Distances in a geographical attachment network model
-
Abstract
Distances between nodes are one of the most essential subjects in the study of complex networks. In this paper, we investigate the asymptotic behaviors of two types of distances in a model of geographic attachment networks (GANs): the typical distance and the flooding time. By generating an auxiliary tree and using a continuous-time branching process, we demonstrate that in this model the typical distance is asymptotically normal, and the flooding time converges to a given constant in probability as well.
-
-