[1] |
Hassenzahl W V, Hazelton D W, Johnson B K, et al. Electric power applications of superconductivity. Proceedings of the IEEE, 2004, 92 (10): 1655–1674. doi: 10.1109/JPROC.2004.833674
|
[2] |
Daughton J, Chen Y. GMR materials for low field applications. IEEE Transactions on Magnetics, 1993, 29 (6): 2705–2710. doi: 10.1109/20.280936
|
[3] |
Wang W, Tadé M O, Shao Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015, 44 (15): 5371–5408. doi: 10.1039/C5CS00113G
|
[4] |
Imada M, Fujimori A, Tokura Y. Metal-insulator transitions. Reviews of Modern Physics, 1998, 70 (4): 1039. doi: 10.1103/RevModPhys.70.1039
|
[5] |
Schober A, Fowlie J, Guennou M, et al. Vibrational properties of LaNiO3 films in the ultrathin regime. APL Materials, 2020, 8 (6): 061102. doi: 10.1063/5.0010233
|
[6] |
Raj A, Kumar M, Mishra D, et al. Raman and photoluminescence spectral studies in epitaxial Bi2NiMnO6 double perovskite thin-film samples. Optical Materials, 2020, 101: 109773. doi: 10.1016/j.optmat.2020.109773
|
[7] |
Glazer A. Simple ways of determining perovskite structures. Acta Crystallographica, Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1975, 31 (6): 756–762. doi: 10.1107/S0567739475001635
|
[8] |
Ohtomo A, Hwang H. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 2004, 427 (6973): 423–426. doi: 10.1038/nature02308
|
[9] |
Reyren N, Thiel S, Caviglia A, et al. Superconducting interfaces between insulating oxides. Science, 2007, 317 (5842): 1196–1199. doi: 10.1126/science.1146006
|
[10] |
Brinkman A, Huijben M, Van Zalk M, et al. Magnetic effects at the interface between non-magnetic oxides. Nature Materials, 2007, 6 (7): 493–496. doi: 10.1038/nmat1931
|
[11] |
Takahashi K, Kawasaki M, Tokura Y. Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3. Applied Physics Letters, 2001, 79 (9): 1324–1326. doi: 10.1063/1.1398331
|
[12] |
He J, Borisevich A, Kalinin S V, et al. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Physical Review Letters, 2010, 105 (22): 227203. doi: 10.1103/PhysRevLett.105.227203
|
[13] |
Lee S S, Kim Y M, Lee H J, et al. Correlation between geometrically induced oxygen octahedral tilts and multiferroic behaviors in BiFeO3 films. Advanced Functional Materials, 2018, 28 (19): 1800839. doi: 10.1002/adfm.201800839
|
[14] |
Thomas S, Kuiper B, Hu J, et al. Localized control of Curie temperature in perovskite oxide film by capping-layer-induced octahedral distortion. Physical Review Letters, 2017, 119 (17): 177203. doi: 10.1103/PhysRevLett.119.177203
|
[15] |
Lu W, Yang P, Song W D, et al. Control of oxygen octahedral rotations and physical properties in SrRuO3 films. Physical Review B, 2013, 88 (21): 214115. doi: 10.1103/PhysRevB.88.214115
|
[16] |
Kan D, Aso R, Sato R, et al. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nature Materials, 2016, 15 (4): 432–437. doi: 10.1038/nmat4580
|
[17] |
Gao R, Dong Y Q, Xu H, et al. Interfacial octahedral rotation mismatch control of the symmetry and properties of SrRuO3. ACS Applied Materials & Interfaces, 2016, 8 (23): 14871–14878. doi: doi:10.1021/acsami.6b02864
|
[18] |
Jaramillo R, Ha S D, Silevitch D M, et al. Origins of bad-metal conductivity and the insulator-metal transition in the rare-earth nickelates. Nature Physics, 2014, 10 (4): 304–307. doi: 10.1038/nphys2907
|
[19] |
Rondinelli J M, Fennie C J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Advanced Materials, 2012, 24 (15): 1961–1968. doi: 10.1002/adma.201104674
|
[20] |
Benedek N A, Mulder A T, Fennie C J. Polar octahedral rotations: A path to new multifunctional materials. Journal of Solid State Chemistry, 2012, 195: 11–20. doi: 10.1016/j.jssc.2012.04.012
|
[21] |
Cui Y, Liu X, Fan W, et al. Metal–insulator transition in RNiO3 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) induced by Li doping: A first-principles study. Journal of Applied Physics, 2021, 129 (23): 235107. doi: 10.1063/5.0050263
