[1] |
Krissansen-Totton J, Buick R, Catling D C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. American Journal of Science, 2015, 315 (4): 275–316. doi: 10.2475/04.2015.01
|
[2] |
Lu Z L, Lu W Y, Rickaby R E M, et al. Earth history of oxygen and the iprOxy. In: Elements in Geochemical Tracers in Earth System Science. Cambridge, UK: Cambridge University Press, 2020.
|
[3] |
Ling H F, Chen X, Wang D, et al. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 2013, 225: 110–127. doi: 10.1016/j.precamres.2011.10.011
|
[4] |
Lau K V, Romaniello S J, Zhang F F. The uranium isotope paleoredox proxy. In: Elements in Geochemical Tracers in Earth System Science. Cambridge, UK: Cambridge University Press, 2019.
|
[5] |
Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball Earth. Science, 1998, 281 (5381): 1342–1346. doi: 10.1126/science.281.5381.1342
|
[6] |
Young S A, Saltzman M R, Foland K A, et al. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate. Geology, 2009, 37 (10): 951–954. doi: 10.1130/G30152A.1
|
[7] |
Capo R C, Depaolo D J. Seawater strontium isotopic variations from 2.5 million years ago to the present. Science, 1990, 249 (4964): 51–55. doi: 10.1126/science.249.4964.51
|
[8] |
Sedlacek A R C, Saltzman M R, Thomas A, et al. 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, 2014, 42 (9): 779–782. doi: 10.1130/G35545.1
|
[9] |
Blum J D, Erel Y. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature, 1995, 373 (6513): 415–418. doi: 10.1038/373415a0
|
[10] |
Halverson G P, Dudás F Ö, Maloof A C, et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256 (3–4): 103–129. doi: 10.1016/j.palaeo.2007.02.028
|
[11] |
Swanson-Hysell N L, Macdonald F A. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, 2017, 45 (8): 719–722. doi: 10.1130/G38985.1
|
[12] |
Prokoph A, Shields G A, Veizer J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 2008, 87 (3–4): 113–133. doi: 10.1016/j.earscirev.2007.12.003
|
[13] |
Paytan A, Griffith E M, Eisenhauer A, et al. A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science, 2021, 371 (6536): 1346–1350. doi: 10.1126/science.aaz9266
|
[14] |
Wang W Q, Katchinoff J A R, Garbelli C, et al. Revisiting the Permian seawater 87Sr/86Sr record: New perspectives from brachiopod proxy data and stochastic oceanic box models. Earth-Science Reviews, 2021, 218: 103679. doi: 10.1016/j.earscirev.2021.103679
|
[15] |
Edwards C T, Saltzman M R, Leslie S A, et al. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin, 2015, 127 (9-10): 1275–1289. doi: 10.1130/B31149.1
|
[16] |
Saltzman M R, Edwards C T, Leslie S A, et al. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. Geological Society of America Bulletin, 2014, 126 (11–12): 1551–1568. doi: 10.1130/B31038.1
|
[17] |
Veizer J, Buhl D, Diener A, et al. Strontium isotope stratigraphy: potential resolution and event correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132 (1-4): 65–77. doi: 10.1016/S0031-0182(97)00054-0
|
[18] |
Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 1982, 10 (10): 516–519. doi: 10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
|
[19] |
McArthur J M, Howarth R J, Shields G A, et al. Strontium isotope stratigraphy. In: Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 211–238.
|
[20] |
Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 1990, 54 (11): 3123–3137. doi: 10.1016/0016-7037(90)90128-8
|
[21] |
Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 1999, 161: 37–57. doi: 10.1016/S0009-2541(99)00080-7
|
[22] |
Banner J L. Application of the trace-element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 1995, 42 (5): 805–824. doi: 10.1111/j.1365-3091.1995.tb00410.x
|
[23] |
Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 2011, 331 (6019): 903–906. doi: 10.1126/science.1200803
|
[24] |
Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 2008, 321 (5888): 550–554. doi: 10.1126/science.1155814
|
[25] |
Finney S C, Berry W B N, Cooper J D, et al. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology, 1999, 27 (3): 215–218. doi: 10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2
|
[26] |
Finney S C, Cooper J D, Berry W B N. Late Ordovician mass extinction: Sedimentologic, cyclostratigraphic, and biostratigraphic records from platform and basin successions, central Nevada. In: Proterozoic to Recent Stratigraphy, Tectonics, and Volcanology, Utah, Nevada, Southern Idaho, and Central Mexico. Provo, UT: Brigham Young University, 1997: 79–104.
