[1] |
Wang S, Fauve R, Coquelet C, et al. Vapor-liquid equilibrium and molecular simulation data for carbon dioxide (CO2) + trans-1,3,3,3-tetrafluoroprop-1-ene (R-1234ze(E)) mixture at temperatures from 283.32 to 353.02 K and pressures up to 7.6 MPa. International Journal of Refrigeration, 2019, 98: 362–371. doi: 10.1016/j.ijrefrig.2018.10.032
|
[2] |
Juntarachat N, Valtz A, Coquelet C, et al. Experimental measurements and correlation of vapor-liquid equilibrium and critical data for the CO2 + R1234yf and CO2 + R1234ze(E) binary mixtures. International Journal of Refrigeration, 2014, 47: 141–152. doi: 10.1016/j.ijrefrig.2014.09.001
|
[3] |
Bellos E, Tzivanidis C. A comparative study of CO2 refrigeration systems . Energy Conversion and Management: X, 2019, 1: 100002. doi: 10.1016/j.ecmx.2018.100002
|
[4] |
Lim J S, Jin J M, Yoo K P. VLE measurement for binary systems of CO2 + 1,1,1,2-tetrafluoroethane (HFC-134a) at high pressures. The Journal of Supercritical Fluids, 2008, 44: 279–283. doi: 10.1016/j.supflu.2007.09.025
|
[5] |
Dai B, Liu C, Liu S, et al. Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO2 high-temperature heat pump systems for industrial waste heat recovery. Applied Thermal Engineering, 2023, 219: 119570. doi: 10.1016/j.applthermaleng.2022.119570
|
[6] |
Wu Z, Shi L, Sun R, et al. A temperature-independent prediction model predicts the vapor-liquid equilibrium of CO2-based binary mixtures. International Journal of Refrigeration, 2022, 140: 125–138. doi: 10.1016/j.ijrefrig.2022.05.005
|
[7] |
Peng D Y, Robinson D B. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976, 15: 59–64. doi: https://doi.org/10.1021/i160057a011
|
[8] |
Kontogeorgis G M, Coutsikos P. Thirty years with EoS/GE models—What have we learned? Industrial & Engineering Chemistry Research, 2012, 51: 4119–4142. doi: https://doi.org/10.1021/ie2015119
|
[9] |
Kwak T Y, Mansoori G A. Van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling. Chemical Engineering Science, 1986, 41: 1303–1309. doi: 10.1016/0009-2509(86)87103-2
|
[10] |
Huron M J, Vidal J. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 1979, 3: 255–271. doi: 10.1016/0378-3812(79)80001-1
|
[11] |
Wong D S H, Sandler S I. A theoretically correct mixing rule for cubic equations of state. AIChE Journal, 1992, 38: 671–680. doi: 10.1002/aic.690380505
|
[12] |
Michelsen M L. A method for incorporating excess Gibbs energy models in equations of state. Fluid Phase Equilibria, 1990, 60: 47–58. doi: 10.1016/0378-3812(90)85042-9
|
[13] |
Michelsen M L. A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria, 1990, 60: 213–219. doi: 10.1016/0378-3812(90)85053-D
|
[14] |
Boukouvalas C, Spiliotis N, Coutsikos P, et al. Prediction of vapor-liquid equilibrium with the LCVM model: A linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIF. Fluid Phase Equilibria, 1994, 92: 75–106. doi: 10.1016/0378-3812(94)80043-X
|
[15] |
Farajnezhad A, Afshar O A, Khansary M A, et al. Correlation of interaction parameters in Wilson, NRTL and UNIQUAC models using theoretical methods. Fluid Phase Equilibria, 2016, 417: 181–186. doi: 10.1016/j.fluid.2016.02.041
|
[16] |
Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 1968, 14: 135–144. doi: 10.1002/aic.690140124
|
[17] |
Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 1975, 21: 1086–1099. doi: 10.1002/aic.690210607
|
[18] |
Lohmann J, Joh R, Gmehling J. From UNIFAC to modified UNIFAC (dortmund). Industrial & Engineering Chemistry Research, 2001, 40: 957–964. doi: https://doi.org/10.1021/ie0005710
|
[19] |