|
[22] |
Mercy A, Bieder J, Íñiguez J, et al. Structurally triggered metal-insulator transition in rare-earth nickelates. Nature Communications, 2017, 8 (1): 1677. doi: 10.1038/s41467-017-01811-x
|
[23] |
Subedi A, Peil O E, Georges A. Low-energy description of the metal-insulator transition in the rare-earth nickelates. Physical Review B, 2015, 91 (7): 075128. doi: 10.1103/PhysRevB.91.075128
|
[24] |
Goldschmidt V M. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14 (21): 477–485. doi: 10.1007/BF01507527
|
[25] |
Filip M R, Giustino F. The geometric blueprint of perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (21): 5397–5402. doi: 10.1073/pnas.1719179115
|
[26] |
Bartel C J, Sutton C, Goldsmith B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 2019, 5 (2): eaav0693. doi: 10.1126/sciadv.aav0693
|
[27] |
Woodward D I, Reaney I M. Electron diffraction of tilted perovskites. Acta Crystallographica Section B:Structural Science, 2005, 61: 387–399. doi: 10.1107/S0108768105015521
|
[28] |
Jia C L, Mi S B, Faley M, et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Physical Review B, 2009, 79 (8): 081405. doi: 10.1103/PhysRevB.79.081405
|
[29] |
May S J, Kim J W, Rondinelli J M, et al. Quantifying octahedral rotations in strained perovskite oxide films. Physical Review B, 2010, 82 (1): 014110. doi: 10.1103/PhysRevB.82.014110
|
[30] |
Glazer A. The classification of tilted octahedra in perovskites. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, 1972, 28 (11): 3384–3392. doi: 10.1107/S0567740872007976
|
[31] |
Liao Z, Green R J, Gauquelin N, et al. Long–range domain structure and symmetry engineering by interfacial oxygen octahedral coupling at heterostructure interface. Advanced Functional Materials, 2016, 26 (36): 6627–6634. doi: 10.1002/adfm.201602155
|
[32] |
Aso R, Kan D, Shimakawa Y, et al. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Scientific Reports, 2013, 3: 2214. doi: 10.1038/srep02214
|
[33] |
Liao Z, Huijben M, Zhong Z, et al. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nature Materials, 2016, 15 (4): 425–431. doi: 10.1038/nmat4579
|
[34] |
Samanta K, Ležaić M, Blügel S, et al. Tailoring the anomalous Hall effect of SrRuO3 thin films by strain: A first principles study. Journal of Applied Physics, 2021, 129 (9): 093904. doi: 10.1063/5.0043742
|
[35] |
Wang L, Pan W, Han D, et al. First-principles calculations of oxygen octahedral distortions in LaAlO3/SrTiO3 (001) superlattices. Physical Chemistry Chemical Physics, 2020, 22 (10): 5826–5831. doi: 10.1039/C9CP06236J
|
[36] |
Gu T, Scarbrough T, Yang Y, et al. Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Physical Review Letters, 2018, 120 (19): 197602. doi: 10.1103/PhysRevLett.120.197602
|
[37] |
Rondinelli J M, Spaldin N A. Structure and properties of functional oxide thin films: Insights from electronic–structure calculations. Advanced Materials, 2011, 23 (30): 3363–3381. doi: 10.1002/adma.201101152
|
[38] |
Koohfar S, Disa A S, Marshall M S J, et al. Structural distortions at polar manganite interfaces. Physical Review B, 2017, 96 (2): 024108. doi: 10.1103/PhysRevB.96.024108
|
[39] |
Zhang S, Guo X, Tang Y, et al. Polarization rotation in ultrathin ferroelectrics tailored by interfacial oxygen octahedral coupling. ACS Nano, 2018, 12 (4): 3681–3688. doi: 10.1021/acsnano.8b00862
|
[40] |
Chen B, Gauquelin N, Green R J, et al. Spatially controlled octahedral rotations and metal-insulator transitions in nickelate superlattices. Nano Letters, 2021, 21 (3): 1295–1302. doi: 10.1021/acs.nanolett.0c03850
|
[41] |
Kan D, Anada M, Wakabayashi Y, et al. Oxygen octahedral distortions in compressively strained SrRuO3 epitaxial thin films. Journal of Applied Physics, 2018, 123 (23): 235303. doi: 10.1063/1.5036748
|
