surface alloy. ACS Nano, 2022, 16 (3): 4876–4883. doi: 10.1021/acsnano.2c00467
    [8]
    Lafalce E, Amerling E, Yu Z G, et al. Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy. Nat. Commun., 2022, 13 (1): 483. doi: 10.1038/s41467-022-28127-9
    [9]
    Lee S, Kwon Y K. Unveiling giant hidden rashba effects in two-dimensional Si2Bi2. npj 2D Mater. Appl., 2020, 4 (1): 45. doi: 10.1038/s41699-020-00180-2
    [10]
    Chen J J, Wu K, Hu W, et al. Tunable Rashba spin splitting in two-dimensional polar perovskites. J. Phys. Chem. Lett., 2021, 12 (7): 1932–1939. doi: 10.1021/acs.jpclett.0c03668
    [11]
    Datta S, Das B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 1990, 56 (7): 665–667. doi: 10.1063/1.102730
    [12]
    Park Y H, Choi J W, Kim H J, et al. Complementary spin transistor using a quantum well channel. Sci. Rep., 2017, 7 (1): 46671. doi: 10.1038/srep46671
    [13]
    Chuang P, Ho S C, Smith L W, et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol., 2015, 10 (1): 35–39. doi: 10.1038/nnano.2014.296
    [14]
    Fu X M, Jia C, Sheng L, et al. Bipolar Rashba semiconductors: a class of nonmagnetic materials for electrical spin manipulation. J. Phys. Chem. Lett., 2023, 14 (50): 11292–11297. doi: 10.1021/acs.jpclett.3c02917
    [15]
    Chen J J, Wu K, Hu W, et al. High-throughput inverse design for 2D ferroelectric Rashba semiconductors. J. Am. Chem. Soc., 2022, 144 (43): 20035–20046. doi: 10.1021/jacs.2c08827
    [16]
    Song Q, Zhang H R, Su T, et al. Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature. Sci. Adv., 2017, 3 (3): e1602312. doi: 10.1126/sciadv.1602312
    [17]
    Qu J, Han X, Sakamoto S, et al. Reversal of spin-polarization near the fermi level of the Rashba semiconductor BiTeCl. npj Quantum Mater., 2023, 8 (1): 13. doi: 10.1038/s41535-023-00546-x
    [18]
    Nakayama H, Kanno Y, An H, et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett., 2016, 117 (11): 116602. doi: 10.1103/PhysRevLett.117.116602
    [19]
    Wu K, Chen J J, Ma H H, et al. Two-dimensional giant tunable Rashba semiconductors with two-atom-thick buckled honeycomb structure. Nano Lett., 2021, 21 (1): 740–746. doi: 10.1021/acs.nanolett.0c04429
    [20]
    Liu B C, Gao H X, Meng C Y, et al. The impact of an external electric field on the Rashba effect in two-dimensional hybrid perovskites. J. Mater. Chem. C, 2023, 11 (30): 10370–10376. doi: 10.1039/D3TC01575K
    [21]
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54 (16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [22]
    Blöchl P E. Projector augmented-wave method. Phys. Rev. B, 1994, 50 (24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [23]
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77 (18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [24]
    Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132 (15): 154104. doi: 10.1063/1.3382344
    [25]
    Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118 (18): 8207–8215. doi: 10.1063/1.1564060
    [26]
    Alfè D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun., 2009, 180 (12): 2622–2633. doi: 10.1016/j.cpc.2009.03.010
    [27]
    Togo A, Chaput L, Tadano T, et al. Implementation strategies in phonopy and phono3py. J. Phys. : Condens. Matter, 2023, 35 (35): 353001. doi: 10.1088/1361-648X/acd831
    [28]
    Sheppard D, Xiao P, Chemelewski W, et al. A generalized solid-state nudged elastic band method. J. Chem. Phys., 2012, 136 (7): 074103. doi: 10.1063/1.3684549
    [29]
    Ali M S, Das S, Abed Y F, et al. Lead-free CsSnCl3 perovskite nanocrystals: rapid synthesis, experimental characterization and DFT simulations. Phys. Chem. Chem. Phys., 2021, 23 (38): 22184–22198. doi: 10.1039/D1CP02666F
    [30]
    Bahramy M S, Arita R, Nagaosa N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B, 2011, 84 (4): 041202. doi: 10.1103/PhysRevB.84.041202
    [31]
    Gupta S, Yakobson B I. What dictates Rashba splitting in 2D van der Waals heterobilayers. J. Am. Chem. Soc., 2021, 143 (9): 3503–3508. doi: 10.1021/jacs.0c12809
    [32]
    Wu Q, Cao L, Ang Y S, et al. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett., 2021, 118 (11): 113102. doi: 10.1063/5.0044431
    [33]
    Nourbakhsh A, Agarwal T K, Klekachev A, et al. Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications. Nanotechnology, 2014, 25 (34): 345203. doi: 10.1088/0957-4484/25/34/345203
  • JUSTC-2024-0004 Supporting information.docx
  • 加载中

