ISSN 0253-2778

CN 34-1054/N

Open AccessOpen Access JUSTC Chemistry; Life Sciences 03 July 2023

Recent progress on diaCEST MRI for tumor imaging

Cite this:
https://doi.org/10.52396/JUSTC-2023-0027
More Information
  • Author Bio:

    Qin Yu is currently a postgraduate student at the School of Chemistry and Materials Science, University of Science and Technology of China, under the supervision of Prof. Yue Yuan. His research interests include diamagnetism chemical exchange saturated transfer magnetic resonance imaging contrast agents and supramolecular hydrogel

    Yue Yuan received her Ph.D. degree in Analytical Chemistry from the University of Science and Technology of China. She is currently a Professor at the University of Science and Technology of China. Her research mainly focuses on diaCEST MRI agents and intracellular self-assembly probes for tumor diagnosis and treatment

  • Corresponding author: E-mail: yueyuan@ustc.edu.cn
  • Received Date: 22 February 2023
  • Accepted Date: 26 April 2023
  • Available Online: 03 July 2023
  • Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is an advanced imaging method that probes the chemical exchange between bulk water protons and exchangeable solute protons. This chemical exchange decreases the MR signal of water and reveals the distribution and concentration of certain endogenous biomolecules or extrogenous contrast agents in organisms with high sensitivity and spatial resolution. The CEST signal depends not only on the concentration of the CEST contrast agent and external magnetic field but also on the surrounding environments of the contrast agent, such as pH and temperature, thus enabling CEST MRI to monitor pH, temperature, metabolic level, and enzyme activity in vivo. In this review, we discuss the principle of CEST MRI and mainly summarize the recent progress of diamagnetic CEST (diaCEST) contrast agents on tumor imaging, diagnosis, and therapy effect evaluation.
    Three different diaCEST contrast agents and their chemical exchange saturation transfer process with bulk water protons.
    Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is an advanced imaging method that probes the chemical exchange between bulk water protons and exchangeable solute protons. This chemical exchange decreases the MR signal of water and reveals the distribution and concentration of certain endogenous biomolecules or extrogenous contrast agents in organisms with high sensitivity and spatial resolution. The CEST signal depends not only on the concentration of the CEST contrast agent and external magnetic field but also on the surrounding environments of the contrast agent, such as pH and temperature, thus enabling CEST MRI to monitor pH, temperature, metabolic level, and enzyme activity in vivo. In this review, we discuss the principle of CEST MRI and mainly summarize the recent progress of diamagnetic CEST (diaCEST) contrast agents on tumor imaging, diagnosis, and therapy effect evaluation.
    • We summarize several types of diaCEST MRI agents, including glucose, amide protons, salicylic acid and their analogs, which are promising for the diagnosis of tumors in CEST MRI.
    • We present an in-depth discussion of the applications of these contrast agents in tumor imaging in recent years, such as colorectal tumors and brain tumors.
    • We evaluate these three different types of contrast agents and point out their advantages and disadvantages in CEST MRI.

