[1] |
Liu Y C, Cheng D L, Lin C L. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch. Intern. Med., 1986, 146 (10): 1913–1916. doi: 10.1001/archinte.1986.00360220057011
|
[2] |
Russo T A, Marr C M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev., 2019, 32 (3): e00001–e00019. doi: 10.1128/CMR.00001-19
|
[3] |
Dong N, Yang X M, Chan E W C, et al. Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. EBioMedicine, 2022, 79: 103998. doi: 10.1016/j.ebiom.2022.103998
|
[4] |
Fang C T, Chuang Y P, Shun C T, et al. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med., 2004, 199 (5): 697–705. doi: 10.1084/jem.20030857
|
[5] |
Lin Y C, Lu M C, Tang H L, et al. Assessment of hypermucoviscosity as a virulence factor for experimental Klebsiella pneumoniae infections: comparative virulence analysis with hypermucoviscosity-negative strain. BMC Microbiol., 2011, 11: 50. doi: 10.1186/1471-2180-11-50
|
[6] |
Russo T A, Olson R, Fang C T, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol., 2018, 56 (9): e00776–e00718. doi: 10.1128/JCM.00776-18
|
[7] |
Brisse S, Fevre C, Passet V, et al. Virulent clones of Klebsiella pneumoniae: Identification and evolutionary scenario based on genomic and phenotypic characterization. PLos ONE, 2009, 4 (3): e4982. doi: 10.1371/journal.pone.0004982
|
[8] |
Choby J E, Howard-Anderson J, Weiss D S. Hypervirulent Klebsiella pneumoniae – clinical and molecular perspectives. J. Intern. Med., 2020, 287 (3): 283–300. doi: 10.1111/joim.13007
|
[9] |
Wu Y, Wu C, Bao D, et al. Global evolution and geographic diversity of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Lancet Infect. Dis., 2022, 22 (6): 761–762. doi: 10.1016/S1473-3099(22)00275-4
|
[10] |
Rossi B, Gasperini M L, Leflon-Guibout V, et al. Hypervirulent Klebsiella pneumoniae in cryptogenic liver abscesses, Paris, France. Emerg. Infect. Dis., 2018, 24 (2): 221–229. doi: 10.3201/eid2402.170957
|
[11] |
Lin Y T, Cheng Y H, Juan C H, et al. High mortality among patients infected with hypervirulent antimicrobial-resistant capsular type K1 Klebsiella pneumoniae strains in Taiwan. Int. J. Antimicrob. Ag., 2018, 52 (2): 251–257. doi: 10.1016/j.ijantimicag.2018.06.008
|
[12] |
Tabrizi A M A, Badmasti F, Shahcheraghi F, et al. Outbreak of hypervirulent Klebsiella pneumoniae harbouring blaVIM-2 among mechanically-ventilated drug-poisoning patients with high mortality rate in Iran. J. Glob. Antimicrob. Re., 2018, 15: 93–98. doi: 10.1016/j.jgar.2018.06.020
|
[13] |
He Z, Yang Y, Li W, et al. Comparative genomic analyses of Polymyxin-resistant Enterobacteriaceae strains from China. BMC Genomics, 2022, 23 (1): 88. doi: 10.1186/s12864-022-08301-5
|
[14] |
Wu K M, Li L H, Yan J J, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J. Bacteriol., 2009, 191 (14): 4492–4501. doi: 10.1128/JB.00315-09
|
[15] |
Wick R R, Judd L M, Gorrie C L, et al. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol., 2017, 13 (6): e1005595. doi: 10.1371/journal.pcbi.1005595
|
[16] |
Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol., 2012, 19 (5): 455–477. doi: 10.1089/cmb.2012.0021
|
[17] |
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30 (14): 2068–2069. doi: 10.1093/bioinformatics/btu153
|
[18] |
Alikhan N F, Petty N K, Ben Zakour N L, et al. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 2011, 12: 402. doi: 10.1186/1471-2164-12-402
|
[19] |
Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother., 2012, 67 (11): 2640–2644. doi: 10.1093/jac/dks261
|
[20] |
Wyres K L, Wick R R, Gorrie C, et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genomics, 2016, 2 (12): e000102. doi: 10.1099/mgen.0.000102
|
[21] |
He Z, Xu W, Zhao H, et al. Epidemiological characteristics an outbreak of ST11 multidrug-resistant and hypervirulent Klebsiella pneumoniae in Anhui, China. Front. Microbiol., 2022, 13: 996753. doi: 10.3389/fmicb.2022.996753
|
[22] |
Altayb H N, Elbadawi H S, Baothman O, et al. Genomic analysis of multidrug-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae strain lacking the hypermucoviscous regulators (rmpA/rmpA2). Antibiotics., 2022, 11 (5): 596. doi: 10.3390/antibiotics11050596
|
JUSTC-2023-0085 Supporting information.zip |
Figure 1. Clinical data of the patient infected with 21072329 and genetic features of the genome and ESBL plasmid (p21072329_1) of K. pneumoniae isolate 21072329. (a) Time and site of K. pneumoniae isolation from patients infected with 21072329 and antibiotic treatment. (b) Chromosome map of 21072329. Different types of functional genes are indicated by different colors. (c) Plasmid map of p21072329_2 using a BLAST Ring Image Generator. Drug resistance genes are indicated by red, transposons are indicated by green, virulence factors are indicated by purple, genes of unknown function are indicated by gray, and other genes are indicated by orange.
