[1] |
Bai Z H, Cao Y, Liu W G, et al. The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation. Viruses, 2021, 13 (6): 1115. doi: 10.3390/v13061115
|
[2] |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579 (7798): 265–269. doi: 10.1038/s41586-020-2008-3
|
[3] |
Zhu N, Zhang D Y, Wang W L, et al. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 2020, 382 (8): 727–733. doi: 10.1056/NEJMoa2001017
|
[4] |
Huang C L, Wang Y M, Li X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 2020, 395 (10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5
|
[5] |
Ritchie H, Mathieu E, Rodés-Guirao L, et al. Coronavirus pandemic (COVID-19). https://ourworldindata.org/coronavirus.
|
[6] |
Lurie N, Saville M, Hatchett R, et al. Developing COVID-19 vaccines at pandemic speed. The New England Journal of Medicine, 2020, 382 (21): 1969–1973. doi: 10.1056/NEJMp2005630
|
[7] |
Cui J, Li F, Shi Z L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 2019, 17 (3): 181–192. doi: 10.1038/s41579-018-0118-9
|
[8] |
Zhu G L, Zhu C M, Zhu Y, et al. Minireview of progress in the structural study of SARS-CoV-2 proteins. Current Research in Microbial Sciences, 2020, 1: 53–61. doi: 10.1016/j.crmicr.2020.06.003
|
[9] |
Sola I, Almazán F, Zúñiga S, et al. Continuous and discontinuous RNA synthesis in coronaviruses. Annual Review of Virology, 2015, 2 (1): 265–288. doi: 10.1146/annurev-virology-100114-055218
|
[10] |
Zheng Z Q, Wang S Y, Xu Z S, et al. SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication. Cell Discovery, 2021, 7 (1): 38. doi: 10.1038/s41421-021-00275-0
|
[11] |
Lu R J, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet, 2020, 395 (10224): 565–574. doi: 10.1016/S0140-6736(20)30251-8
|
[12] |
Hassan S S, Choudhury P P, Roy B. SARS-CoV2 envelope protein: non-synonymous mutations and its consequences. Genomics, 2020, 112 (6): 3890–3892. doi: 10.1016/j.ygeno.2020.07.001
|
[13] |
Snijder E J, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Advances in Virus Research, 2016, 96: 59–126. doi: 10.1016/bs.aivir.2016.08.008
|
[14] |
Pasternak A O, Spaan W J M, Snijder E J. Nidovirus transcription: how to make sense…? Journal of General Virology, 2006, 87: 1403–1421. doi: 10.1099/vir.0.81611-0
|
[15] |
Sawicki S G, Sawicki D L, Siddell S G. A contemporary view of coronavirus transcription. Journal of Virology, 2007, 81 (1): 20–29. doi: 10.1128/JVI.01358-06
|
[16] |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579 (7798): 265–269. doi: 10.1038/s41586-020-2008-3
|
[17] |
Ghosh S, Dellibovi-Ragheb T A, Kerviel A, et al. β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell, 2020, 183 (6): 1520–1535.e14. doi: 10.1016/j.cell.2020.10.039
|
[18] |
Shang B, Wang X Y, Yuan J W, et al. Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus. Biochemical and Biophysical Research Communications, 2005, 336 (1): 110–117. doi: 10.1016/j.bbrc.2005.08.032
|
[19] |
Liu S J, Leng C H, Lien S P, et al. Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates. Vaccine, 2006, 24 (16): 3100–3108. doi: 10.1016/j.vaccine.2006.01.058
|
[20] |