  • loading
  • [1]
    van Zijl P C M, Yadav N N. Chemical exchange saturation transfer (CEST): What is in a name and what isn’t? Magnetic Resonance in Medicine, 2011, 65 (4): 927–948. doi: 10.1002/mrm.22761
    [2]
    Heo H Y, Jones C K, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. Journal of Magnetic Resonance Imaging, 2016, 44 (1): 41–50. doi: 10.1002/jmri.25108
    [3]
    Han Z, Liu G. CEST MRI trackable nanoparticle drug delivery systems. Biomedical Materials, 2021, 16 (2): 024103. doi: 10.1088/1748-605X/abdd70
    [4]
    Sherry A D, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annual Review of Biomedical Engineering, 2008, 10: 391–411. doi: 10.1146/annurev.bioeng.9.060906.151929
    [5]
    Yang X, Song X, Li Y, et al. Salicylic acid and analogues as diaCEST MRI contrast agents with highly shifted exchangeable proton frequencies. Angewandte Chemie, 2013, 125 (31): 8274–8277. doi: 10.1002/ange.201302764
    [6]
    McMahon M T, Bulte J W M. Two decades of dendrimers as versatile MRI agents: A tale with and without metals. WIREs Nanomedicine and Nanobiotechnology, 2018, 10 (3): e1496. doi: 10.1002/wnan.1496
    [7]
    Wang J, Weygand J, Hwang K P, et al. Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Scientific Reports, 2016, 6: 30618. doi: 10.1038/srep30618
    [8]
    Chan K W Y, Liu G, Song X, et al. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nature Materials, 2013, 12 (3): 268–275. doi: 10.1038/nmat3525
    [9]
    Delli Castelli D, Terreno E, Aime S. YbIII-HPDO3A: A dual pH- and temperature-responsive CEST agent. Angewandte Chemie International Edition, 2011, 50 (8): 1798–1800. doi: 10.1002/anie.201007105
    [10]
    Liu G, Liang Y, Bar-Shir A, et al. Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. Journal of the American Chemical Society, 2011, 133 (41): 16326–16329. doi: 10.1021/ja204701x
    [11]
    Zhang S R, Trokowski R, Sherry A D. A paramagnetic CEST agent for imaging glucose by MRI. Journal of the American Chemical Society, 2003, 125 (50): 15288–15289. doi: 10.1021/ja038345f
    [12]
    Pavuluri K, McMahon M T. pH imaging using chemical exchange saturation transfer (CEST) MRI. Israel Journal of Chemistry, 2017, 57 (9): 862–879. doi: 10.1002/ijch.201700075
    [13]
    Ali M M, Yoo B, Pagel M D. Tracking the relative in vivo pharmacokinetics of nanoparticles with PARACEST MRI. Molecular Pharmaceutics, 2009, 6 (5): 1409–1416. doi: 10.1021/mp900040u
    [14]
    Zhou J Y, Lal B, Wilson D A, et al. Amide proton transfer (APT) contrast for imaging of brain tumors. Magnetic Resonance in Medicine, 2003, 50 (6): 1120–1126. doi: 10.1002/mrm.10651
    [15]
    Ferrauto G, Di Gregorio E, Ruzza M, et al. Enzyme-responsive LipoCEST agents: Assessment of MMP-2 activity by measuring the intra-liposomal water 1H NMR shift. Angewandte Chemie International Edition, 2017, 56 (40): 12170–12173. doi: 10.1002/anie.201706271
    [16]
    Davis K A, Nanga R P R, Das S, et al. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Science Translational Medicine, 2015, 7 (309): 309ra161. doi: 10.1126/scitranslmed.aaa7095
    [17]
    Chan K W Y, McMahon M T, Kato Y, et al. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magnetic Resonance in Medicine, 2012, 68 (6): 1764–1773. doi: 10.1002/mrm.24520
    [18]
    van Zijl P C M, Jones C K, Ren J, et al. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (11): 4359–4364. doi: 10.1073/pnas.0700281104
    [19]
    Haneder S, Apprich S R, Schmitt B, et al. Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: Preliminary results in patients with low-back pain. European Radiology, 2013, 23 (3): 861–868. doi: 10.1007/s00330-012-2660-6
    [20]
    Li Y, Chen H, Xu J, et al. CEST theranostics: label-free MR imaging of anticancer drugs. Oncotarget, 2016, 7 (6): 6369–6378. doi: 10.18632/oncotarget.7141
    [21]
    Liu H, Jablonska A, Li Y, et al. Label-free CEST MRI detection of citicoline-liposome drug delivery in ischemic stroke. Theranostics, 2016, 6 (10): 1588–1600. doi: 10.7150/thno.15492
    [22]
    Yuan Y, Zhang J, Qi X, et al. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nature Materials, 2019, 18 (12): 1376–1383. doi: 10.1038/s41563-019-0503-4
    [23]
    Goffeney N, Bulte J W M, Duyn J, et al. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. Journal of the American Chemical Society, 2001, 123 (35): 8628–8629. doi: 10.1021/ja0158455
    [24]
    Gilad A A, van Laarhoven H W, McMahon M T, et al. Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles. Magnetic Resonance in Medicine, 2009, 61 (4): 970–974. doi: 10.1002/mrm.21928
    [25]
    Li J, Feng X, Zhu W, et al. Chemical exchange saturation transfer (CEST) agents: Quantum chemistry and MRI. Chemistry-A European Journal, 2016, 22 (1): 264–271. doi: 10.1002/chem.201503942
    [26]
    Vinogradov E, Keupp J, Dimitrov I E, et al. CEST-MRI for body oncologic imaging: Are we there yet? NMR in Biomedicine, 2023: e4906. doi: 10.1002/nbm.4906
    [27]
    Lin X, Xiao Z, Chen T, et al. Glucose metabolism on tumor plasticity, diagnosis, and treatment. Frontiers in Oncology, 2020, 10: 317. doi: 10.3389/fonc.2020.00317
    [28]
    Walker-Samuel S, Ramasawmy R, Torrealdea F, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nature Medicine, 2013, 19 (8): 1067–1072. doi: 10.1038/nm.3252