|
[27] |
Saltzman M R, Young S A. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 2005, 33 (2): 109–112. doi: 10.1130/G21219.1
|
[28] |
LaPorte D F, Holmden C, Patterson W P, et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276 (1–4): 182–195. doi: 10.1016/j.palaeo.2009.03.009
|
[29] |
Jones D S, Martini A M, Fike D A, et al. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, 2017, 45 (7): 631–634. doi: 10.1130/G38940.1
|
[30] |
Jones D S, Creel R C, Rios B A. Carbon isotope stratigraphy and correlation of depositional sequences in the Upper Ordovician Ely Springs Dolostone, eastern Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 85–101. doi: 10.1016/j.palaeo.2016.01.036
|
[31] |
Kozik N P, Gill B C, Owens J D, et al. Geochemical records reveal protracted and differential marine redox change associated with Late Ordovician climate and mass extinctions. AGU Advances, 2022, 3 (1): e2021AV000563. doi: 10.1029/2021AV000563
|
[32] |
Finney S C, Berry W B N, Cooper J D. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia, 2007, 40 (3): 281–291. doi: 10.1111/j.1502-3931.2007.00027.x
|
[33] |
Lin J, Liu Y S, Chen H H, et al. Review of high-precision Sr isotope analyses of low-Sr geological samples. Journal of Earth Science, 2015, 26 (5): 763–774. doi: 10.1007/s12583-015-0593-0
|
[34] |
Goldman D, Sadler P M, Leslie S A. The Ordovician period. In: Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 631–694.
|
[35] |
Denison R E, Koepnick R B, Fletcher A, et al. Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones. Chemical Geology, 1994, 112 (1-2): 131–143. doi: 10.1016/0009-2541(94)90110-4
|
[36] |
Tucker M E, Wright V P. Carbonate Sedimentology. Oxford: Blackwell Scientific, 1990.
|
[37] |
Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system – 2: Stable isotopes. Journal of Sedimentary Research, 1981, 51 (3): 987–997. doi: 10.1306/212F7DF6-2B24-11D7-8648000102C1865D
|
[38] |
Kaurova O K, Ovchinnikova G V, Gorokhov I M. U-Th-Pb systematics of precambrian carbonate rocks: Dating of the formation and transformation of carbonate sediments. Stratigraphy and Geological Correlation, 2010, 18 (3): 252–268. doi: 10.1134/S0869593810030032
|
[39] |
Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system – 1: Trace elements. Journal of Sedimentary Research, 1980, 50 (4): 1219–1236. doi: 10.1306/212F7BB7-2B24-11D7-8648000102C1865D
|
[40] |
Wang W Q, Garbelli C, Zheng Q F, et al. Permian 87Sr/86Sr chemostratigraphy from carbonate sequences in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 500: 84–94. doi: 10.1016/j.palaeo.2018.03.035
|
[41] |
Kuznetsov A B, Semikhatov M A, Gorokhov I M, et al. Sr isotopic composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean ocean. Stratigraphy and Geological Correlation, 2003, 11 (5): 415–449.
|
[42] |
Rud’ko S V, Kuznetsov A B, Piskunov V K. Sr isotope chemostratigraphy of Upper Jurassic carbonate rocks in the Demerdzhi Plateau (Crimean Mountains). Stratigraphy and Geological Correlation, 2014, 22 (5): 494–506. doi: 10.1134/S0869593814050074
|
[43] |
Qing H R, Barnes C R, Buhl D, et al. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater. Geochimica et Cosmochimica Acta, 1998, 62 (10): 1721–1733. doi: 10.1016/S0016-7037(98)00104-5
|
[44] |
Shields G A, Carden G A F, Veizer J, et al. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, 2003, 67 (11): 2005–2025. doi: 10.1016/S0016-7037(02)01116-X
|
[45] |
Bergström S M, Chen X, GutiÉrrez-Marco J C, et al. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 2009, 42 (1): 97–107. doi: 10.1111/j.1502-3931.2008.00136.x
|
Figure 1. Lithological, 87Sr/86Sr, [Sr], [Mn], Mn/Sr, [Fe], and Fe/Sr profiles of the Monitor Range section. Graptolite biostratigraphy and lithostratigraphy are based on Finney et al. [26]. Solid curves are the locally weighted scatterplot smoothing (LOWESS) fits for the geochemical data.