Atyeo C, Fischinger S, Zohar T, et al. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity, 2020, 53 (3): 524–532.e4. doi: 10.1016/j.immuni.2020.07.020
|
[21] |
Syed A M, Taha T Y, Tabata T, et al. Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science, 2021, 374 (6575): 1626–1632. doi: 10.1126/science.abl6184
|
[22] |
Khan A, Khan M T, Saleem S, et al. Structural Insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein. Computational and Structural Biotechnology Journal, 2020, 18: 2174–2184. doi: 10.1016/j.csbj.2020.08.006
|
[23] |
Chen Y, Liu Q Y, Guo D Y. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology, 2020, 92 (4): 418–423. doi: 10.1002/jmv.25681
|
[24] |
Bar-On Y M, Flamholz A, Phillips R, et al. Science Forum: SARS-CoV-2 (COVID-19) by the numbers. eLife, 2020, 9: e57309. doi: 10.7554/eLife.57309
|
[25] |
Narayanan K, Chen C J, Maeda J, et al. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. Journal of Virology, 2003, 77 (5): 2922–2927. doi: 10.1128/JVI.77.5.2922-2927.2003
|
[26] |
Ahmed S F, Quadeer A A, McKay M R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 2020, 12 (3): 254. doi: 10.3390/v12030254
|
[27] |
Zhao H, Wu D, Nguyen A, et al. Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. iScience, 2021, 24 (6): 102523. doi: 10.1016/j.isci.2021.102523
|
[28] |
Tilocca B, Soggiu A, Sanguinetti M, et al. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes and Infection, 2020, 22: 188–194. doi: 10.1016/j.micinf.2020.04.002
|
[29] |
Cubuk J, Alston J J, Incicco J J, et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nature Communications, 2021, 12 (1): 1936. doi: 10.1038/s41467-021-21953-3
|
[30] |
Hurst K R, Koetzner C A, Masters P S. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. Journal of Virology, 2009, 83 (14): 7221–7234. doi: 10.1128/JVI.00440-09
|
[31] |
Fang H J, Chen Y Z, Li M S, et al. Thermostability of the N-terminal RNA-binding domain of the SARS-CoV nucleocapsid protein: Experiments and numerical simulations. Biophysical Journal, 2009, 96 (5): 1892–1901. doi: 10.1016/j.bpj.2008.10.045
|
[32] |
Yang M, He S H, Chen X X, et al. Structural insight into the SARS-CoV-2 nucleocapsid protein C-terminal domain reveals a novel recognition mechanism for viral transcriptional regulatory sequences. Frontiers in Chemistry, 2021, 8: 624765. doi: 10.3389/fchem.2020.624765
|
[33] |
Saikatendu K S, Joseph J S, Subramanian V, et al. Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. Journal of Virology, 2007, 81 (8): 3913–3921. doi: 10.1128/JVI.02236-06
|
[34] |
Chen C Y, Chang C K, Chang Y W, et al. Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. Journal of Molecular Biology, 2007, 368 (4): 1075–1086. doi: 10.1016/j.jmb.2007.02.069
|
[35] |
Chang C K, Chen C M, Chiang M H, et al. Transient oligomerization of the SARS-CoV N protein–implication for virus ribonucleoprotein packaging. PloS One, 2013, 8 (5): e65045. doi: 10.1371/journal.pone.0065045
|
[36] |
Jia Z H, Liu C, Chen Y W, et al. Crystal structures of the SARS-CoV-2 nucleocapsid protein C-terminal domain and development of nucleocapsid-targeting nanobodies. The FEBS Journal, 2021. https://doi.org/10.1111/febs.16239.