Lohmann J, Gmehling J. Modified UNIFAC (dortmund). reliable model for the development of thermal separation processes. Journal of Chemical Engineering of Japan, 2001, 34: 43–54. doi: 10.1252/jcej.34.43
|
[20] |
Wittig R, Lohmann J, Joh R, et al. Vapor–liquid equilibria and enthalpies of mixing in a temperature range from 298.15 to 413.15 K for the further development of modified UNIFAC (dortmund). Industrial & Engineering Chemistry Research, 2001, 40: 5831–5838. doi: https://doi.org/10.1021/ie010444j
|
[21] |
Constantinescu D, Gmehling J. Addendum to “further development of modified UNIFAC (dortmund): Revision and extension 6”. Journal of Chemical & Engineering Data, 2017, 62: 2230. doi: https://doi.org/10.1021/acs.jced.7b00403
|
[22] |
Fischer K, Gmehling J. Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities. Fluid Phase Equilibria, 1995, 112: 1–22. doi: 10.1016/0378-3812(95)02792-D
|
[23] |
Li J, Fischer K, Gmehling J. Prediction of vapor-liquid equilibria for asymmetric systems at low and high pressures with the PSRK model. Fluid Phase Equilibria, 1998, 143: 71–82. doi: 10.1016/S0378-3812(98)00206-4
|
[24] |
Chen J, Fischer K, Gmehling J. Modification of PSRK mixing rules and results for vapor-liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution. Fluid Phase Equilibria, 2002, 200: 411–429. doi: 10.1016/S0378-3812(02)00048-1
|
[25] |
Horstmann S, Jabłoniec A, Krafczyk J, et al. PSRK group contribution equation of state: Comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. Fluid Phase Equilibria, 2005, 227: 157–164. doi: 10.1016/j.fluid.2004.11.002
|
[26] |
Ahlers J, Gmehling J. Development of a universal group contribution equation of state III. prediction of vapor–liquid equilibria, excess enthalpies, and activity coefficients at infinite dilution with the VTPR model. Industrial & Engineering Chemistry Research, 2002, 41: 5890–5899. doi: https://doi.org/10.1021/ie0203734
|
[27] |
Schmid B, Schedemann A, Gmehling J. Extension of the VTPR group contribution equation of state: Group interaction parameters for additional 192 group combinations and typical results. Industrial & Engineering Chemistry Research, 2014, 53: 3393–3405. doi: https://doi.org/10.1021/ie404118f
|
[28] |
Schmid B, Gmehling J. Present status of the group contribution equation of state VTPR and typical applications for process development. Fluid Phase Equilibria, 2016, 425: 443–450. doi: 10.1016/j.fluid.2016.06.042
|
[29] |
Hou S X, Duan Y Y, Wang X D. Vapor–liquid equilibria predictions for new refrigerant mixtures based on group contribution theory. Industrial & Engineering Chemistry Research, 2007, 46: 9274–9284. doi: https://doi.org/10.1021/ie070911i
|
[30] |
Gao Y, Li C, Xia S, et al. Estimation and correlation of phase equilibrium of CO2–hydrocarbon systems with PRMHV2-UNIFAC and PRMHV2-NRTL models. Journal of Chemical & Engineering Data, 2020, 65: 655–663. doi: https://doi.org/10.1021/acs.jced.9b00890
|
[31] |
Horstmann S, Fischer K, Gmehling J, et al. Experimental determination of the critical line for (carbon dioxide + ethane) and calculation of various thermodynamic properties for (carbon dioxide + n-alkane) using the PSRK model. The Journal of Chemical Thermodynamics, 2000, 32: 451–464. doi: 10.1006/jcht.2000.0611
|
[32] |
Fredenslund A, Gmehling J, Michelsen M L, et al. Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Industrial & Engineering Chemistry Process Design and Development, 1977, 16: 450–462. doi: https://doi.org/10.1021/i260064a004
|
[33] |
Radfarnia H R, Bogdanic G, Taghikhnai V, et al. The UNIQUAC-NRF segmental interaction model for vapor-liquid equilibrium calculations for polymer solutions. Polim. (Zagreb), 2005, 26: 115-120. https://hrcak.srce.hr/file/929.