    [29]
    Rivlin M, Navon G. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Scientific Reports, 2016, 6 (1): 32648. doi: 10.1038/srep32648
    [30]
    Nasrallah F A, Pagès G, Kuchel P W, et al. Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. Journal of Cerebral Blood Flow & Metabolism, 2013, 33 (8): 1270–1278. doi: 10.1038/jcbfm.2013.79
    [31]
    Liu G, Banerjee S R, Yang X, et al. A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nature Biomedical Engineering, 2017, 1 (12): 977–982. doi: 10.1038/s41551-017-0168-8
    [32]
    Sehgal A A, Li Y, Lal B, et al. CEST MRI of 3-O-methyl-D-glucose uptake and accumulation in brain tumors. Magnetic Resonance in Medicine, 2019, 81 (3): 1993–2000. doi: 10.1002/mrm.27489
    [33]
    Anemone A, Capozza M, Arena F, et al. In vitro and in vivo comparison of MRI chemical exchange saturation transfer (CEST) properties between native glucose and 3-O-Methyl-D-glucose in a murine tumor model. NMR in Biomedicine, 2021, 34 (12): e4602. doi: 10.1002/nbm.4602
    [34]
    Anemone A, Capozza M, Arena F, et al. In vitro and in vivo comparison of the MRI glucoCEST properties between native glucose and 3OMG in a murine tumor model. bioRxiv: 2021.03. 15.435387, 2021.
    [35]
    Grasa L, Chueca E, Arechavaleta S, et al. Antitumor effects of lactate transport inhibition on esophageal adenocarcinoma cells. Journal of Physiology and Biochemistry, 2023, 79 (1): 147–161. doi: 10.1007/s13105-022-00931-3
    [36]
    Anderson M, Moshnikova A, Engelman D M, et al. Probe for the measurement of cell surface pH in vivo and ex vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (29): 8177–8181. doi: 10.1073/pnas.1608247113
    [37]
    Sweeney M D, Sagare A P, Zlokovic B V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 2018, 14 (3): 133–150. doi: 10.1038/nrneurol.2017.188
    [38]
    Huntley N F, Patience J F. Xylose: Absorption, fermentation, and post-absorptive metabolism in the pig. Journal of Animal Science and Biotechnology, 2018, 9 (1): 4. doi: 10.1186/s40104-017-0226-9
    [39]
    Knutsson L, Xu X, van Zijl P C M, et al. Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties. NMR in Biomedicine, 2022: e4784. doi: 10.1002/nbm.4784
    [40]
    Wang J, Fukuda M, Chung J J, et al. Chemical exchange sensitive MRI of glucose uptake using xylose as a contrast agent. Magnetic Resonance in Medicine, 2021, 85 (4): 1953–1961. doi: 10.1002/mrm.28557
    [41]
    Kim M, Torrealdea F, Adeleke S, et al. Challenges in glucoCEST MR body imaging at 3 Tesla. Quantitative Imaging in Medicine and Surgery, 2019, 9 (10): 1628–1640. doi: 10.21037/qims.2019.10.05
    [42]
    Wu T, Bound M J, Zhao B R, et al. Effects of a D-xylose preload with or without sitagliptin on gastric emptying, glucagon-like peptide-1, and postprandial glycemia in type 2 diabetes. Diabetes Care, 2013, 36 (7): 1913–1918. doi: 10.2337/dc12-2294
    [43]
    Goodwin N C, Mabon R, Harrison B A, et al. Novel L-xylose derivatives as selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Journal of Medicinal Chemistry, 2009, 52 (20): 6201–6204. doi: 10.1021/jm900951n
    [44]
    Roussel T, Frydman L, Le Bihan D, et al. Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields. Scientific Reports, 2019, 9 (1): 4423. doi: 10.1038/s41598-019-40986-9
    [45]
    Yuan Y, Wang C, Kuddannaya S, et al. In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nature Biomedical Engineering, 2022, 6 (5): 658–666. doi: 10.1038/s41551-021-00822-w
    [46]
    Yuan J, Chen S, King A D, et al. Amide proton transfer-weighted imaging of the head and neck at 3 T: A feasibility study on healthy human subjects and patients with head and neck cancer. NMR in Biomedicine, 2014, 27 (10): 1239–1247. doi: 10.1002/nbm.3184
    [47]
    Zhou J, Blakeley J O, Hua J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magnetic Resonance in Medicine, 2008, 60 (4): 842–849. doi: 10.1002/mrm.21712
    [48]
    Fiveash J B, Spencer S A. Role of radiation therapy and radiosurgery in glioblastoma multiforme. The Cancer Journal, 2003, 9 (3): 222–229. doi: 10.1097/00130404-200305000-00010
    [49]
    Park K J, Kim H S, Park J E, et al. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. European Radiology, 2016, 26 (12): 4390–4403. doi: 10.1007/s00330-016-4261-2
    [50]
    Zhao X, Wen Z, Huang F, et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magnetic Resonance in Medicine, 2011, 66 (4): 1033–1041. doi: 10.1002/mrm.22891
    [51]
    Wang R, Li S Y, Chen M, et al. Amide proton transfer magnetic resonance imaging of Alzheimer’s disease at 3.0 Tesla: A preliminary study. Chinese Medical Journal, 2015, 128 (05): 615–619. doi: 10.4103/0366-6999.151658
    [52]
    Li C, Peng S, Wang R, et al. Chemical exchange saturation transfer MR imaging of Parkinson’s disease at 3 Tesla. European Radiology, 2014, 24: 2631–2639. doi: 10.1007/s00330-014-3241-7
    [53]
    Li C, Wang R, Chen H, et al. Chemical exchange saturation transfer MR imaging is superior to diffusion-tensor imaging in the diagnosis and severity evaluation of Parkinson’s disease: A study on substantia nigra and striatum. Frontiers in Aging Neuroscience, 2015, 7: 198. doi: 10.3389/fnagi.2015.00198
    [54]