|
[37] |
de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 2016, 14 (8): 523–534. doi: 10.1038/nrmicro.2016.81
|
[38] |
Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579 (7798): 270–273. doi: 10.1038/s41586-020-2012-7
|
[39] |
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 2014, 42 (W1): W320–W324. doi: 10.1093/nar/gku316
|
[40] |
Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011, 7 (1): 539. doi: 10.1038/msb.2011.75
|
[41] |
Gao T Y, Gao Y D, Liu X X, et al. Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiology, 2021, 21 (1): 58. doi: 10.1186/s12866-021-02107-3
|
[42] |
Zeng W H, Liu G F, Ma H, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochemical and Biophysical Research Communications, 2020, 527 (3): 618–623. doi: 10.1016/j.bbrc.2020.04.136
|
[43] |
Hiscox J A, Wurm T, Wilson L, et al. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. Journal of Virology, 2001, 75 (1): 506–512. doi: 10.1128/JVI.75.1.506-512.2001
|
[44] |
Peng Y, Du N, Lei Y Q, et al. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. The EMBO Journal, 2020, 39 (20): e105938. doi: 10.15252/embj.2020105938
|
[45] |
Prasad K, Ahamad S, Kanipakam H, et al. Simultaneous inhibition of SARS-CoV-2 entry pathways by cyclosporine. ACS Chemical Neuroscience, 2021, 12 (5): 930–944. doi: 10.1021/acschemneuro.1c00019
|
[46] |
Caruso Í P, Sanches K, Da Poian A T, et al. Dynamics of the N-terminal domain of SARS-CoV-2 nucleocapsid protein drives dsRNA melting in a counterintuitive tweezer-like mechanism. BioRxiv, 2020. https://doi.org/10.1101/2020.08.24.264465.
|
[47] |
Kang S S, Yang M, Hong Z S, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica B, 2020, 10 (7): 1228–1238. doi: 10.1016/j.apsb.2020.04.009
|
[48] |
Fehr A R, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology (Clifton, N. J. ), 2015, 1282: 1–23. doi: 10.1007/978-1-4939-2438-7_1
|
[49] |
Cui L, Wang H Y, Ji Y X, et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. Journal of Virology, 2015, 89 (17): 9029–9043. doi: 10.1128/JVI.01331-15
|
[50] |
Chang C K, Hsu Y L, Chang Y H, et al. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: Implications for ribonucleocapsid protein packaging. Journal of Virology, 2009, 83 (5): 2255–2264. doi: 10.1128/JVI.02001-08
|
[51] |
de Haan C A, Rottier P J. Molecular interactions in the assembly of coronaviruses. Advances in Virus Research, 2005, 64: 165–230. doi: 10.1016/S0065-3527(05)64006-7
|
[52] |
Robbins S G, Frana M F, McGowan J J, et al. RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology, 1986, 150 (2): 402–410. doi: 10.1016/0042-6822(86)90305-3
|
[53] |
Baric R S, Nelson G W, Fleming J O, et al. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. Journal of Virology, 1988, 62 (11): 4280–4287. doi: 10.1128/jvi.62.11.4280-4287.1988
|
[54] |
Cong Y, Ulasli M, Schepers H, et al. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. Journal of Virology, 2020, 94 (4): e01925–19. doi: 10.1128/JVI.01925-19
|
[55] |
Fan H, Ooi A, Tan Y W, et al. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure, 2005, 13 (12): 1859–1868. doi: 10.1016/j.str.2005.08.021
|
[56] |
Surjit M, Liu B, Kumar P, et al. The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochemical and Biophysical Research Communications, 2004, 317 (4): 1030–1036. doi: 10.1016/j.bbrc.2004.03.154
|
[57] |
Risco C, Antón I M, Enjuanes L, et al. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. Journal of Virology, 1996, 70 (7): 4773–4777. doi: 10.1128/jvi.70.7.4773-4777.1996
|
[58] |
Kuo L, Masters P S. Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. Journal of Virology, 2002, 76 (10): 4987–4999. doi: 10.1128/JVI.76.10.4987-4999.2002
|
[59] |
Malone B, Urakova N, Snijder E J, et al. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nature Reviews Molecular Cell Biology, 2022, 23 (1): 21–39. doi: 10.1038/s41580-021-00432-z
|
[60] |
