[1] |
Kogan S M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Physics-Solid State, 1964, 5 (10): 2069–2070.
|
[2] |
Yudin P V, Tagantsev A K. Fundamentals of flexoelectricity in solids. Nanotechnology, 2013, 24 (43): 432001. doi: 10.1088/0957-4484/24/43/432001
|
[3] |
Zubko P, Catalan G, Tagantsev A K. Flexoelectric effect in solids. Annual Review of Materials Research, 2013, 43: 387–421. doi: 10.1146/annurev-matsci-071312-121634
|
[4] |
Cross L E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. Journal of Materials Science, 2006, 41: 53–63. doi: 10.1007/s10853-005-5916-6
|
[5] |
Chu B, Zhu W, Li N, et al. Flexure mode flexoelectric piezoelectric composites. Journal of Applied Physics, 2009, 106: 104109. doi: 10.1063/1.3262495
|
[6] |
Zhou W, Chen P, Pan Q, et al. Lead-free metamaterials with enormous apparent piezoelectric response. Advanced Materials, 2015, 27: 6349–6355. doi: 10.1002/adma.201502562
|
[7] |
Bhaskar U K, Banerjee N, Abdollahi A, et al. A flexoelectric microelectromechanical system on silicon. Nature Nanotechnology, 2016, 11: 263–266. doi: 10.1038/nnano.2015.260
|
[8] |
Tagantsev A K, Yurkov A S. Flexoelectric effect in finite samples. Journal of Applied Physics, 2012, 112: 044103. doi: 10.1063/1.4745037
|
[9] |
Tagantsev A K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Physical Review B, 1986, 34: 5883–5889. doi: 10.1103/physrevb.34.5883
|
[10] |
Ma W, Cross L E. Flexoelectricity of barium titanate. Applied Physics Letters, 2006, 88: 232902. doi: 10.1063/1.2211309
|
[11] |
Ma W, Cross L E. Large flexoelectric polarization in ceramic lead magnesium niobate. Applied Physics Letters, 2001, 79: 4420–4422. doi: 10.1063/1.1426690
|
[12] |
Ma W, Cross L E. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Applied Physics Letters, 2002, 81: 3440–3442. doi: 10.1063/1.1518559
|
[13] |
Ma W, Cross L E. Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Applied Physics Letters, 2003, 82: 3293–3295. doi: 10.1063/1.1570517
|
[14] |
Zhang X, Pan Q, Tian D, et al. Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics. Physical Review Letters, 2018, 121: 057602. doi: 10.1103/physrevlett.121.057602
|
[15] |
Cutter I A, McPherson R. Surface domain reorientation produced by abrasion and annealing of polycrystalline BaTiO3. Journal of the American Ceramic Society, 1972, 55: 334–336. doi: 10.1111/j.1151-2916.1972.tb11304.x
|
[16] |
Cheng S, Lloyd I K, Kahn M. Modification of surface texture by grinding and polishing lead zirconate titanate ceramics. Journal of the American Ceramic Society, 1992, 75: 2293–2296. doi: 10.1111/j.1151-2916.1992.tb04499.x
|
[17] |
Jyomura S, Matsuyama I, Toda G. Effects of the lapped surface layers on the dielectric properties of ferroelectric ceramics. Journal of Applied Physics, 1980, 51: 5838–5844. doi: 10.1063/1.327542
|
[18] |
Zhang X, Liu J, Chu M, et al. Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers. Applied Physics Letters, 2016, 109: 072903. doi: 10.1063/1.4961310
|
[19] |
Subbarao E C, McQuarrie M C, Buessem W R. Domain effects in polycrystalline Barium titanate. Journal of Applied Physics, 1957, 28: 1194–1200. doi: 10.1063/1.1722606
|
[20] |
Mehta K, Virkar A V. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate (Zr∶Ti=0.54∶0.46) ceramics. Journal of the American Ceramic Society, 1990, 73: 567–574. doi: 10.1111/j.1151-2916.1990.tb06554.x
|
[21] |
Tian D, Chen P, Yang X, et al. Thickness dependence of dielectric and piezoelectric properties from the surface layer effect of BaTiO3-based ceramics. Ceramics International, 2021, 47: 17262–17267. doi: 10.1016/j.ceramint.2021.03.037
|
[22] |
Zhang B, Zheng X L, Tokura H, et al. Grinding induced damage in ceramics. Journal of Materials Processing Technology, 2003, 132: 353–364. doi: 10.1016/s0924-0136(02)00952-4
|
[23] |
Balke N, Bdikin I, Kalinin S V, et al. Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future. Journal of the American Ceramic Society, 2009, 92: 1629–1647. doi: 10.1111/j.1551-2916.2009.03240.x
