[1] |
Nowak S, Krug J. Accessibility percolation on n-trees. Europhysics Letters, 2013, 101 (6): 66004. doi: 10.1209/0295-5075/101/66004
|
[2] |
Kingman J F C. A simple model for the balance between selection and mutation. Journal of Applied Probability, 1978, 15 (1): 1–12.
|
[3] |
Kauffman S, Levin S. Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology, 1987, 128 (1): 11–45. doi: 10.1016/S0022-5193(87)80029-2
|
[4] |
Roberts M I, Zhao L Z. Increasing paths in regular trees. Electronic Communications in Probability, 2013, 18: 1–10. doi: 10.1214/ECP.v18-2784
|
[5] |
Chen X. Increasing paths on N-ary trees. 2014. https://arxiv.org/abs/1403.0843. Accessed March 1, 2022.
|
[6] |
Duque F, Roldán-Correa A, Valencia L A. Accessibility percolation with crossing valleys on n-ary trees. Journal of Statistical Physics, 2019, 174 (5): 1027–1037. doi: 10.1007/s10955-019-02223-5
|
[7] |
Coletti C F, Gava R J, Rodríguez P M. On the existence of accessibility in a tree-indexed percolation model. Physica A: Statistical Mechanics and its Applications, 2018, 492: 382–388. doi: 10.1016/j.physa.2017.10.019
|
[8] |
Hegarty P, Martinsson A. On the existence of accessible paths in various models of fitness landscapes. The Annals of Applied Probability, 2014, 24 (4): 1375–1395. doi: 10.1214/13-AAP949
|
[9] |
Berestycki J, Brunet E, Shi Z. The number of accessible paths in the hypercube. Bernoulli, 2016, 22 (2): 653–680. doi: 10.3150/14-BEJ641
|
[10] |
Berestycki J, Brunet E, Shi Z. Accessibility percolation with backsteps. ALEA Latin American Journal of Probability and Mathematical Statistics, 2017, 14 (1): 45–62. doi: 10.30757/ALEA.v14-04
|
[11] |
Li L. Phase transition for accessibility percolation on hypercubes. Journal of Theoretical Probability, 2018, 31 (4): 2072–2111. doi: 10.1007/s10959-017-0769-x
|
[12] |
Krug J. Accessibility percolation in random fitness landscapes. In: Probabilistic Structures in Evolution. Berlin: EMS Press, 2021: 1–22
|
[13] |
Hu Z, Li Z, Feng Q. Accessibility percolation on random rooted labeled trees. Journal of Applied Probability, 2019, 56 (2): 533–545. doi: 10.1017/jpr.2019.29
|
[1] |
Nowak S, Krug J. Accessibility percolation on n-trees. Europhysics Letters, 2013, 101 (6): 66004. doi: 10.1209/0295-5075/101/66004
|
[2] |
Kingman J F C. A simple model for the balance between selection and mutation. Journal of Applied Probability, 1978, 15 (1): 1–12.
|
[3] |
Kauffman S, Levin S. Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology, 1987, 128 (1): 11–45. doi: 10.1016/S0022-5193(87)80029-2
|
[4] |
Roberts M I, Zhao L Z. Increasing paths in regular trees. Electronic Communications in Probability, 2013, 18: 1–10. doi: 10.1214/ECP.v18-2784
|
[5] |
Chen X. Increasing paths on N-ary trees. 2014. https://arxiv.org/abs/1403.0843. Accessed March 1, 2022.
|
[6] |
Duque F, Roldán-Correa A, Valencia L A. Accessibility percolation with crossing valleys on n-ary trees. Journal of Statistical Physics, 2019, 174 (5): 1027–1037. doi: 10.1007/s10955-019-02223-5
|
[7] |
Coletti C F, Gava R J, Rodríguez P M. On the existence of accessibility in a tree-indexed percolation model. Physica A: Statistical Mechanics and its Applications, 2018, 492: 382–388. doi: 10.1016/j.physa.2017.10.019
|
[8] |
Hegarty P, Martinsson A. On the existence of accessible paths in various models of fitness landscapes. The Annals of Applied Probability, 2014, 24 (4): 1375–1395. doi: 10.1214/13-AAP949
|
[9] |
Berestycki J, Brunet E, Shi Z. The number of accessible paths in the hypercube. Bernoulli, 2016, 22 (2): 653–680. doi: 10.3150/14-BEJ641
|
[10] |
Berestycki J, Brunet E, Shi Z. Accessibility percolation with backsteps. ALEA Latin American Journal of Probability and Mathematical Statistics, 2017, 14 (1): 45–62. doi: 10.30757/ALEA.v14-04
|
[11] |
Li L. Phase transition for accessibility percolation on hypercubes. Journal of Theoretical Probability, 2018, 31 (4): 2072–2111. doi: 10.1007/s10959-017-0769-x
|
[12] |
Krug J. Accessibility percolation in random fitness landscapes. In: Probabilistic Structures in Evolution. Berlin: EMS Press, 2021: 1–22
|
[13] |
Hu Z, Li Z, Feng Q. Accessibility percolation on random rooted labeled trees. Journal of Applied Probability, 2019, 56 (2): 533–545. doi: 10.1017/jpr.2019.29
|