Catalog

    Figure  1.  (a) Top and side views of the structure of 2D YSbTe3. The Y, Sb, and Te atoms are represented by blue, red, and yellow balls, respectively. (b) Phonon spectrum of YSbTe3.

    Figure  2.  (a, b) Band structures of 2D YSbTe3 calculated with HSE06 and HSE06+SOC, respectively. VB and VB−1 are shown in red and blue, respectively. The characteristic spin texture structures of (c) VB and (d) VB−1 calculated with the HSE06 + SOC functional. The Fermi levels are set to zero.

    Figure  3.  The relationship between the Rashba constant and the electric field (red line and black dots, left y-axis) and the corresponding electric field response of the Rashba constant (|∆αR/∆E|) (blue line, right y-axis) for 2D YSbTe3.

    Figure  4.  Double-well potential vs. atomic displacement along the z-axis. The energy of the ferroelectric state is taken as a reference. The VB spin textures of two degenerated ferroelectric states and one transition state (TS) are displayed.

    [1]
    Chen J J, Wu K, Hu W, et al. Spin–orbit coupling in 2D semiconductors: a theoretical perspective. J. Phys. Chem. Lett., 2021, 12 (51): 12256–12268. doi: 10.1021/acs.jpclett.1c03662
    [2]
    Koo H C, Kim S B, Kim H, et al. Rashba effect in functional spintronic devices. Adv. Mater., 2020, 32 (51): 2002117. doi: 10.1002/adma.202002117
    [3]
    Lee S, Koike H, Goto M, et al. Synthetic Rashba spin–orbit system using a silicon metal-oxide semiconductor. Nat. Mater., 2021, 20 (9): 1228–1232. doi: 10.1038/s41563-021-01026-y
    [4]
    Lin W, Li L, Doğan F, et al. Interface-based tuning of Rashba spin-orbit interaction in asymmetric oxide heterostructures with 3 d electrons. Nat. Commun., 2019, 10 (1): 3052. doi: 10.1038/s41467-019-10961-z
    [5]
    Lyu J K, Ji W X, Zhang S F, et al. Strain-tuned topological insulator and Rashba-induced anisotropic momentum-locked Dirac cones in two-dimensional SeTe monolayers. ACS Appl. Mater. Interfaces, 2018, 10 (50): 43962–43969. doi: 10.1021/acsami.8b18582
    [6]
    Ciocys S T, Maksimovic N, Analytis J G, et al. Driving ultrafast spin and energy modulation in quantum well states via photo-induced electric fields. npj Quantum Mater., 2022, 7 (1): 79. doi: 10.1038/s41535-022-00490-2
    [7]
    Jolie W, Hung T C, Niggli L, et al. Creating tunable quantum corrals on a Rashba surface alloy. ACS Nano, 2022, 16 (3): 4876–4883. doi: 10.1021/acsnano.2c00467
    [8]
    Lafalce E, Amerling E, Yu Z G, et al. Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy. Nat. Commun., 2022, 13 (1): 483. doi: 10.1038/s41467-022-28127-9
    [9]
    Lee S, Kwon Y K. Unveiling giant hidden rashba effects in two-dimensional Si2Bi2. npj 2D Mater. Appl., 2020, 4 (1): 45. doi: 10.1038/s41699-020-00180-2
    [10]
    Chen J J, Wu K, Hu W, et al. Tunable Rashba spin splitting in two-dimensional polar perovskites. J. Phys. Chem. Lett., 2021, 12 (7): 1932–1939. doi: 10.1021/acs.jpclett.0c03668
    [11]
    Datta S, Das B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett., 1990, 56 (7): 665–667. doi: 10.1063/1.102730
    [12]
    Park Y H, Choi J W, Kim H J, et al. Complementary spin transistor using a quantum well channel. Sci. Rep., 2017, 7 (1): 46671. doi: 10.1038/srep46671
    [13]
    Chuang P, Ho S C, Smith L W, et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol., 2015, 10 (1): 35–39. doi: 10.1038/nnano.2014.296
    [14]