Figure 2. Comparison of carbonate 87Sr/86Sr records in the present study with published datasets derived from conodonts. The gray solid line is the LOWESS curve of 87Sr/86Sr datasets from Qing et al. [43], Shields et al. [44], Saltzman et al. [16], and Edwards et al. [15], representing the best fit for the published Ordovician 87Sr/86Sr data[19]. The time scale of the Ordovician is based on Geologic Time Scale 2020[34], and the stage slices are from Bergström et al. [45]. Hi.: Hirnantian.
Figure 3. Crossplots of (a) 87Sr/86Sr versus [Mn], (b) 87Sr/86Sr versus Mn/Sr, (c) 87Sr/86Sr versus [Fe], (d) 87Sr/86Sr versus Fe/Sr, (e) [Mn] versus [Fe], and (f) Mn/Sr versus Fe/Sr from the Monitor Range section. r represents the correlation coefficient. Note that all six crossplots show statistically significant positive correlations.
Figure
4.
Modeling results illustrating the evolution of carbonate 87Sr/86Sr versus the weight ratio of fluid to rock (N) and [Sr] during fluid-rock interactions in an open system condition. (a) 87Sr/86Sr versus N, (b) 87Sr/86Sr versus [Sr]. An increasing N value representing a greater volume of fluid has reacted with carbonate. The final 87Sr/86Sr of carbonate is simulated with different initial Sr concentrations of fluid (i.e.,
Figure
5.
Modeling results illustrating the evolution of carbonate 87Sr/86Sr versus the diagenetic indicators. (a) 87Sr/86Sr versus [Mn], (b) 87Sr/86Sr versus Mn/Sr, (c) 87Sr/86Sr versus [Fe], (d) 87Sr/86Sr versus Fe/Sr.
Figure 6. Crossplots of modeled 87Sr/86Sr and geochemical indicators of diagenesis ([Mn], Mn/Sr, [Fe], and Fe/Sr) overlain over data from the Monitor Range section. (a) 87Sr/86Sr versus [Mn], (b) 87Sr/86Sr versus Mn/Sr, (c) 87Sr/86Sr versus [Fe], (d) 87Sr/86Sr versus Fe/Sr. The arrows illustrate the evolution direction of 87Sr/86Sr with different diagenetic indicators in primary carbonates during diagenesis. The dotted vertical lines denote [Mn] = 300 ppm, Mn/Sr = 0.2, [Fe] = 1000 ppm, and Fe/Sr = 1.6, respectively, representing the threshold of the stricter geochemical criteria for the preservation of Sr isotope systems in carbonates.
[1] |
Krissansen-Totton J, Buick R, Catling D C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. American Journal of Science, 2015, 315 (4): 275–316. doi: 10.2475/04.2015.01
|
[2] |
Lu Z L, Lu W Y, Rickaby R E M, et al. Earth history of oxygen and the iprOxy. In: Elements in Geochemical Tracers in Earth System Science. Cambridge, UK: Cambridge University Press, 2020.
|
[3] |
Ling H F, Chen X, Wang D, et al. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research, 2013, 225: 110–127. doi: 10.1016/j.precamres.2011.10.011
|
[4] |
Lau K V, Romaniello S J, Zhang F F. The uranium isotope paleoredox proxy. In: Elements in Geochemical Tracers in Earth System Science. Cambridge, UK: Cambridge University Press, 2019.