    Zhang H, Wang W, Jiang S, et al. Amide proton transfer-weighted MRI detection of traumatic brain injury in rats. Journal of Cerebral Blood Flow & Metabolism, 2017, 37 (10): 3422–3432. doi: 10.1177/0271678X17690165
    [55]
    Jokivarsi K T, Gröhn H I, Gröhn O H, et al. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magnetic Resonance in Medicine, 2007, 57 (4): 647–653. doi: 10.1002/mrm.21181
    [56]
    Sun P Z, Zhou J, Sun W, et al. Delineating the boundary between the ischemic penumbra and regions of oligaemia using pH-weighted MRI (pHWI). In: Proceedings of ISMRM 14th Scientific Meeting & Exhibition, 2006.
    [57]
    Xi Q, Zhao X H, Wang P J, et al. Functional MRI study of mild Alzheimer’s disease using amplitude of low frequency fluctuation analysis. Chinese Medical Journal, 2012, 125 (5): 858–862.
    [58]
    Kinney J W, Bemiller S M, Murtishaw A S, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 2018, 4: 575–590. doi: 10.1016/j.trci.2018.06.014
    [59]
    Xu G, Stevens Jr S M, Moore B D, et al. Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of Alzheimer-type amyloidosis. Human Molecular Genetics, 2013, 22 (14): 2765–2774. doi: 10.1093/hmg/ddt121
    [60]
    Amador-Ortiz C, Lin W L, Ahmed Z, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Annals of Neurology, 2007, 61 (5): 435–445. doi: 10.1002/ana.21154
    [61]
    Zhou J, Heo H Y, Knutsson L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. Journal of Magnetic Resonance Imaging, 2019, 50 (2): 347–364. doi: 10.1002/jmri.26645
    [62]
    Maciel G E, Savitsky G B. Carbon-13 chemical shifts and intramolecular hydrogen bonding. Journal of Physical Chemistry, 1964, 68 (2): 437–438. doi: 10.1021/j100784a518
    [63]
    Mock W L, Morsch L A. Low barrier hydrogen bonds within salicylate mono-anions. Tetrahedron, 2001, 57 (15): 2957–2964. doi: 10.1016/S0040-4020(01)00158-2
    [64]
    Winter P M, Cai K, Chen J, et al. Targeted PARACEST nanoparticle contrast agent for the detection of fibrin. Magnetic Resonance in Medicine, 2006, 56 (6): 1384–1388. doi: 10.1002/mrm.21093
    [65]
    Lesniak W G, Oskolkov N, Song X, et al. Salicylic acid conjugated dendrimers are a tunable, high performance CEST MRI nanoPlatform. Nano Letters, 2016, 16 (4): 2248–2253. doi: 10.1021/acs.nanolett.5b04517
    [66]
    Banerjee S R, Song X, Yang X, et al. Salicylic acid-based polymeric contrast agents for molecular magnetic resonance imaging of prostate cancer. Chemistry-A European Journal, 2018, 24 (28): 7235–7242. doi: 10.1002/chem.201800882
    [67]
    Thomas G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nature Reviews Molecular Cell Biology, 2002, 3 (10): 753–766. doi: 10.1038/nrm934
    [68]
    Ren H, Xiao F, Zhan K, et al. A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. Angewandte Chemie International Edition, 2009, 48 (51): 9658–9662. doi: 10.1002/anie.200903627
    [69]
    Liang G, Ren H, Rao J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nature Chemistry, 2010, 2 (1): 54–60. doi: 10.1038/nchem.480
    [70]
    Friedl P, Alexander S. Cancer invasion and the microenvironment: Plasticity and reciprocity. Cell, 2011, 147 (5): 992–1009. doi: 10.1016/j.cell.2011.11.016
    [71]
    Koblinski J E, Ahram M, Sloane B F. Unraveling the role of proteases in cancer. Clinica Chimica Acta, 2000, 291 (2): 113–135. doi: 10.1016/S0009-8981(99)00224-7
    [72]
    Dohchin A, Suzuki J I, Seki H, et al. Immunostained cathepsins B and L correlate with depth of invasion and different metastatic pathways in early stage gastric carcinoma. Cancer, 2000, 89 (3): 482–487. doi: 10.1002/1097-0142(20000801)89:3<482::AID-CNCR2>3.0.CO;2-5
    [73]
    Kombala C J, Lokugama S D, Kotrotsou A, et al. Simultaneous evaluations of pH and enzyme activity with a CEST MRI contrast agent. ACS Sensors, 2021, 6 (12): 4535–4544. doi: 10.1021/acssensors.1c02408
    [74]
    Lock L L, Li Y, Mao X, et al. One-component supramolecular filament hydrogels as theranostic label-free magnetic resonance imaging agents. ACS Nano, 2017, 11 (1): 797–805. doi: 10.1021/acsnano.6b07196
    [75]
    Law L H, Huang J, Xiao P, et al. Multiple CEST contrast imaging of nose-to-brain drug delivery using iohexol liposomes at 3T MRI. Journal of Controlled Release, 2023, 354: 208–220. doi: 10.1016/j.jconrel.2023.01.011
    [76]
    Qi Q, Fox M S, Lim H, et al. Glucose infusion induced change in intracellular pH and its relationship with tumor glycolysis in a C6 rat model of glioblastoma. Molecular Imaging and Biology, 2023, 25 (2): 271–282. doi: 10.1007/s11307-022-01726-0
    [77]
    Sinharay S, Randtke E A, Howison C M, et al. Detection of enzyme activity and inhibition during studies in solution, in vitro and in vivo with catalyCEST MRI. Molecular Imaging and Biology, 2018, 20: 240–248. doi: 10.1007/s11307-017-1092-8
    [78]
    Sieber M A, Lengsfeld P, Walter J, et al. Gadolinium-based contrast agents and their potential role in the pathogenesis of nephrogenic systemic fibrosis: The role of excess ligand. Journal of Magnetic Resonance Imaging, 2008, 27 (5): 955–962. doi: 10.1002/jmri.21368
    [79]
    Geppert M, Himly M. Iron oxide nanoparticles in bioimaging – An immune perspective. Frontiers in Immunology, 2021, 12: 688927. doi: 10.3389/fimmu.2021.688927
  • 加载中