|
[34] |
Roth H, Peters-Gerth P, Lucas K. Experimental vapor-liquid equilibria in the systems R22-R23, R22-CO2, CS2-R22, R23-CO2, CS2-R23 and their correlation by equations of state . Fluid Phase Equilibria, 1992, 73: 147–166. doi: 10.1016/0378-3812(92)85045-A
|
[35] |
Rivollet F, Chapoy A, Coquelet C, et al. Vapor-liquid equilibrium data for the carbon dioxide (CO2) + difluoromethane (R32) system at temperatures from 283.12 to 343.25 K and pressures up to 7.46 MPa. Fluid Phase Equilibria, 2004, 218: 95–101. doi: 10.1016/j.fluid.2003.12.002
|
[36] |
Jeong K, Im J, Lee S, et al. (Vapour + liquid) equilibria of the {carbon dioxide + pentafluoroethane (HFC-125)} system and the {carbon dioxide + dodecafluoro-2-methylpentan-3-one (NOVECTM1230)} system. The Journal of Chemical Thermodynamics, 2007, 39: 531–535. doi: 10.1016/j.jct.2006.09.010
|
[37] |
Duran-Valencia C, Pointurier G, Valtz A, et al. Vapor–liquid equilibrium (VLE) data for the carbon dioxide (CO2) + 1,1,1,2-tetrafluoroethane (R134a) system at temperatures from 252.95 K to 292.95 K and pressures up to 2 MPa. Journal of Chemical & Engineering Data, 2002, 47: 59–61. doi: https://doi.org/10.1021/je010075y
|
[38] |
Kim S A, Yoo K P, Lim J S. High pressure isothermal vapor-liquid equilibria for the binary system of carbon dioxide (CO2)+1,1,1-trifluoroethane (R-143a). Korean Journal of Chemical Engineering, 2010, 27: 1887–1891. doi: 10.1007/s11814-010-0293-5
|
[39] |
Madani H, Valtz A, Coquelet C, et al. (Vapor + liquid) equilibrium data for (carbon dioxide + 1,1-difluoroethane) system at temperatures from (258 to 343) K and pressures up to about 8 MPa. The Journal of Chemical Thermodynamics, 2008, 40: 1490–1494. doi: 10.1016/j.jct.2008.06.002
|
[40] |
Sanchez C J N, Czubinski F F, Barbosa J R Jr, et al. Experimental data and Cubic-Equation-Of-State calculations of CO2/R-161 Vapor-Liquid equilibrium. The Journal of Chemical Thermodynamics, 2022, 165: 106635. doi: 10.1016/j.jct.2021.106635
|
[41] |
Valtz A, Coquelet C, Baba-Ahmed A, et al. Vapor-liquid equilibrium data for the CO2 + 1,1,1,2,3,3,3,-heptafluoropropane (R227ea) system at temperatures from 276.01 to 367.30 K and pressures up to 7.4 MPa. Fluid Phase Equilibria, 2003, 207: 53–67. doi: 10.1016/S0378-3812(02)00326-6
|
Figure 2. Prediction of the vapor-liquid phase equilibrium properties for CO2+R32 at three temperatures. Experimental data[35]: T=283.12 K (●,○); T=303.13 K (■,□). Solid red line represents the PR+MHV1+UNIFAC model; solid blue line represents the PR+LCVM+UNIFAC model.
Figure 4. Prediction of the vapor-liquid phase equilibrium properties for CO2+R152a at three temperatures. Experimental data[39]: T=278.25 K (▲,△); T=298.84 K (●,○); T=3323.30 K (■,□). Solid red line represents the PR+MHV1+UNIFAC model; solid blue line represents the PR+LCVM+UNIFAC model.