[42] |
Chen P F, Lan D, Liu C, et al. Correlated cation lattice symmetry and oxygen octahedral rotation in perovskite oxide heterostructures. Journal of Applied Physics, 2021, 129 (2): 025303. doi: 10.1063/5.0035501
|
[43] |
Muller D A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Materials, 2009, 8 (4): 263–270. doi: 10.1038/nmat2380
|
[44] |
Ovsyannikov S V, Abakumov A M, Tsirlin A A, et al. Perovskite-like Mn2O3: A path to new manganites. Angewandte Chemie International Edition, 2013, 52 (5): 1494–1498. doi: 10.1002/anie.201208553
|
[45] |
Bindu R, Pandey S K, Kumar A, et al. Local distortion of MnO6 octahedron in La1− xSrxMnO3+ δ (x = 0.1–0.9): An EXAFS study. Journal of Physics: Condensed Matter, 2005, 17 (41): 6393–6404. doi: 10.1088/0953-8984/17/41/010
|
[46] |
Bashir J, Shaheen R, Khan M N. Structural characterization of SrLaMnRuO6 by synchrotron X-ray powder diffraction and X-ray absorption spectroscopy. Solid State Sciences, 2008, 10 (5): 638–644. doi: 10.1016/j.solidstatesciences.2007.10.011
|
[47] |
Shaheen R, Bashir J, Khan M N. EXAFS studies of ruthenium based double perovskite ALaMnRuO6 (A = Ca, Sr, Ba). Materials Sciences and Applications, 2012, 03 (01): 24–29. doi: 10.4236/msa.2012.31004
|
[48] |
Mahana S, Manju U, Nandi P, et al. Role of local structural distortion in driving ferroelectricity in GdCrO3. Physical Review B, 2018, 97 (22): 224107. doi: 10.1103/PhysRevB.97.224107
|
[49] |
Jiang Y, Yuan L, Wang X, et al. Jahn-Teller disproportionation induced exfoliation of unit-cell scale ε-MnO2. Angewandte Chemie International Edition, 2020, 59 (50): 22659–22666. doi: 10.1002/anie.202010246
|
[50] |
Yuan Y K, Lu Y F, Stone G, et al. Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites. Nature Communications, 2018, 9: 5220. doi: 10.1038/s41467-018-07665-1
|
[51] |
Herger R, Willmott P R, Schleputz C M, et al. Structure determination of monolayer-by-monolayer grown La1- xSrxMnO3 thin films and the onset of magnetoresistance. Physical Review B, 2008, 77 (8): 085401. doi: 10.1103/PhysRevB.77.085401
|
[52] |
Bielecki J, Svedlindh P, Tibebu D T, et al. Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: Insights from Raman spectroscopy. Physical Review B, 2012, 86 (18): 184422. doi: 10.1103/PhysRevB.86.184422
|
[53] |
Xu Q, Zheng X, Wen Z, et al. Enhanced room temperature ferromagnetism in porous BiFeO3 prepared using cotton templates. Solid State Communications, 2011, 151 (8): 624–627. doi: 10.1016/j.ssc.2011.01.029
|
[54] |
Iliev M, Abrashev M, Lee H-G, et al. Raman spectroscopy of orthorhombic perovskitelike YMnO3 and LaMnO3. Physical Review B, 1998, 57 (5): 2872. doi: 10.1103/PhysRevB.57.2872
|
[55] |
Woodward P M, Cox D E, Moshopoulou E, et al. Structural studies of charge disproportionation and magnetic order in CaFeO3. Physical Review B, 2000, 62 (2): 844–855. doi: 10.1103/PhysRevB.62.844
|
[56] |
Medarde M, Fernandez-Diaz M T, Lacorre P. Long-range charge order in the low-temperature insulating phase of PrNiO3. Physical Review B, 2008, 78 (21): 212101. doi: 10.1103/PhysRevB.78.212101
|
[57] |
Blasco J, Rodriguez-Velamazan J A, Garcia J, et al. Structural properties of charge disproportionation and magnetic order in Sr2/3Ln1/3FeO3 (Ln=La, Pr, and Nd). Physical Review B, 2018, 98 (10): 104422. doi: 10.1103/PhysRevB.98.104422
|
[58] |
Cheng J, Kweon K E, Larregola S A, et al. Charge disproportionation and the pressure-induced insulator-metal transition in cubic perovskite PbCrO3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (6): 1670–1674. doi: 10.1073/pnas.1424431112
|
[59] |
Azuma M, Carlsson S, Rodgers J, et al. Pressure-induced intermetallic valence transition in BiNiO3. Journal of the American Chemical Society, 2007, 129 (46): 14433–14436. doi: 10.1021/ja074880u
|
[60] |