Catalog

    Figure  1.  The underlying principle of CEST MRI via a two-pool model.

    Figure  2.  The signal analysis and related spectrum. (a) The exchange of exchangeable solute protons and bulk water protons leads to a decrease in bulk water signals. Black line: signal intensity of water before RF irradiation; red line: signal intensity of water after RF irradiation. (b) Z-spectrum or CEST spectrum. (c) MTR asymmetry analysis.

    Figure  3.  Three different diaCEST contrast agents and their MTRasym signals: Salicylic acid (1), barbituric acid (2), and D-glucose (3). Reprinted with permission from Ref. [8]. Copyright 2013, Springer Nature Limited.

    Figure  4.  Analysis of mouse tumors by paraCEST agents. (a) CEST serial MRI of tumor-bearing mice after injection of two different paraCEST agents and (b) quantitative CEST MRI signals of tumors at different time points. Reprinted with permission from Ref. [13]. Copyright 2009, American Chemical Society.

    Figure  5.  Main structures of salicylic acid-based diaCEST contrast agents. Reproduced with permission from Ref. [25]. Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

    Figure  6.  Representative CEST MRI images. (a) The anatomical image of mouse, (b) glucoCEST images before infusing agents, and (c) glucoCEST images after infusing; (d) GlucoCEST images, [18F]FDG images, and fluorescence images of the same tumor section; (e) the anatomical image and (f) CEST MRI of tumor after injecting 3-OMG for 3–8 min. (a–c) Reprinted with permission from Ref. [17]. Copyright 2012, Wiley Periodicals, Inc. (d) Reprinted with permission from Ref. [28]. Copyright 2013, Springer Nature America, Inc. (e, f) Reprinted with permission from Ref. [32]. Copyright 2019, International Society for Magnetic Resonance in Medicine.

    Figure  7.  Several images of mouse brains. (a) The glucoCEST imaging, (b) t-map images, and (c) MTRasym analysis of rat brain before and after the injection of xylose. (d) T2-weighted and mannose-weighted CEST MR images of mice after intrastriatal hMSC transplantation. (a–c) Reprinted with permission from Ref. [40]. Copyright 2021, International Society for Magnetic Resonance in Medicine. (d) Reprinted with permission from Ref. [45]. Copyright 2022, The Author(s), under exclusive license to Springer Nature Limited.

    Figure  8.  Representative T1/T2 and CEST MRI images of tumors at different sites. (a) T2-weighted, T1-weighted and APT-weighted images of rat brain tumors; (b) T2-weighted anatomical image and amide proton transfer-weighted image of pleomorphic adenoma in the right parotid gland. (a) Reprinted with permission from Ref. [14]. Copyright 2003, Wiley-Liss, Inc. (b) Reprinted with permission from Ref. [46]. Copyright 2014, John Wiley & Sons, Ltd.

    Figure  9.  Different MRI images and related analysis. (a) The contrast-enhanced T1-weighted image, (b) dynamic susceptibility contrast (DSC)-enhanced MR image, and (c) APT image of TP. (d) The APTw Z-spectrum and (e) MTRasym result of a stroke patient brain. The APTw image of the brain of (f) a normal person and (g) an AD patient. (a–c) Reprinted with permission from Ref. [49]. Copyright 2016, European Society of Radiology. (d–e) Reprinted with permission from Ref. [55]. Copyright 2007, Wiley-Liss, Inc. (f, g) Reprinted with permission from Ref. [51]. Copyright 2015, Chinese Medical Association.

    Figure  10.  MRI images and related analysis of mice administered SA. (a) T2w image, (b) overlay CEST image preinjection, and (c) overlay CEST image at 7 min postinjection of mice administered SA; (d) Z-spectra and MTRasym for the right kidney before injection (black) and 7 min postinjection (light blue); (e) MTRasym values of the left kidney and right kidney at different time points after SA injection. Reprinted with permission from Ref. [8]. Copyright 2013, Springer Nature Limited.

    Figure  11.  Several applications of SA, Olsa and other probes. (a) The T2w image and MTRasym image of SA-conjugated dendrimers in vivo: preinjection, 30 min postinjection, and 60 min postinjection; (b) the SA-based polymeric diaCEST agent and its CEST MRI in PSMA(+) PC3 PIP and PSMA(−) PC3 flu tumors; (c) the chemical structure and (d) self-assembly mechanism of Olsa-RVRR in tumor cells. (e) The principle of the cathepsin B-responsive CEST probe; (f) CEST spectra of the cathepsin B-responsive CEST probe before and after cleavage with cathepsin B. (a) Reprinted with permission from Ref. [65]. Copyright 2016, American Chemical Society. (b) Reprinted with permission from Ref. [66]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c, d) Reprinted with permission from Ref. [22]. Copyright 2019, The Author(s), under exclusive license to Springer Nature Limited. (e, f) Reprinted with permission from Ref. [73]. Copyright 2021, American Chemical Society.