Figure 2. K. pneumoniae isolate 21072329 showed high virulence and high visibility. The G. mellonella infection model was used to evaluate the virulence of strains at three different concentrations (1×106 CFU: (a); 1×105 CFU: (b); 1×104 CFU: (c)). Their viscosity was evaluated by measuring the OD600 of the supernatant after centrifugation (initial OD600 adjusted to 1: (d); initial OD600 adjusted to 2: (e); initial OD600 adjusted to 3: (f)). *P < 0.05, ** P < 0.01, *** P < 0.001, ns: no significant difference.
[1] |
Liu Y C, Cheng D L, Lin C L. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis. Arch. Intern. Med., 1986, 146 (10): 1913–1916. doi: 10.1001/archinte.1986.00360220057011
|
[2] |
Russo T A, Marr C M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev., 2019, 32 (3): e00001–e00019. doi: 10.1128/CMR.00001-19
|
[3] |
Dong N, Yang X M, Chan E W C, et al. Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. EBioMedicine, 2022, 79: 103998. doi: 10.1016/j.ebiom.2022.103998
|
[4] |
Fang C T, Chuang Y P, Shun C T, et al. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J. Exp. Med., 2004, 199 (5): 697–705. doi: 10.1084/jem.20030857
|
[5] |
Lin Y C, Lu M C, Tang H L, et al. Assessment of hypermucoviscosity as a virulence factor for experimental Klebsiella pneumoniae infections: comparative virulence analysis with hypermucoviscosity-negative strain. BMC Microbiol., 2011, 11: 50. doi: 10.1186/1471-2180-11-50
|
[6] |
Russo T A, Olson R, Fang C T, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J. Clin. Microbiol., 2018, 56 (9): e00776–e00718. doi: 10.1128/JCM.00776-18
|
[7] |
Brisse S, Fevre C, Passet V, et al. Virulent clones of Klebsiella pneumoniae: Identification and evolutionary scenario based on genomic and phenotypic characterization. PLos ONE, 2009, 4 (3): e4982. doi: 10.1371/journal.pone.0004982
|
[8] |
Choby J E, Howard-Anderson J, Weiss D S. Hypervirulent Klebsiella pneumoniae – clinical and molecular perspectives. J. Intern. Med., 2020, 287 (3): 283–300. doi: 10.1111/joim.13007
|
[9] |
Wu Y, Wu C, Bao D, et al. Global evolution and geographic diversity of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Lancet Infect. Dis., 2022, 22 (6): 761–762. doi: 10.1016/S1473-3099(22)00275-4
|
[10] |
Rossi B, Gasperini M L, Leflon-Guibout V, et al. Hypervirulent Klebsiella pneumoniae in cryptogenic liver abscesses, Paris, France. Emerg. Infect. Dis., 2018, 24 (2): 221–229. doi: 10.3201/eid2402.170957
|
[11] |
Lin Y T, Cheng Y H, Juan C H, et al. High mortality among patients infected with hypervirulent antimicrobial-resistant capsular type K1 Klebsiella pneumoniae strains in Taiwan. Int. J. Antimicrob. Ag., 2018, 52 (2): 251–257. doi: 10.1016/j.ijantimicag.2018.06.008
|
[12] |
Tabrizi A M A, Badmasti F, Shahcheraghi F, et al. Outbreak of hypervirulent Klebsiella pneumoniae harbouring blaVIM-2 among mechanically-ventilated drug-poisoning patients with high mortality rate in Iran. J. Glob. Antimicrob. Re., 2018, 15: 93–98. doi: 10.1016/j.jgar.2018.06.020
|
[13] |
He Z, Yang Y, Li W, et al. Comparative genomic analyses of Polymyxin-resistant Enterobacteriaceae strains from China. BMC Genomics, 2022, 23 (1): 88. doi: 10.1186/s12864-022-08301-5
|
[14] |
Wu K M, Li L H, Yan J J, et al. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J. Bacteriol., 2009, 191 (14): 4492–4501. doi: 10.1128/JB.00315-09
|
[15] |
Wick R R, Judd L M, Gorrie C L, et al. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol., 2017, 13 (6): e1005595. doi: 10.1371/journal.pcbi.1005595
|
[16] |
Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol., 2012, 19 (5): 455–477. doi: 10.1089/cmb.2012.0021
|
[17] |
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30 (14): 2068–2069. doi: 10.1093/bioinformatics/btu153
|
[18] |
Alikhan N F, Petty N K, Ben Zakour N L, et al. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 2011, 12: 402. doi: 10.1186/1471-2164-12-402
|
[19] |
Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother., 2012, 67 (11): 2640–2644. doi: 10.1093/jac/dks261
|
[20] |
Wyres K L, Wick R R, Gorrie C, et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genomics, 2016, 2 (12): e000102. doi: 10.1099/mgen.0.000102
|
[21] |
He Z, Xu W, Zhao H, et al. Epidemiological characteristics an outbreak of ST11 multidrug-resistant and hypervirulent Klebsiella pneumoniae in Anhui, China. Front. Microbiol., 2022, 13: 996753. doi: 10.3389/fmicb.2022.996753
|
[22] |
Altayb H N, Elbadawi H S, Baothman O, et al. Genomic analysis of multidrug-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae strain lacking the hypermucoviscous regulators (rmpA/rmpA2). Antibiotics., 2022, 11 (5): 596. doi: 10.3390/antibiotics11050596
|