Figure 3. Prediction of the vapor-liquid phase equilibrium properties for CO2+R143a at three temperatures. Experimental data[38]: T=273.15 K (●,○); T=303.15 K (■,□). Solid red line represents the PR+MHV1+UNIFAC model; solid blue line represents the PR+LCVM+UNIFAC model.
[1] |
Wang S, Fauve R, Coquelet C, et al. Vapor-liquid equilibrium and molecular simulation data for carbon dioxide (CO2) + trans-1,3,3,3-tetrafluoroprop-1-ene (R-1234ze(E)) mixture at temperatures from 283.32 to 353.02 K and pressures up to 7.6 MPa. International Journal of Refrigeration, 2019, 98: 362–371. doi: 10.1016/j.ijrefrig.2018.10.032
|
[2] |
Juntarachat N, Valtz A, Coquelet C, et al. Experimental measurements and correlation of vapor-liquid equilibrium and critical data for the CO2 + R1234yf and CO2 + R1234ze(E) binary mixtures. International Journal of Refrigeration, 2014, 47: 141–152. doi: 10.1016/j.ijrefrig.2014.09.001
|
[3] |
Bellos E, Tzivanidis C. A comparative study of CO2 refrigeration systems . Energy Conversion and Management: X, 2019, 1: 100002. doi: 10.1016/j.ecmx.2018.100002
|
[4] |
Lim J S, Jin J M, Yoo K P. VLE measurement for binary systems of CO2 + 1,1,1,2-tetrafluoroethane (HFC-134a) at high pressures. The Journal of Supercritical Fluids, 2008, 44: 279–283. doi: 10.1016/j.supflu.2007.09.025
|
[5] |
Dai B, Liu C, Liu S, et al. Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO2 high-temperature heat pump systems for industrial waste heat recovery. Applied Thermal Engineering, 2023, 219: 119570. doi: 10.1016/j.applthermaleng.2022.119570
|
[6] |
Wu Z, Shi L, Sun R, et al. A temperature-independent prediction model predicts the vapor-liquid equilibrium of CO2-based binary mixtures. International Journal of Refrigeration, 2022, 140: 125–138. doi: 10.1016/j.ijrefrig.2022.05.005
|
[7] |
Peng D Y, Robinson D B. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976, 15: 59–64. doi: https://doi.org/10.1021/i160057a011
|
[8] |
Kontogeorgis G M, Coutsikos P. Thirty years with EoS/GE models—What have we learned? Industrial & Engineering Chemistry Research, 2012, 51: 4119–4142. doi: https://doi.org/10.1021/ie2015119
|
[9] |
Kwak T Y, Mansoori G A. Van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling. Chemical Engineering Science, 1986, 41: 1303–1309. doi: 10.1016/0009-2509(86)87103-2
|
[10] |
Huron M J, Vidal J. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 1979, 3: 255–271. doi: 10.1016/0378-3812(79)80001-1
|
[11] |
Wong D S H, Sandler S I. A theoretically correct mixing rule for cubic equations of state. AIChE Journal, 1992, 38: 671–680. doi: 10.1002/aic.690380505
|
[12] |
Michelsen M L. A method for incorporating excess Gibbs energy models in equations of state. Fluid Phase Equilibria, 1990, 60: 47–58. doi: 10.1016/0378-3812(90)85042-9
|
[13] |
Michelsen M L. A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria, 1990, 60: 213–219. doi: 10.1016/0378-3812(90)85053-D
|
[14] |
Boukouvalas C, Spiliotis N, Coutsikos P, et al. Prediction of vapor-liquid equilibrium with the LCVM model: A linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIF. Fluid Phase Equilibria, 1994, 92: 75–106. doi: 10.1016/0378-3812(94)80043-X
|
[15] |
Farajnezhad A, Afshar O A, Khansary M A, et al. Correlation of interaction parameters in Wilson, NRTL and UNIQUAC models using theoretical methods. Fluid Phase Equilibria, 2016, 417: 181–186. doi: 10.1016/j.fluid.2016.02.041
|
[16] |
Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 1968, 14: 135–144. doi: 10.1002/aic.690140124
|
[17] |
Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 1975, 21: 1086–1099. doi: 10.1002/aic.690210607
|
[18] |
Lohmann J, Joh R, Gmehling J. From UNIFAC to modified UNIFAC (dortmund). Industrial & Engineering Chemistry Research, 2001, 40: 957–964. doi: https://doi.org/10.1021/ie0005710
|
[19] |