    [1]
    van Zijl P C M, Yadav N N. Chemical exchange saturation transfer (CEST): What is in a name and what isn’t? Magnetic Resonance in Medicine, 2011, 65 (4): 927–948. doi: 10.1002/mrm.22761
    [2]
    Heo H Y, Jones C K, Hua J, et al. Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. Journal of Magnetic Resonance Imaging, 2016, 44 (1): 41–50. doi: 10.1002/jmri.25108
    [3]
    Han Z, Liu G. CEST MRI trackable nanoparticle drug delivery systems. Biomedical Materials, 2021, 16 (2): 024103. doi: 10.1088/1748-605X/abdd70
    [4]
    Sherry A D, Woods M. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annual Review of Biomedical Engineering, 2008, 10: 391–411. doi: 10.1146/annurev.bioeng.9.060906.151929
    [5]
    Yang X, Song X, Li Y, et al. Salicylic acid and analogues as diaCEST MRI contrast agents with highly shifted exchangeable proton frequencies. Angewandte Chemie, 2013, 125 (31): 8274–8277. doi: 10.1002/ange.201302764
    [6]
    McMahon M T, Bulte J W M. Two decades of dendrimers as versatile MRI agents: A tale with and without metals. WIREs Nanomedicine and Nanobiotechnology, 2018, 10 (3): e1496. doi: 10.1002/wnan.1496
    [7]
    Wang J, Weygand J, Hwang K P, et al. Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Scientific Reports, 2016, 6: 30618. doi: 10.1038/srep30618
    [8]
    Chan K W Y, Liu G, Song X, et al. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nature Materials, 2013, 12 (3): 268–275. doi: 10.1038/nmat3525
    [9]
    Delli Castelli D, Terreno E, Aime S. YbIII-HPDO3A: A dual pH- and temperature-responsive CEST agent. Angewandte Chemie International Edition, 2011, 50 (8): 1798–1800. doi: 10.1002/anie.201007105
    [10]
    Liu G, Liang Y, Bar-Shir A, et al. Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer magnetic resonance imaging contrast agent. Journal of the American Chemical Society, 2011, 133 (41): 16326–16329. doi: 10.1021/ja204701x
    [11]
    Zhang S R, Trokowski R, Sherry A D. A paramagnetic CEST agent for imaging glucose by MRI. Journal of the American Chemical Society, 2003, 125 (50): 15288–15289. doi: 10.1021/ja038345f
    [12]
    Pavuluri K, McMahon M T. pH imaging using chemical exchange saturation transfer (CEST) MRI. Israel Journal of Chemistry, 2017, 57 (9): 862–879. doi: 10.1002/ijch.201700075
    [13]
    Ali M M, Yoo B, Pagel M D. Tracking the relative in vivo pharmacokinetics of nanoparticles with PARACEST MRI. Molecular Pharmaceutics, 2009, 6 (5): 1409–1416. doi: 10.1021/mp900040u
    [14]
    Zhou J Y, Lal B, Wilson D A, et al. Amide proton transfer (APT) contrast for imaging of brain tumors. Magnetic Resonance in Medicine, 2003, 50 (6): 1120–1126. doi: 10.1002/mrm.10651
    [15]
    Ferrauto G, Di Gregorio E, Ruzza M, et al. Enzyme-responsive LipoCEST agents: Assessment of MMP-2 activity by measuring the intra-liposomal water 1H NMR shift. Angewandte Chemie International Edition, 2017, 56 (40): 12170–12173. doi: 10.1002/anie.201706271
    [16]
    Davis K A, Nanga R P R, Das S, et al. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Science Translational Medicine, 2015, 7 (309): 309ra161. doi: 10.1126/scitranslmed.aaa7095
    [17]
    Chan K W Y, McMahon M T, Kato Y, et al. Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magnetic Resonance in Medicine, 2012, 68 (6): 1764–1773. doi: 10.1002/mrm.24520
    [18]
    van Zijl P C M, Jones C K, Ren J, et al. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (11): 4359–4364. doi: 10.1073/pnas.0700281104
    [19]
    Haneder S, Apprich S R, Schmitt B, et al. Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: Preliminary results in patients with low-back pain. European Radiology, 2013, 23 (3): 861–868. doi: 10.1007/s00330-012-2660-6
    [20]
    Li Y, Chen H, Xu J, et al. CEST theranostics: label-free MR imaging of anticancer drugs. Oncotarget, 2016, 7 (6): 6369–6378. doi: 10.18632/oncotarget.7141
    [21]
    Liu H, Jablonska A, Li Y, et al. Label-free CEST MRI detection of citicoline-liposome drug delivery in ischemic stroke. Theranostics, 2016, 6 (10): 1588–1600. doi: 10.7150/thno.15492
    [22]
    Yuan Y, Zhang J, Qi X, et al. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nature Materials, 2019, 18 (12): 1376–1383. doi: 10.1038/s41563-019-0503-4
    [23]
    Goffeney N, Bulte J W M, Duyn J, et al. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. Journal of the American Chemical Society, 2001, 123 (35): 8628–8629. doi: 10.1021/ja0158455
    [24]
    Gilad A A, van Laarhoven H W, McMahon M T, et al. Feasibility of concurrent dual contrast enhancement using CEST contrast agents and superparamagnetic iron oxide particles. Magnetic Resonance in Medicine, 2009, 61 (4): 970–974. doi: 10.1002/mrm.21928
    [25]
    Li J, Feng X, Zhu W, et al. Chemical exchange saturation transfer (CEST) agents: Quantum chemistry and MRI. Chemistry-A European Journal, 2016, 22 (1): 264–271. doi: 10.1002/chem.201503942
    [26]
    Vinogradov E, Keupp J, Dimitrov I E, et al. CEST-MRI for body oncologic imaging: Are we there yet? NMR in Biomedicine, 2023: e4906. doi: 10.1002/nbm.4906
    [27]
    Lin X, Xiao Z, Chen T, et al. Glucose metabolism on tumor plasticity, diagnosis, and treatment. Frontiers in Oncology, 2020, 10: 317. doi: 10.3389/fonc.2020.00317
    [28]
    Walker-Samuel S, Ramasawmy R, Torrealdea F, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nature Medicine, 2013, 19 (8): 1067–1072. doi: 10.1038/nm.3252