Leonov I, Belozerov A S, Skornyakov S L. Unusual Mott transition associated with charge-order melting in BiNiO3 under pressure. Physical Review B, 2019, 100 (16): 161112(R). doi: 10.1103/PhysRevB.100.161112
|
[61] |
Alonso J A, Garcia-Munoz J L, Fernandez-Diaz M T, et al. Charge disproportionation in RNiO3 perovskites: Simultaneous metal-insulator and structural transition in YNiO3. Physical Review Letters, 1999, 82 (19): 3871–3874. doi: 10.1103/PhysRevLett.82.3871
|
[62] |
Hong S S, Gu M, Verma M, et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science, 2020, 368 (6486): 71–76. doi: 10.1126/science.aax9753
|
[63] |
Alexe M, Ziese M, Hesse D, et al. Ferroelectric switching in multiferroic magnetite Fe3O4 thin films. Advanced Materials, 2009, 21 (44): 4452–4455. doi: 10.1002/adma.200901381
|
[64] |
Ikeda N, Ohsumi H, Ohwada K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature, 2005, 436 (7054): 1136–1138. doi: 10.1038/nature04039
|
[65] |
Elfimov I S, Anisimov V I, Sawatzky G A. Orbital ordering, Jahn-Teller distortion, and anomalous X-ray scattering in manganates. Physical Review Letters, 1999, 82 (21): 4264–4267. doi: 10.1103/PhysRevLett.82.4264
|
[66] |
Halcrow M A. Jahn-Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials. Chemical Society Reviews, 2013, 42 (4): 1784–1795. doi: 10.1039/C2CS35253B
|
[67] |
Murakami Y, Hill J, Gibbs D, et al. Resonant x-ray scattering from orbital ordering in LaMnO3. Physical Review Letters, 1998, 81 (3): 582. doi: 10.1103/PhysRevLett.81.582
|
[68] |
Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature, 1992, 358 (6382): 136–138. doi: 10.1038/358136a0
|
[69] |
Hill N A. Why are there so few magnetic ferroelectrics? Journal of Physical Chemistry B, 2000, 104 (29): 6694–6709. doi: 10.1021/jp000114x
|
[70] |
Huijben M, Koster G, Liao Z, et al. Interface-engineered oxygen octahedral coupling in manganite heterostructures. Applied Physics Reviews, 2017, 4 (4): 041103. doi: 10.1063/1.4985770
|
[71] |
Kim T H, Puggioni D, Yuan Y, et al. Polar metals by geometric design. Nature, 2016, 533 (7601): 68–72. doi: 10.1038/nature17628
|
[72] |
Liao Z, Gauquelin N, Green R J, et al. Metal-insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (38): 9515–9520. doi: 10.1073/pnas.1807457115
|
[73] |
Dong Y, Ma Z, Luo Z, et al. Interfacial octahedral manipulation imparts hysteresis-free metal to insulator transition in ultrathin nickelate heterostructure. Advanced Materials Interfaces, 2019, 6 (17): 1900644. doi: 10.1002/admi.201900644
|
[74] |
Zhai X, Cheng L, Liu Y, et al. Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices. Nature Communications, 2014, 5: 4283. doi: 10.1038/ncomms5283
|
[75] |
Guan X, Shen X, Zhang J, et al. Tuning magnetism and crystal orientations by octahedral coupling in LaCoO3/LaMnO3 thin films. Physical Review B, 2019, 100 (1): 014427. doi: 10.1103/PhysRevB.100.014427
|
[76] |
Ziese M, Jin L, Lindfors-Vrejoiu I. Unconventional anomalous Hall effect driven by oxygen-octahedra-tailoring of the SrRuO3 structure. Journal of Physics:Materials, 2019, 2 (3): 034008. doi: 10.1088/2515-7639/ab1aef
|
[77] |
Qin Q, Liu L, Lin W, et al. Emergence of topological Hall effect in a SrRuO3 single layer. Advanced Materials, 2019, 31 (8): e1807008. doi: 10.1002/adma.201807008
|
[78] |
Gu Y, Wei Y-W, Xu K, et al. Interfacial oxygen-octahedral-tilting-driven electrically tunable topological Hall effect in ultrathin SrRuO3 films. Journal of Physics D:Applied Physics, 2019, 52 (40): 404001. doi: 10.1088/1361-6463/ab2fe8
|
[79] |
Kim J R, Jang J, Go K J, et al. Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern. Nature Communications, 2020, 11 (1): 4944. doi: 10.1038/s41467-020-18741-w
|
[80] |
Wang H, Tang F, Stengel M, et al. Convert widespread paraelectric perovskite to ferroelectrics. Physical Review Letters, 2022, 128 (19): 197601. doi: 10.1103/PhysRevLett.128.197601
|
[81] |