|
[24] |
Shi H, Li F, Liu W, et al. Composition dependent phase structure, dielectric and electrostrain properties in (Sr0.7Bi0.2-0.1)TiO3–PbTiO3–Bi(Mg0.5Ti0.5)O3 systems. Journal of Physics D: Applied Physics, 2022, 55: 185301. doi: 10.1088/1361-6463/ac4ec4
|
[25] |
Li F, Li K, Long M, et al. Ferroelectric-relaxor crossover induce large electrocaloric effect with ultrawide temperature span in NaNbO3-based lead-free ceramics. Applied Physics Letters, 2021, 118: 043902. doi: 10.1063/5.0038506
|
[26] |
Gruverman A. Scaling effect on statistical behavior of switching parameters of ferroelectric capacitors. Applied Physics Letters, 1999, 75: 1452–1454. doi: 10.1063/1.124722
|
[27] |
Wu A, Vilarinho P M, Shvartsman V V, et al. Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy. Nanotechnology, 2005, 16: 2587. doi: 10.1088/0957-4484/16/11/020
|
[28] |
Kholkin A, Bdikin I, Ostapchuk T, et al. Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy. Applied Physics Letters, 2008, 93: 222905. doi: 10.1063/1.3037220
|
Figure 1. (a) The XRD patterns of BT ceramics abraded with different abrasive papers. (b–f) Analysis of the XRD patterns shown in (a) using the Rietveld refinement method. “×” marks represent the diffraction peaks, and the red solid lines are fitted curves. The difference between the experimental results and fitted curve is shown as blue curves. (g) The intensity ratio of (002)/(200) peaks Ra of BT ceramics abraded with abrasive papers of different particle sizes.
Figure 3. (a) The temperature dependence of the dielectric constant and loss of as-prepared and abraded BT ceramics before and after heat treatment at 1 kHz. The inset shows the dielectric constant near TC. (b, c) The dielectric constant of BT ceramics before and after heat treatment with different abrasion conditions at 30 °C and 133 °C, respectively.
Figure 4. (a, b) The P-E hysteresis loops of as-prepared and abraded BT ceramics (measured at room temperature) before and after the heat treatment at 200 °C, respectively. (c) Dependence of coercive field Ecof BT ceramics on the grit size of the abrasive paper. (d) Dependence of maximum polarization P max of BT ceramics on the grit size of the abrasive paper.
Figure 7. PFM images of BT ceramics. (a) Phase contrast PFM images before heat treatment of as-prepared samples. (b) Phase contrast PFM images after heat treatment of as-prepared samples. (c) The analysis of the polarization orientation for the phase images of as-prepared samples shown in (a, b). (d, e) Phase contrast PFM images before and after heat treatment of the ceramic abraded by 5000-grit abrasive paper. (f) The analysis of the polarization orientation for the phase images of abraded samples shown in (d, e).
[1] |
Kogan S M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Physics-Solid State, 1964, 5 (10): 2069–2070.
|
[2] |
Yudin P V, Tagantsev A K. Fundamentals of flexoelectricity in solids. Nanotechnology, 2013, 24 (43): 432001. doi: 10.1088/0957-4484/24/43/432001
|
[3] |
Zubko P, Catalan G, Tagantsev A K. Flexoelectric effect in solids. Annual Review of Materials Research, 2013, 43: 387–421. doi: 10.1146/annurev-matsci-071312-121634
|
[4] |
Cross L E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. Journal of Materials Science, 2006, 41: 53–63. doi: 10.1007/s10853-005-5916-6
|
[5] |
Chu B, Zhu W, Li N, et al. Flexure mode flexoelectric piezoelectric composites. Journal of Applied Physics, 2009, 106: 104109. doi: 10.1063/1.3262495
|
[6] |
Zhou W, Chen P, Pan Q, et al. Lead-free metamaterials with enormous apparent piezoelectric response. Advanced Materials, 2015, 27: 6349–6355. doi: 10.1002/adma.201502562
|
[7] |
Bhaskar U K, Banerjee N, Abdollahi A, et al. A flexoelectric microelectromechanical system on silicon. Nature Nanotechnology, 2016, 11: 263–266. doi: 10.1038/nnano.2015.260
|
[8] |