Lohmann J, Gmehling J. Modified UNIFAC (dortmund). reliable model for the development of thermal separation processes. Journal of Chemical Engineering of Japan, 2001, 34: 43–54. doi: 10.1252/jcej.34.43
|
[20] |
Wittig R, Lohmann J, Joh R, et al. Vapor–liquid equilibria and enthalpies of mixing in a temperature range from 298.15 to 413.15 K for the further development of modified UNIFAC (dortmund). Industrial & Engineering Chemistry Research, 2001, 40: 5831–5838. doi: https://doi.org/10.1021/ie010444j
|
[21] |
Constantinescu D, Gmehling J. Addendum to “further development of modified UNIFAC (dortmund): Revision and extension 6”. Journal of Chemical & Engineering Data, 2017, 62: 2230. doi: https://doi.org/10.1021/acs.jced.7b00403
|
[22] |
Fischer K, Gmehling J. Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities. Fluid Phase Equilibria, 1995, 112: 1–22. doi: 10.1016/0378-3812(95)02792-D
|
[23] |
Li J, Fischer K, Gmehling J. Prediction of vapor-liquid equilibria for asymmetric systems at low and high pressures with the PSRK model. Fluid Phase Equilibria, 1998, 143: 71–82. doi: 10.1016/S0378-3812(98)00206-4
|
[24] |
Chen J, Fischer K, Gmehling J. Modification of PSRK mixing rules and results for vapor-liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution. Fluid Phase Equilibria, 2002, 200: 411–429. doi: 10.1016/S0378-3812(02)00048-1
|
[25] |
Horstmann S, Jabłoniec A, Krafczyk J, et al. PSRK group contribution equation of state: Comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. Fluid Phase Equilibria, 2005, 227: 157–164. doi: 10.1016/j.fluid.2004.11.002
|
[26] |
Ahlers J, Gmehling J. Development of a universal group contribution equation of state III. prediction of vapor–liquid equilibria, excess enthalpies, and activity coefficients at infinite dilution with the VTPR model. Industrial & Engineering Chemistry Research, 2002, 41: 5890–5899. doi: https://doi.org/10.1021/ie0203734
|
[27] |
Schmid B, Schedemann A, Gmehling J. Extension of the VTPR group contribution equation of state: Group interaction parameters for additional 192 group combinations and typical results. Industrial & Engineering Chemistry Research, 2014, 53: 3393–3405. doi: https://doi.org/10.1021/ie404118f
|
[28] |
Schmid B, Gmehling J. Present status of the group contribution equation of state VTPR and typical applications for process development. Fluid Phase Equilibria, 2016, 425: 443–450. doi: 10.1016/j.fluid.2016.06.042
|
[29] |
Hou S X, Duan Y Y, Wang X D. Vapor–liquid equilibria predictions for new refrigerant mixtures based on group contribution theory. Industrial & Engineering Chemistry Research, 2007, 46: 9274–9284. doi: https://doi.org/10.1021/ie070911i
|
[30] |
Gao Y, Li C, Xia S, et al. Estimation and correlation of phase equilibrium of CO2–hydrocarbon systems with PRMHV2-UNIFAC and PRMHV2-NRTL models. Journal of Chemical & Engineering Data, 2020, 65: 655–663. doi: https://doi.org/10.1021/acs.jced.9b00890
|
[31] |
Horstmann S, Fischer K, Gmehling J, et al. Experimental determination of the critical line for (carbon dioxide + ethane) and calculation of various thermodynamic properties for (carbon dioxide + n-alkane) using the PSRK model. The Journal of Chemical Thermodynamics, 2000, 32: 451–464. doi: 10.1006/jcht.2000.0611
|
[32] |
Fredenslund A, Gmehling J, Michelsen M L, et al. Computerized design of multicomponent distillation columns using the UNIFAC group contribution method for calculation of activity coefficients. Industrial & Engineering Chemistry Process Design and Development, 1977, 16: 450–462. doi: https://doi.org/10.1021/i260064a004
|
[33] |
Radfarnia H R, Bogdanic G, Taghikhnai V, et al. The UNIQUAC-NRF segmental interaction model for vapor-liquid equilibrium calculations for polymer solutions. Polim. (Zagreb), 2005, 26: 115-120. https://hrcak.srce.hr/file/929.