Burdett J K. Similarities in the structural chemistry of d8 and d9 transition metal complexes. Explanation in terms of the angular overlap model. Inorganic Chemistry, 1975, 14 (4): 931–934. doi: 10.1021/ic50146a042
|
[82] |
Liu H, Dong Y, Xu D, et al. Dynamic field modulation of the octahedral framework in metal oxide heterostructures. Advanced Materials, 2018, 30 (52): e1804775. doi: 10.1002/adma.201804775
|
[83] |
Cammarata A, Rondinelli J M. Octahedral engineering of orbital polarizations in charge transfer oxides. Physical Review B, 2013, 87 (15): 155135. doi: 10.1103/PhysRevB.87.155135
|
[84] |
Tannous C, Gieraltowski J. The Stoner-Wohlfarth model of ferromagnetism. European Journal of Physics, 2008, 29 (3): 475–487. doi: 10.1088/0143-0807/29/3/008
|
[85] |
Zener C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Physical Review, 1951, 82 (3): 403. doi: 10.1103/PhysRev.82.403
|
[86] |
Zhang B, Wu L, Feng X, et al. Tuning irreversible magnetoresistance in Pr0.67Sr0.33MnO3 film via octahedral rotation. ACS Applied Materials & Interfaces, 2020, 12 (38): 43222–43230. doi: 10.1021/acsami.0c10402
|
[87] |
Nagaosa N, Tokura Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotechnology, 2013, 8 (12): 899–911. doi: 10.1038/nnano.2013.243
|
[88] |
Neubauer A, Pfleiderer C, Binz B, et al. Topological Hall effect in the a phase of MnSi. Physical Review Letters, 2009, 102 (18): 186602. doi: 10.1103/PhysRevLett.102.186602
|
[89] |
Ohnishi T, Takada K. Epitaxial thin-film growth of SrRuO3, Sr3Ru2O7, and Sr2RuO4 from a SrRuO3 target by pulsed laser deposition. Applied Physics Express, 2011, 4 (2): 025501. doi: 10.1143/APEX.4.025501
|
[90] |
Lin S, Zhang Q, Sang X, et al. Dimensional control of octahedral tilt in SrRuO3 via infinite-layered oxides. Nano Letters, 2021, 21 (7): 3146–3154. doi: 10.1021/acs.nanolett.1c00352
|
[91] |
Pramanick A, Paterson A, Denis L, et al. Oxygen octahedral tilt ordering in (Na1/2Bi1/2)TiO3 ferroelectric thin films. Applied Physics Letters, 2020, 116 (2): 022902. doi: 10.1063/1.5127212
|
[92] |
Benedek N A, Fennie C J. Why are there so few perovskite ferroelectrics? Journal of Physical Chemistry C, 2013, 117 (26): 13339–13349. doi: /10.1021/jp402046t
|
[93] |
Geng W R, Guo X W, Zhu Y L, et al. Oxygen octahedral coupling mediated ferroelectric-antiferroelectric phase transition based on domain wall engineering. Acta Materialia, 2020, 198: 145–152. doi: 10.1016/j.actamat.2020.08.007
|
[94] |
Liao Z, Gauquelin N, Green R J, et al. Thickness dependent properties in oxide heterostructures driven by structurally induced metal-oxygen hybridization variations. Advanced Functional Materials, 2017, 27 (17): 1606717. doi: 10.1002/adfm.201606717
|
[95] |
Yi D, Flint C L, Balakrishnan P P, et al. Tuning perpendicular magnetic anisotropy by oxygen octahedral rotations in (La1− xSrxMnO3)/(SrIrO3) superlattices. Physical Review Letters, 2017, 119 (7): 077201. doi: 10.1103/PhysRevLett.119.077201
|
[96] |
Zhang J, Zhong Z, Guan X, et al. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures. Nature Communications, 2018, 9: 1923. doi: 10.1038/s41467-018-04304-7
|
[97] |
Meng M, Wang Z, Fathima A, et al. Interface-induced magnetic polar metal phase in complex oxides. Nature Communications, 2019, 10: 5248. doi: 10.1038/s41467-019-13270-7
|
Figure 1. Schematic diagram of octahedral network in perovskite. (a) The definition of the rotation sign of an individual octahedron in an ABO3 perovskite unit cell with clockwise (+) and anticlockwise (–), the view direction is along the pseudocubic axis a, b, or c. (b) Rotation sign and pattern of octahedra in a shared rotation axis normal the plane. (c), (d), and (e) indicate a series of possible octahedral rotation structure network for simple (a+a0a0)/ (a−a0a0) modes and complex (a+a–a–)/ (a–a–a–) modes. Figure taken from Ref. [31].
