[1] |
Han Q, Lin F. Elliptic Partial Differential Equations. 2nd edition. Providence, RI: American Mathematical Society, 2011.
|
[2] |
Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. Berlin: Springer Verlag, 1983.
|
[3] |
Caristi G, Mitidieri E. Harnack inequality and applications to solutions of biharmonic equations. In: Partial Differential Equations and Functional Analysis. Basel, Switzerland: Birkhäuser Verlag, 2006.
|
[4] |
Karachik V V. On the mean value property for polyharmonic functions in the ball. Siberian Advances in Mathematics, 2014, 24 (3): 169–182. doi: 10.3103/S1055134414030031
|
[5] |
Łysik G. On the mean value property for polyharmonic functions. Acta Math. Hung., 2011, 133: 133–139. doi: 10.1007/s10474-011-0138-7
|
[6] |
Wei J, Xu X. Classification of solutions of higher order conformally invariant equations. Math. Ann., 1999, 313: 207–228. doi: 10.1007/s002080050258
|
[7] |
Simader C G. Mean value formulas, Weyl’s lemma and Liouville theorems for δ2 and Stokes’ system. Results in Mathematics, 1992, 22: 761–780. doi: 10.1007/BF03323122
|
[1] |
Han Q, Lin F. Elliptic Partial Differential Equations. 2nd edition. Providence, RI: American Mathematical Society, 2011.
|
[2] |
Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. Berlin: Springer Verlag, 1983.
|
[3] |
Caristi G, Mitidieri E. Harnack inequality and applications to solutions of biharmonic equations. In: Partial Differential Equations and Functional Analysis. Basel, Switzerland: Birkhäuser Verlag, 2006.
|
[4] |
Karachik V V. On the mean value property for polyharmonic functions in the ball. Siberian Advances in Mathematics, 2014, 24 (3): 169–182. doi: 10.3103/S1055134414030031
|
[5] |
Łysik G. On the mean value property for polyharmonic functions. Acta Math. Hung., 2011, 133: 133–139. doi: 10.1007/s10474-011-0138-7
|
[6] |
Wei J, Xu X. Classification of solutions of higher order conformally invariant equations. Math. Ann., 1999, 313: 207–228. doi: 10.1007/s002080050258
|
[7] |
Simader C G. Mean value formulas, Weyl’s lemma and Liouville theorems for δ2 and Stokes’ system. Results in Mathematics, 1992, 22: 761–780. doi: 10.1007/BF03323122
|