    [29]
    Rivlin M, Navon G. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Scientific Reports, 2016, 6 (1): 32648. doi: 10.1038/srep32648
    [30]
    Nasrallah F A, Pagès G, Kuchel P W, et al. Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. Journal of Cerebral Blood Flow & Metabolism, 2013, 33 (8): 1270–1278. doi: 10.1038/jcbfm.2013.79
    [31]
    Liu G, Banerjee S R, Yang X, et al. A dextran-based probe for the targeted magnetic resonance imaging of tumours expressing prostate-specific membrane antigen. Nature Biomedical Engineering, 2017, 1 (12): 977–982. doi: 10.1038/s41551-017-0168-8
    [32]
    Sehgal A A, Li Y, Lal B, et al. CEST MRI of 3-O-methyl-D-glucose uptake and accumulation in brain tumors. Magnetic Resonance in Medicine, 2019, 81 (3): 1993–2000. doi: 10.1002/mrm.27489
    [33]
    Anemone A, Capozza M, Arena F, et al. In vitro and in vivo comparison of MRI chemical exchange saturation transfer (CEST) properties between native glucose and 3-O-Methyl-D-glucose in a murine tumor model. NMR in Biomedicine, 2021, 34 (12): e4602. doi: 10.1002/nbm.4602
    [34]
    Anemone A, Capozza M, Arena F, et al. In vitro and in vivo comparison of the MRI glucoCEST properties between native glucose and 3OMG in a murine tumor model. bioRxiv: 2021.03. 15.435387, 2021.
    [35]
    Grasa L, Chueca E, Arechavaleta S, et al. Antitumor effects of lactate transport inhibition on esophageal adenocarcinoma cells. Journal of Physiology and Biochemistry, 2023, 79 (1): 147–161. doi: 10.1007/s13105-022-00931-3
    [36]
    Anderson M, Moshnikova A, Engelman D M, et al. Probe for the measurement of cell surface pH in vivo and ex vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (29): 8177–8181. doi: 10.1073/pnas.1608247113
    [37]
    Sweeney M D, Sagare A P, Zlokovic B V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology, 2018, 14 (3): 133–150. doi: 10.1038/nrneurol.2017.188
    [38]
    Huntley N F, Patience J F. Xylose: Absorption, fermentation, and post-absorptive metabolism in the pig. Journal of Animal Science and Biotechnology, 2018, 9 (1): 4. doi: 10.1186/s40104-017-0226-9
    [39]
    Knutsson L, Xu X, van Zijl P C M, et al. Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties. NMR in Biomedicine, 2022: e4784. doi: 10.1002/nbm.4784
    [40]
    Wang J, Fukuda M, Chung J J, et al. Chemical exchange sensitive MRI of glucose uptake using xylose as a contrast agent. Magnetic Resonance in Medicine, 2021, 85 (4): 1953–1961. doi: 10.1002/mrm.28557
    [41]
    Kim M, Torrealdea F, Adeleke S, et al. Challenges in glucoCEST MR body imaging at 3 Tesla. Quantitative Imaging in Medicine and Surgery, 2019, 9 (10): 1628–1640. doi: 10.21037/qims.2019.10.05
    [42]
    Wu T, Bound M J, Zhao B R, et al. Effects of a D-xylose preload with or without sitagliptin on gastric emptying, glucagon-like peptide-1, and postprandial glycemia in type 2 diabetes. Diabetes Care, 2013, 36 (7): 1913–1918. doi: 10.2337/dc12-2294
    [43]
    Goodwin N C, Mabon R, Harrison B A, et al. Novel L-xylose derivatives as selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Journal of Medicinal Chemistry, 2009, 52 (20): 6201–6204. doi: 10.1021/jm900951n
    [44]
    Roussel T, Frydman L, Le Bihan D, et al. Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields. Scientific Reports, 2019, 9 (1): 4423. doi: 10.1038/s41598-019-40986-9
    [45]
    Yuan Y, Wang C, Kuddannaya S, et al. In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nature Biomedical Engineering, 2022, 6 (5): 658–666. doi: 10.1038/s41551-021-00822-w
    [46]
    Yuan J, Chen S, King A D, et al. Amide proton transfer-weighted imaging of the head and neck at 3 T: A feasibility study on healthy human subjects and patients with head and neck cancer. NMR in Biomedicine, 2014, 27 (10): 1239–1247. doi: 10.1002/nbm.3184
    [47]
    Zhou J, Blakeley J O, Hua J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magnetic Resonance in Medicine, 2008, 60 (4): 842–849. doi: 10.1002/mrm.21712
    [48]
    Fiveash J B, Spencer S A. Role of radiation therapy and radiosurgery in glioblastoma multiforme. The Cancer Journal, 2003, 9 (3): 222–229. doi: 10.1097/00130404-200305000-00010
    [49]
    Park K J, Kim H S, Park J E, et al. Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. European Radiology, 2016, 26 (12): 4390–4403. doi: 10.1007/s00330-016-4261-2
    [50]
    Zhao X, Wen Z, Huang F, et al. Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magnetic Resonance in Medicine, 2011, 66 (4): 1033–1041. doi: 10.1002/mrm.22891
    [51]
    Wang R, Li S Y, Chen M, et al. Amide proton transfer magnetic resonance imaging of Alzheimer’s disease at 3.0 Tesla: A preliminary study. Chinese Medical Journal, 2015, 128 (05): 615–619. doi: 10.4103/0366-6999.151658
    [52]
    Li C, Peng S, Wang R, et al. Chemical exchange saturation transfer MR imaging of Parkinson’s disease at 3 Tesla. European Radiology, 2014, 24: 2631–2639. doi: 10.1007/s00330-014-3241-7
    [53]
    Li C, Wang R, Chen H, et al. Chemical exchange saturation transfer MR imaging is superior to diffusion-tensor imaging in the diagnosis and severity evaluation of Parkinson’s disease: A study on substantia nigra and striatum. Frontiers in Aging Neuroscience, 2015, 7: 198. doi: 10.3389/fnagi.2015.00198