|
[5] |
Hoffman P F, Kaufman A J, Halverson G P, et al. A Neoproterozoic snowball Earth. Science, 1998, 281 (5381): 1342–1346. doi: 10.1126/science.281.5381.1342
|
[6] |
Young S A, Saltzman M R, Foland K A, et al. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate. Geology, 2009, 37 (10): 951–954. doi: 10.1130/G30152A.1
|
[7] |
Capo R C, Depaolo D J. Seawater strontium isotopic variations from 2.5 million years ago to the present. Science, 1990, 249 (4964): 51–55. doi: 10.1126/science.249.4964.51
|
[8] |
Sedlacek A R C, Saltzman M R, Thomas A, et al. 87Sr/86Sr stratigraphy from the Early Triassic of Zal, Iran: Linking temperature to weathering rates and the tempo of ecosystem recovery. Geology, 2014, 42 (9): 779–782. doi: 10.1130/G35545.1
|
[9] |
Blum J D, Erel Y. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature, 1995, 373 (6513): 415–418. doi: 10.1038/373415a0
|
[10] |
Halverson G P, Dudás F Ö, Maloof A C, et al. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256 (3–4): 103–129. doi: 10.1016/j.palaeo.2007.02.028
|
[11] |
Swanson-Hysell N L, Macdonald F A. Tropical weathering of the Taconic orogeny as a driver for Ordovician cooling. Geology, 2017, 45 (8): 719–722. doi: 10.1130/G38985.1
|
[12] |
Prokoph A, Shields G A, Veizer J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth-Science Reviews, 2008, 87 (3–4): 113–133. doi: 10.1016/j.earscirev.2007.12.003
|
[13] |
Paytan A, Griffith E M, Eisenhauer A, et al. A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science, 2021, 371 (6536): 1346–1350. doi: 10.1126/science.aaz9266
|
[14] |
Wang W Q, Katchinoff J A R, Garbelli C, et al. Revisiting the Permian seawater 87Sr/86Sr record: New perspectives from brachiopod proxy data and stochastic oceanic box models. Earth-Science Reviews, 2021, 218: 103679. doi: 10.1016/j.earscirev.2021.103679
|
[15] |
Edwards C T, Saltzman M R, Leslie S A, et al. Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: Implications for preservation of primary seawater values. Geological Society of America Bulletin, 2015, 127 (9-10): 1275–1289. doi: 10.1130/B31149.1
|
[16] |
Saltzman M R, Edwards C T, Leslie S A, et al. Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: Implications for stratigraphic resolution. Geological Society of America Bulletin, 2014, 126 (11–12): 1551–1568. doi: 10.1130/B31038.1
|
[17] |
Veizer J, Buhl D, Diener A, et al. Strontium isotope stratigraphy: potential resolution and event correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132 (1-4): 65–77. doi: 10.1016/S0031-0182(97)00054-0
|
[18] |
Burke W H, Denison R E, Hetherington E A, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 1982, 10 (10): 516–519. doi: 10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
|
[19] |
McArthur J M, Howarth R J, Shields G A, et al. Strontium isotope stratigraphy. In: Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 211–238.
|
[20] |
Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 1990, 54 (11): 3123–3137. doi: 10.1016/0016-7037(90)90128-8
|
[21] |
Jacobsen S B, Kaufman A J. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 1999, 161: 37–57. doi: 10.1016/S0009-2541(99)00080-7
|
[22] |
Banner J L. Application of the trace-element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology, 1995, 42 (5): 805–824. doi: 10.1111/j.1365-3091.1995.tb00410.x
|
[23] |
Finnegan S, Bergmann K, Eiler J M, et al. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science, 2011, 331 (6019): 903–906. doi: 10.1126/science.1200803
|
[24] |
Trotter J A, Williams I S, Barnes C R, et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 2008, 321 (5888): 550–554. doi: 10.1126/science.1155814
|
[25] |
Finney S C, Berry W B N, Cooper J D, et al. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology, 1999, 27 (3): 215–218. doi: 10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2
|
[26] |
Finney S C, Cooper J D, Berry W B N. Late Ordovician mass extinction: Sedimentologic, cyclostratigraphic, and biostratigraphic records from platform and basin successions, central Nevada. In: Proterozoic to Recent Stratigraphy, Tectonics, and Volcanology, Utah, Nevada, Southern Idaho, and Central Mexico. Provo, UT: Brigham Young University, 1997: 79–104.