Figure 2. Oxygen octahedral coupling at the heterointerface between perovskite oxides. (a) Schematic diagram of octahedral rotation in LSMO and NGO interface. (b) Layer-position-dependent mean octahedral tilt angle (β) in LSMO/NGO heterostructures with and without a STO buffer layer. The data for the non-buffered sample are shifted upwards by 6° for clarity. (c) It shows ABF-STEM images of LSMO/NGO, LSMO/STO9/NGO and LSMO/STO1/NGO heterostructures. Figure taken from Ref. [33].
Figure 3. RSM characterization of oxygen octahedral rotation. (a) The sketches of the RSM with symmetric and asymmetric reflections, where rOA, rOB, rOC and rOD represent reciprocal vectors. (b) and (c) display different half-order X-ray diffraction spectrum corresponding to the heterostructures, and the blue part in (b) is obtained by peak fitting. (d) The RSMs of LSMO/PTO/LSMO/NGO along different diffraction faces. Figure taken from Ref. [42].
Figure 4. MIT in nickelate superlattices triggered by oxygen octahedral coupling. (a) ρ-T curves of LFO1-SNOn (n = 4–10) superlattices and 30 u.c. SNO film, and the inset shows the first derivative dlnp/(d(1/T)) of the SNO30 film. (b) ρ-T curves of SNO4 superlattices constructing with LFO, LCO and LNO. (c) Temperature dependent intensity of (1/4, 1/4, 1/4) magnetic Bragg reflection peak. (d) X-ray absorption spectra (XAS) of Ni L2,3 edge of nickelate superlattices with different thicknesses at 22 K. (e) Temperature phase diagram of nickelate superlattices as a function of the mean Ni—O—Ni bond angle. Figure taken from Ref. [72].
Figure 5. Octahedral rotation tailoring topological Hall effect. (a) The left figure shows the sketch of the octahedra configuration at the SRO/STO hetero-interface and the statistical results of rotation angle, and the inset respectively show the [RuO6] octahedral-rotation ABF image at the first layer of the interface and the simulation results. The figure on the right of the panel shows the statistics result of the rotation angle of the octahedron after inserting the 4 u.c. BTO. (b) The left picture shows the anomalous Hall resistance (AHR) of SRO (8 u.c.)/STO heterostructure at different temperatures, and the right one shows the AHR curve of SRO8/BTON (N = 2, 3)/STO at varying temperatures. Figure taken from Ref. [78].
Figure 6. Rotation of electric polarization induced by oxygen octahedral rotation. (a) HAADF-STEM image of the 1.6 nm thick PTO film and the electric polarization distribution. (b) are the ABF-STEM results. (c) Magnitude (δTi—O) of Ti4+ deviated from the oxygen octahedra center in- and out-of- plane of the 3.2 nm PTO film, respectively. (d) First-principles calculation results, where Model A and Model B give the relaxed atomic configuration with and without AFD, respectively. And the results of the electrical polarization simulation are shown on the right. Figure taken from Ref. [39].
Figure 7. Magnetic anisotropy in the magnetic heterojunctions. (a)–(c) show the M-H curves of the LSMO film along the a-axis and b-axis of the NGO substrate, where (a), (b), and (c) show the results of inserting 0 u.c., 1 u.c., and 9 u.c. STO buffer layers, respectively. (d) RXR measurements of 6 u.c. LSMO films with (top panel) and without (bottom panel) a 9 u.c. STO buffer layer showing depth profiles of the Ga, Ti, and Mn atomic concentration (green, red, and blue lines, respectively) and Mn magnetization (M, purple line with shaded area) at 20 K. The schematic on the left shows the experimental set-up used to perform RXR measurements, where a 0.6 T magnetic field was applied in-plane along the magnetic easy axis during the measurement. Figure taken from Ref. [33].