    Fu X M, Jia C, Sheng L, et al. Bipolar Rashba semiconductors: a class of nonmagnetic materials for electrical spin manipulation. J. Phys. Chem. Lett., 2023, 14 (50): 11292–11297. doi: 10.1021/acs.jpclett.3c02917
    [15]
    Chen J J, Wu K, Hu W, et al. High-throughput inverse design for 2D ferroelectric Rashba semiconductors. J. Am. Chem. Soc., 2022, 144 (43): 20035–20046. doi: 10.1021/jacs.2c08827
    [16]
    Song Q, Zhang H R, Su T, et al. Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature. Sci. Adv., 2017, 3 (3): e1602312. doi: 10.1126/sciadv.1602312
    [17]
    Qu J, Han X, Sakamoto S, et al. Reversal of spin-polarization near the fermi level of the Rashba semiconductor BiTeCl. npj Quantum Mater., 2023, 8 (1): 13. doi: 10.1038/s41535-023-00546-x
    [18]
    Nakayama H, Kanno Y, An H, et al. Rashba-Edelstein magnetoresistance in metallic heterostructures. Phys. Rev. Lett., 2016, 117 (11): 116602. doi: 10.1103/PhysRevLett.117.116602
    [19]
    Wu K, Chen J J, Ma H H, et al. Two-dimensional giant tunable Rashba semiconductors with two-atom-thick buckled honeycomb structure. Nano Lett., 2021, 21 (1): 740–746. doi: 10.1021/acs.nanolett.0c04429
    [20]
    Liu B C, Gao H X, Meng C Y, et al. The impact of an external electric field on the Rashba effect in two-dimensional hybrid perovskites. J. Mater. Chem. C, 2023, 11 (30): 10370–10376. doi: 10.1039/D3TC01575K
    [21]
    Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54 (16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [22]
    Blöchl P E. Projector augmented-wave method. Phys. Rev. B, 1994, 50 (24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [23]
    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77 (18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [24]
    Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132 (15): 154104. doi: 10.1063/1.3382344
    [25]
    Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118 (18): 8207–8215. doi: 10.1063/1.1564060
    [26]
    Alfè D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun., 2009, 180 (12): 2622–2633. doi: 10.1016/j.cpc.2009.03.010
    [27]
    Togo A, Chaput L, Tadano T, et al. Implementation strategies in phonopy and phono3py. J. Phys. : Condens. Matter, 2023, 35 (35): 353001. doi: 10.1088/1361-648X/acd831
    [28]
    Sheppard D, Xiao P, Chemelewski W, et al. A generalized solid-state nudged elastic band method. J. Chem. Phys., 2012, 136 (7): 074103. doi: 10.1063/1.3684549
    [29]
    Ali M S, Das S, Abed Y F, et al. Lead-free CsSnCl3 perovskite nanocrystals: rapid synthesis, experimental characterization and DFT simulations. Phys. Chem. Chem. Phys., 2021, 23 (38): 22184–22198. doi: 10.1039/D1CP02666F
    [30]
    Bahramy M S, Arita R, Nagaosa N. Origin of giant bulk Rashba splitting: Application to BiTeI. Phys. Rev. B, 2011, 84 (4): 041202. doi: 10.1103/PhysRevB.84.041202
    [31]
    Gupta S, Yakobson B I. What dictates Rashba splitting in 2D van der Waals heterobilayers. J. Am. Chem. Soc., 2021, 143 (9): 3503–3508. doi: 10.1021/jacs.0c12809
    [32]
    Wu Q, Cao L, Ang Y S, et al. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field. Appl. Phys. Lett., 2021, 118 (11): 113102. doi: 10.1063/5.0044431
    [33]
    Nourbakhsh A, Agarwal T K, Klekachev A, et al. Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications. Nanotechnology, 2014, 25 (34): 345203. doi: 10.1088/0957-4484/25/34/345203

    Article Metrics

    Article views (140) PDF downloads(585)
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return