|
[27] |
Saltzman M R, Young S A. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 2005, 33 (2): 109–112. doi: 10.1130/G21219.1
|
[28] |
LaPorte D F, Holmden C, Patterson W P, et al. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276 (1–4): 182–195. doi: 10.1016/j.palaeo.2009.03.009
|
[29] |
Jones D S, Martini A M, Fike D A, et al. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology, 2017, 45 (7): 631–634. doi: 10.1130/G38940.1
|
[30] |
Jones D S, Creel R C, Rios B A. Carbon isotope stratigraphy and correlation of depositional sequences in the Upper Ordovician Ely Springs Dolostone, eastern Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 85–101. doi: 10.1016/j.palaeo.2016.01.036
|
[31] |
Kozik N P, Gill B C, Owens J D, et al. Geochemical records reveal protracted and differential marine redox change associated with Late Ordovician climate and mass extinctions. AGU Advances, 2022, 3 (1): e2021AV000563. doi: 10.1029/2021AV000563
|
[32] |
Finney S C, Berry W B N, Cooper J D. The influence of denitrifying seawater on graptolite extinction and diversification during the Hirnantian (latest Ordovician) mass extinction event. Lethaia, 2007, 40 (3): 281–291. doi: 10.1111/j.1502-3931.2007.00027.x
|
[33] |
Lin J, Liu Y S, Chen H H, et al. Review of high-precision Sr isotope analyses of low-Sr geological samples. Journal of Earth Science, 2015, 26 (5): 763–774. doi: 10.1007/s12583-015-0593-0
|
[34] |
Goldman D, Sadler P M, Leslie S A. The Ordovician period. In: Geologic Time Scale 2020. Amsterdam: Elsevier, 2020: 631–694.
|
[35] |
Denison R E, Koepnick R B, Fletcher A, et al. Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf limestones. Chemical Geology, 1994, 112 (1-2): 131–143. doi: 10.1016/0009-2541(94)90110-4
|
[36] |
Tucker M E, Wright V P. Carbonate Sedimentology. Oxford: Blackwell Scientific, 1990.
|
[37] |
Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system – 2: Stable isotopes. Journal of Sedimentary Research, 1981, 51 (3): 987–997. doi: 10.1306/212F7DF6-2B24-11D7-8648000102C1865D
|
[38] |
Kaurova O K, Ovchinnikova G V, Gorokhov I M. U-Th-Pb systematics of precambrian carbonate rocks: Dating of the formation and transformation of carbonate sediments. Stratigraphy and Geological Correlation, 2010, 18 (3): 252–268. doi: 10.1134/S0869593810030032
|
[39] |
Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system – 1: Trace elements. Journal of Sedimentary Research, 1980, 50 (4): 1219–1236. doi: 10.1306/212F7BB7-2B24-11D7-8648000102C1865D
|
[40] |
Wang W Q, Garbelli C, Zheng Q F, et al. Permian 87Sr/86Sr chemostratigraphy from carbonate sequences in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 500: 84–94. doi: 10.1016/j.palaeo.2018.03.035
|
[41] |
Kuznetsov A B, Semikhatov M A, Gorokhov I M, et al. Sr isotopic composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean ocean. Stratigraphy and Geological Correlation, 2003, 11 (5): 415–449.
|
[42] |
Rud’ko S V, Kuznetsov A B, Piskunov V K. Sr isotope chemostratigraphy of Upper Jurassic carbonate rocks in the Demerdzhi Plateau (Crimean Mountains). Stratigraphy and Geological Correlation, 2014, 22 (5): 494–506. doi: 10.1134/S0869593814050074
|
[43] |
Qing H R, Barnes C R, Buhl D, et al. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater. Geochimica et Cosmochimica Acta, 1998, 62 (10): 1721–1733. doi: 10.1016/S0016-7037(98)00104-5
|
[44] |
Shields G A, Carden G A F, Veizer J, et al. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, 2003, 67 (11): 2005–2025. doi: 10.1016/S0016-7037(02)01116-X
|
[45] |
Bergström S M, Chen X, GutiÉrrez-Marco J C, et al. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 2009, 42 (1): 97–107. doi: 10.1111/j.1502-3931.2008.00136.x
|