Tagantsev A K, Yurkov A S. Flexoelectric effect in finite samples. Journal of Applied Physics, 2012, 112: 044103. doi: 10.1063/1.4745037
|
[9] |
Tagantsev A K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Physical Review B, 1986, 34: 5883–5889. doi: 10.1103/physrevb.34.5883
|
[10] |
Ma W, Cross L E. Flexoelectricity of barium titanate. Applied Physics Letters, 2006, 88: 232902. doi: 10.1063/1.2211309
|
[11] |
Ma W, Cross L E. Large flexoelectric polarization in ceramic lead magnesium niobate. Applied Physics Letters, 2001, 79: 4420–4422. doi: 10.1063/1.1426690
|
[12] |
Ma W, Cross L E. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Applied Physics Letters, 2002, 81: 3440–3442. doi: 10.1063/1.1518559
|
[13] |
Ma W, Cross L E. Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Applied Physics Letters, 2003, 82: 3293–3295. doi: 10.1063/1.1570517
|
[14] |
Zhang X, Pan Q, Tian D, et al. Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics. Physical Review Letters, 2018, 121: 057602. doi: 10.1103/physrevlett.121.057602
|
[15] |
Cutter I A, McPherson R. Surface domain reorientation produced by abrasion and annealing of polycrystalline BaTiO3. Journal of the American Ceramic Society, 1972, 55: 334–336. doi: 10.1111/j.1151-2916.1972.tb11304.x
|
[16] |
Cheng S, Lloyd I K, Kahn M. Modification of surface texture by grinding and polishing lead zirconate titanate ceramics. Journal of the American Ceramic Society, 1992, 75: 2293–2296. doi: 10.1111/j.1151-2916.1992.tb04499.x
|
[17] |
Jyomura S, Matsuyama I, Toda G. Effects of the lapped surface layers on the dielectric properties of ferroelectric ceramics. Journal of Applied Physics, 1980, 51: 5838–5844. doi: 10.1063/1.327542
|
[18] |
Zhang X, Liu J, Chu M, et al. Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers. Applied Physics Letters, 2016, 109: 072903. doi: 10.1063/1.4961310
|
[19] |
Subbarao E C, McQuarrie M C, Buessem W R. Domain effects in polycrystalline Barium titanate. Journal of Applied Physics, 1957, 28: 1194–1200. doi: 10.1063/1.1722606
|
[20] |
Mehta K, Virkar A V. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate (Zr∶Ti=0.54∶0.46) ceramics. Journal of the American Ceramic Society, 1990, 73: 567–574. doi: 10.1111/j.1151-2916.1990.tb06554.x
|
[21] |
Tian D, Chen P, Yang X, et al. Thickness dependence of dielectric and piezoelectric properties from the surface layer effect of BaTiO3-based ceramics. Ceramics International, 2021, 47: 17262–17267. doi: 10.1016/j.ceramint.2021.03.037
|
[22] |
Zhang B, Zheng X L, Tokura H, et al. Grinding induced damage in ceramics. Journal of Materials Processing Technology, 2003, 132: 353–364. doi: 10.1016/s0924-0136(02)00952-4
|
[23] |
Balke N, Bdikin I, Kalinin S V, et al. Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: State of the art and prospects for the future. Journal of the American Ceramic Society, 2009, 92: 1629–1647. doi: 10.1111/j.1551-2916.2009.03240.x
|
[24] |
Shi H, Li F, Liu W, et al. Composition dependent phase structure, dielectric and electrostrain properties in (Sr0.7Bi0.2-0.1)TiO3–PbTiO3–Bi(Mg0.5Ti0.5)O3 systems. Journal of Physics D: Applied Physics, 2022, 55: 185301. doi: 10.1088/1361-6463/ac4ec4
|
[25] |
Li F, Li K, Long M, et al. Ferroelectric-relaxor crossover induce large electrocaloric effect with ultrawide temperature span in NaNbO3-based lead-free ceramics. Applied Physics Letters, 2021, 118: 043902. doi: 10.1063/5.0038506
|
[26] |
Gruverman A. Scaling effect on statistical behavior of switching parameters of ferroelectric capacitors. Applied Physics Letters, 1999, 75: 1452–1454. doi: 10.1063/1.124722
|
[27] |
Wu A, Vilarinho P M, Shvartsman V V, et al. Domain populations in lead zirconate titanate thin films of different compositions via piezoresponse force microscopy. Nanotechnology, 2005, 16: 2587. doi: 10.1088/0957-4484/16/11/020
|
[28] |
Kholkin A, Bdikin I, Ostapchuk T, et al. Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy. Applied Physics Letters, 2008, 93: 222905. doi: 10.1063/1.3037220
|