[1] |
Hassenzahl W V, Hazelton D W, Johnson B K, et al. Electric power applications of superconductivity. Proceedings of the IEEE, 2004, 92 (10): 1655–1674. doi: 10.1109/JPROC.2004.833674
|
[2] |
Daughton J, Chen Y. GMR materials for low field applications. IEEE Transactions on Magnetics, 1993, 29 (6): 2705–2710. doi: 10.1109/20.280936
|
[3] |
Wang W, Tadé M O, Shao Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015, 44 (15): 5371–5408. doi: 10.1039/C5CS00113G
|
[4] |
Imada M, Fujimori A, Tokura Y. Metal-insulator transitions. Reviews of Modern Physics, 1998, 70 (4): 1039. doi: 10.1103/RevModPhys.70.1039
|
[5] |
Schober A, Fowlie J, Guennou M, et al. Vibrational properties of LaNiO3 films in the ultrathin regime. APL Materials, 2020, 8 (6): 061102. doi: 10.1063/5.0010233
|
[6] |
Raj A, Kumar M, Mishra D, et al. Raman and photoluminescence spectral studies in epitaxial Bi2NiMnO6 double perovskite thin-film samples. Optical Materials, 2020, 101: 109773. doi: 10.1016/j.optmat.2020.109773
|
[7] |
Glazer A. Simple ways of determining perovskite structures. Acta Crystallographica, Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1975, 31 (6): 756–762. doi: 10.1107/S0567739475001635
|
[8] |
Ohtomo A, Hwang H. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 2004, 427 (6973): 423–426. doi: 10.1038/nature02308
|
[9] |
Reyren N, Thiel S, Caviglia A, et al. Superconducting interfaces between insulating oxides. Science, 2007, 317 (5842): 1196–1199. doi: 10.1126/science.1146006
|
[10] |
Brinkman A, Huijben M, Van Zalk M, et al. Magnetic effects at the interface between non-magnetic oxides. Nature Materials, 2007, 6 (7): 493–496. doi: 10.1038/nmat1931
|
[11] |
Takahashi K, Kawasaki M, Tokura Y. Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3. Applied Physics Letters, 2001, 79 (9): 1324–1326. doi: 10.1063/1.1398331
|
[12] |
He J, Borisevich A, Kalinin S V, et al. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Physical Review Letters, 2010, 105 (22): 227203. doi: 10.1103/PhysRevLett.105.227203
|
[13] |
Lee S S, Kim Y M, Lee H J, et al. Correlation between geometrically induced oxygen octahedral tilts and multiferroic behaviors in BiFeO3 films. Advanced Functional Materials, 2018, 28 (19): 1800839. doi: 10.1002/adfm.201800839
|
[14] |
Thomas S, Kuiper B, Hu J, et al. Localized control of Curie temperature in perovskite oxide film by capping-layer-induced octahedral distortion. Physical Review Letters, 2017, 119 (17): 177203. doi: 10.1103/PhysRevLett.119.177203
|
[15] |
Lu W, Yang P, Song W D, et al. Control of oxygen octahedral rotations and physical properties in SrRuO3 films. Physical Review B, 2013, 88 (21): 214115. doi: 10.1103/PhysRevB.88.214115
|
[16] |
Kan D, Aso R, Sato R, et al. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nature Materials, 2016, 15 (4): 432–437. doi: 10.1038/nmat4580
|
[17] |
Gao R, Dong Y Q, Xu H, et al. Interfacial octahedral rotation mismatch control of the symmetry and properties of SrRuO3. ACS Applied Materials & Interfaces, 2016, 8 (23): 14871–14878. doi: doi:10.1021/acsami.6b02864
|
[18] |
Jaramillo R, Ha S D, Silevitch D M, et al. Origins of bad-metal conductivity and the insulator-metal transition in the rare-earth nickelates. Nature Physics, 2014, 10 (4): 304–307. doi: 10.1038/nphys2907
|
[19] |
Rondinelli J M, Fennie C J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Advanced Materials, 2012, 24 (15): 1961–1968. doi: 10.1002/adma.201104674
|
[20] |
Benedek N A, Mulder A T, Fennie C J. Polar octahedral rotations: A path to new multifunctional materials. Journal of Solid State Chemistry, 2012, 195: 11–20. doi: 10.1016/j.jssc.2012.04.012
|
[21] |
Cui Y, Liu X, Fan W, et al. Metal–insulator transition in RNiO3 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) induced by Li doping: A first-principles study. Journal of Applied Physics, 2021, 129 (23): 235107. doi: 10.1063/5.0050263