    [54]
    Zhang H, Wang W, Jiang S, et al. Amide proton transfer-weighted MRI detection of traumatic brain injury in rats. Journal of Cerebral Blood Flow & Metabolism, 2017, 37 (10): 3422–3432. doi: 10.1177/0271678X17690165
    [55]
    Jokivarsi K T, Gröhn H I, Gröhn O H, et al. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magnetic Resonance in Medicine, 2007, 57 (4): 647–653. doi: 10.1002/mrm.21181
    [56]
    Sun P Z, Zhou J, Sun W, et al. Delineating the boundary between the ischemic penumbra and regions of oligaemia using pH-weighted MRI (pHWI). In: Proceedings of ISMRM 14th Scientific Meeting & Exhibition, 2006.
    [57]
    Xi Q, Zhao X H, Wang P J, et al. Functional MRI study of mild Alzheimer’s disease using amplitude of low frequency fluctuation analysis. Chinese Medical Journal, 2012, 125 (5): 858–862.
    [58]
    Kinney J W, Bemiller S M, Murtishaw A S, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 2018, 4: 575–590. doi: 10.1016/j.trci.2018.06.014
    [59]
    Xu G, Stevens Jr S M, Moore B D, et al. Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of Alzheimer-type amyloidosis. Human Molecular Genetics, 2013, 22 (14): 2765–2774. doi: 10.1093/hmg/ddt121
    [60]
    Amador-Ortiz C, Lin W L, Ahmed Z, et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Annals of Neurology, 2007, 61 (5): 435–445. doi: 10.1002/ana.21154
    [61]
    Zhou J, Heo H Y, Knutsson L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. Journal of Magnetic Resonance Imaging, 2019, 50 (2): 347–364. doi: 10.1002/jmri.26645
    [62]
    Maciel G E, Savitsky G B. Carbon-13 chemical shifts and intramolecular hydrogen bonding. Journal of Physical Chemistry, 1964, 68 (2): 437–438. doi: 10.1021/j100784a518
    [63]
    Mock W L, Morsch L A. Low barrier hydrogen bonds within salicylate mono-anions. Tetrahedron, 2001, 57 (15): 2957–2964. doi: 10.1016/S0040-4020(01)00158-2
    [64]
    Winter P M, Cai K, Chen J, et al. Targeted PARACEST nanoparticle contrast agent for the detection of fibrin. Magnetic Resonance in Medicine, 2006, 56 (6): 1384–1388. doi: 10.1002/mrm.21093
    [65]
    Lesniak W G, Oskolkov N, Song X, et al. Salicylic acid conjugated dendrimers are a tunable, high performance CEST MRI nanoPlatform. Nano Letters, 2016, 16 (4): 2248–2253. doi: 10.1021/acs.nanolett.5b04517
    [66]
    Banerjee S R, Song X, Yang X, et al. Salicylic acid-based polymeric contrast agents for molecular magnetic resonance imaging of prostate cancer. Chemistry-A European Journal, 2018, 24 (28): 7235–7242. doi: 10.1002/chem.201800882
    [67]
    Thomas G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nature Reviews Molecular Cell Biology, 2002, 3 (10): 753–766. doi: 10.1038/nrm934
    [68]
    Ren H, Xiao F, Zhan K, et al. A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. Angewandte Chemie International Edition, 2009, 48 (51): 9658–9662. doi: 10.1002/anie.200903627
    [69]
    Liang G, Ren H, Rao J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nature Chemistry, 2010, 2 (1): 54–60. doi: 10.1038/nchem.480
    [70]
    Friedl P, Alexander S. Cancer invasion and the microenvironment: Plasticity and reciprocity. Cell, 2011, 147 (5): 992–1009. doi: 10.1016/j.cell.2011.11.016
    [71]
    Koblinski J E, Ahram M, Sloane B F. Unraveling the role of proteases in cancer. Clinica Chimica Acta, 2000, 291 (2): 113–135. doi: 10.1016/S0009-8981(99)00224-7
    [72]
    Dohchin A, Suzuki J I, Seki H, et al. Immunostained cathepsins B and L correlate with depth of invasion and different metastatic pathways in early stage gastric carcinoma. Cancer, 2000, 89 (3): 482–487. doi: 10.1002/1097-0142(20000801)89:3<482::AID-CNCR2>3.0.CO;2-5
    [73]
    Kombala C J, Lokugama S D, Kotrotsou A, et al. Simultaneous evaluations of pH and enzyme activity with a CEST MRI contrast agent. ACS Sensors, 2021, 6 (12): 4535–4544. doi: 10.1021/acssensors.1c02408
    [74]
    Lock L L, Li Y, Mao X, et al. One-component supramolecular filament hydrogels as theranostic label-free magnetic resonance imaging agents. ACS Nano, 2017, 11 (1): 797–805. doi: 10.1021/acsnano.6b07196
    [75]
    Law L H, Huang J, Xiao P, et al. Multiple CEST contrast imaging of nose-to-brain drug delivery using iohexol liposomes at 3T MRI. Journal of Controlled Release, 2023, 354: 208–220. doi: 10.1016/j.jconrel.2023.01.011
    [76]
    Qi Q, Fox M S, Lim H, et al. Glucose infusion induced change in intracellular pH and its relationship with tumor glycolysis in a C6 rat model of glioblastoma. Molecular Imaging and Biology, 2023, 25 (2): 271–282. doi: 10.1007/s11307-022-01726-0
    [77]
    Sinharay S, Randtke E A, Howison C M, et al. Detection of enzyme activity and inhibition during studies in solution, in vitro and in vivo with catalyCEST MRI. Molecular Imaging and Biology, 2018, 20: 240–248. doi: 10.1007/s11307-017-1092-8
    [78]
    Sieber M A, Lengsfeld P, Walter J, et al. Gadolinium-based contrast agents and their potential role in the pathogenesis of nephrogenic systemic fibrosis: The role of excess ligand. Journal of Magnetic Resonance Imaging, 2008, 27 (5): 955–962. doi: 10.1002/jmri.21368
    [79]
    Geppert M, Himly M. Iron oxide nanoparticles in bioimaging – An immune perspective. Frontiers in Immunology, 2021, 12: 688927. doi: 10.3389/fimmu.2021.688927

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return