|
[34] |
Roth H, Peters-Gerth P, Lucas K. Experimental vapor-liquid equilibria in the systems R22-R23, R22-CO2, CS2-R22, R23-CO2, CS2-R23 and their correlation by equations of state . Fluid Phase Equilibria, 1992, 73: 147–166. doi: 10.1016/0378-3812(92)85045-A
|
[35] |
Rivollet F, Chapoy A, Coquelet C, et al. Vapor-liquid equilibrium data for the carbon dioxide (CO2) + difluoromethane (R32) system at temperatures from 283.12 to 343.25 K and pressures up to 7.46 MPa. Fluid Phase Equilibria, 2004, 218: 95–101. doi: 10.1016/j.fluid.2003.12.002
|
[36] |
Jeong K, Im J, Lee S, et al. (Vapour + liquid) equilibria of the {carbon dioxide + pentafluoroethane (HFC-125)} system and the {carbon dioxide + dodecafluoro-2-methylpentan-3-one (NOVECTM1230)} system. The Journal of Chemical Thermodynamics, 2007, 39: 531–535. doi: 10.1016/j.jct.2006.09.010
|
[37] |
Duran-Valencia C, Pointurier G, Valtz A, et al. Vapor–liquid equilibrium (VLE) data for the carbon dioxide (CO2) + 1,1,1,2-tetrafluoroethane (R134a) system at temperatures from 252.95 K to 292.95 K and pressures up to 2 MPa. Journal of Chemical & Engineering Data, 2002, 47: 59–61. doi: https://doi.org/10.1021/je010075y
|
[38] |
Kim S A, Yoo K P, Lim J S. High pressure isothermal vapor-liquid equilibria for the binary system of carbon dioxide (CO2)+1,1,1-trifluoroethane (R-143a). Korean Journal of Chemical Engineering, 2010, 27: 1887–1891. doi: 10.1007/s11814-010-0293-5
|
[39] |
Madani H, Valtz A, Coquelet C, et al. (Vapor + liquid) equilibrium data for (carbon dioxide + 1,1-difluoroethane) system at temperatures from (258 to 343) K and pressures up to about 8 MPa. The Journal of Chemical Thermodynamics, 2008, 40: 1490–1494. doi: 10.1016/j.jct.2008.06.002
|
[40] |
Sanchez C J N, Czubinski F F, Barbosa J R Jr, et al. Experimental data and Cubic-Equation-Of-State calculations of CO2/R-161 Vapor-Liquid equilibrium. The Journal of Chemical Thermodynamics, 2022, 165: 106635. doi: 10.1016/j.jct.2021.106635
|
[41] |
Valtz A, Coquelet C, Baba-Ahmed A, et al. Vapor-liquid equilibrium data for the CO2 + 1,1,1,2,3,3,3,-heptafluoropropane (R227ea) system at temperatures from 276.01 to 367.30 K and pressures up to 7.4 MPa. Fluid Phase Equilibria, 2003, 207: 53–67. doi: 10.1016/S0378-3812(02)00326-6
|