|
[22] |
Mercy A, Bieder J, Íñiguez J, et al. Structurally triggered metal-insulator transition in rare-earth nickelates. Nature Communications, 2017, 8 (1): 1677. doi: 10.1038/s41467-017-01811-x
|
[23] |
Subedi A, Peil O E, Georges A. Low-energy description of the metal-insulator transition in the rare-earth nickelates. Physical Review B, 2015, 91 (7): 075128. doi: 10.1103/PhysRevB.91.075128
|
[24] |
Goldschmidt V M. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14 (21): 477–485. doi: 10.1007/BF01507527
|
[25] |
Filip M R, Giustino F. The geometric blueprint of perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (21): 5397–5402. doi: 10.1073/pnas.1719179115
|
[26] |
Bartel C J, Sutton C, Goldsmith B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 2019, 5 (2): eaav0693. doi: 10.1126/sciadv.aav0693
|
[27] |
Woodward D I, Reaney I M. Electron diffraction of tilted perovskites. Acta Crystallographica Section B:Structural Science, 2005, 61: 387–399. doi: 10.1107/S0108768105015521
|
[28] |
Jia C L, Mi S B, Faley M, et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Physical Review B, 2009, 79 (8): 081405. doi: 10.1103/PhysRevB.79.081405
|
[29] |
May S J, Kim J W, Rondinelli J M, et al. Quantifying octahedral rotations in strained perovskite oxide films. Physical Review B, 2010, 82 (1): 014110. doi: 10.1103/PhysRevB.82.014110
|
[30] |
Glazer A. The classification of tilted octahedra in perovskites. Acta Crystallographica, Section B: Structural Crystallography and Crystal Chemistry, 1972, 28 (11): 3384–3392. doi: 10.1107/S0567740872007976
|
[31] |
Liao Z, Green R J, Gauquelin N, et al. Long–range domain structure and symmetry engineering by interfacial oxygen octahedral coupling at heterostructure interface. Advanced Functional Materials, 2016, 26 (36): 6627–6634. doi: 10.1002/adfm.201602155
|
[32] |
Aso R, Kan D, Shimakawa Y, et al. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Scientific Reports, 2013, 3: 2214. doi: 10.1038/srep02214
|
[33] |
Liao Z, Huijben M, Zhong Z, et al. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nature Materials, 2016, 15 (4): 425–431. doi: 10.1038/nmat4579
|
[34] |
Samanta K, Ležaić M, Blügel S, et al. Tailoring the anomalous Hall effect of SrRuO3 thin films by strain: A first principles study. Journal of Applied Physics, 2021, 129 (9): 093904. doi: 10.1063/5.0043742
|
[35] |
Wang L, Pan W, Han D, et al. First-principles calculations of oxygen octahedral distortions in LaAlO3/SrTiO3 (001) superlattices. Physical Chemistry Chemical Physics, 2020, 22 (10): 5826–5831. doi: 10.1039/C9CP06236J
|
[36] |
Gu T, Scarbrough T, Yang Y, et al. Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Physical Review Letters, 2018, 120 (19): 197602. doi: 10.1103/PhysRevLett.120.197602
|
[37] |
Rondinelli J M, Spaldin N A. Structure and properties of functional oxide thin films: Insights from electronic–structure calculations. Advanced Materials, 2011, 23 (30): 3363–3381. doi: 10.1002/adma.201101152
|
[38] |
Koohfar S, Disa A S, Marshall M S J, et al. Structural distortions at polar manganite interfaces. Physical Review B, 2017, 96 (2): 024108. doi: 10.1103/PhysRevB.96.024108
|
[39] |
Zhang S, Guo X, Tang Y, et al. Polarization rotation in ultrathin ferroelectrics tailored by interfacial oxygen octahedral coupling. ACS Nano, 2018, 12 (4): 3681–3688. doi: 10.1021/acsnano.8b00862
|
[40] |
Chen B, Gauquelin N, Green R J, et al. Spatially controlled octahedral rotations and metal-insulator transitions in nickelate superlattices. Nano Letters, 2021, 21 (3): 1295–1302. doi: 10.1021/acs.nanolett.0c03850
|
[41] |
Kan D, Anada M, Wakabayashi Y, et al. Oxygen octahedral distortions in compressively strained SrRuO3 epitaxial thin films. Journal of Applied Physics, 2018, 123 (23): 235303. doi: 10.1063/1.5036748
|
[42] |