Lo Y S, Lin S Y, Wang S M, et al. Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Letters, 2013, 587 (2): 120–127. doi: 10.1016/j.febslet.2012.11.016
|
[61] |
Grossoehme N E, Li L, Keane S C, et al. Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. Journal of Molecular Biology, 2009, 394 (3): 544–557. doi: 10.1016/j.jmb.2009.09.040
|
[62] |
Gui M, Liu X, Guo D Y, et al. Electron microscopy studies of the coronavirus ribonucleoprotein complex. Protein & Cell, 2017, 8 (3): 219–224. doi: 10.1007/s13238-016-0352-8
|
[63] |
Cong Y, Kriegenburg F, de Haan C A M, et al. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers. Scientific Reports, 2017, 7 (1): 5740. doi: 10.1038/s41598-017-06062-w
|
[64] |
Ma Y L, Tong X H, Xu X L, et al. Structures of the N- and C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus. Protein & Cell, 2010, 1 (7): 688–697. doi: 10.1007/s13238-010-0079-x
|
[65] |
Kuo L, Hurst-Hess K R, Koetzner C A, et al. Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. Journal of Virology, 2016, 90 (9): 4357–4368. doi: 10.1128/JVI.03212-15
|
[66] |
Shibabaw T, Molla M D, Teferi B, et al. Role of IFN and complements system: Innate immunity in SARS-CoV-2. Journal of Inflammation Research, 2020, 13: 507–518. doi: 10.2147/JIR.S267280
|
[67] |
Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clinical & Experimental Immunology, 2020, 202 (2): 193–209. doi: 10.1111/cei.13523
|
[68] |
Ding S W, Han Q, Wang J, et al. Antiviral RNA interference in mammals. Current Opinion in Immunology, 2018, 54: 109–114. doi: 10.1016/j.coi.2018.06.010
|
[69] |
Mu J, Xu J, Zhang L, et al. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Science China Life Sciences, 2020, 63 (9): 1413–1416. doi: 10.1007/s11427-020-1692-1
|
[70] |
Catanzaro M, Fagiani F, Racchi M, et al. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5 (1): 84. doi: 10.1038/s41392-020-0191-1
|
[71] |
Li J Y, Liao C H, Wang Q, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Research, 2020, 286: 198074. doi: 10.1016/j.virusres.2020.198074
|
[72] |
Zheng Y, Zhuang M W, Han L L, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduction and Targeted Therapy, 2020, 5 (1): 299. doi: 10.1038/s41392-020-00438-7
|
[73] |
Chen K L, Xiao F, Hu D W, et al. SARS-CoV-2 nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-β production. Viruses, 2020, 13 (1): 47. doi: 10.3390/v13010047
|
[74] |
Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 2020, 369 (6504): 718–724. doi: 10.1126/science.abc6027
|
[75] |
Tian W M, Zhang N, Jin R H, et al. Immune suppression in the early stage of COVID-19 disease. Nature Communications, 2020, 11 (1): 5859. doi: 10.1038/s41467-020-19706-9
|
[76] |
Zhao Y H, Sui L Y, Wu P, et al. A dual-role of SARS-CoV-2 nucleocapsid protein in regulating innate immune response. Signal Transduction and Targeted Therapy, 2021, 6 (1): 331. doi: 10.1038/s41392-021-00742-w
|
[77] |
Novoa R R, Calderita G, Arranz R, et al. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biology of the Cell, 2005, 97 (2): 147–172. doi: 10.1042/BC20040058
|
[78] |
Savastano A, Ibáñez de Opakua A, Rankovic M, et al. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nature Communications, 2020, 11 (1): 6041. doi: 10.1038/s41467-020-19843-1
|
[79] |
Iserman C, Roden C A, Boerneke M A, et al. Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Molecular Cell, 2020, 80 (6): 1078–1091.e6. doi: 10.1016/j.molcel.2020.11.041
|
[80] |
Carlson C R, Asfaha J B, Ghent C M, et al. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Molecular Cell, 2020, 80 (6): 1092–1103.e4. doi: 10.1016/j.molcel.2020.11.025
|
[81] |
Chen H, Cui Y, Han X L, et al. Liquid–liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. Cell Research, 2020, 30 (12): 1143–1145. doi: 10.1038/s41422-020-00408-2
|
[82] |
Asselah T, Durantel D, Pasmant E, et al. COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 74 (1): 168–184. doi: 10.1016/j.jhep.2020.09.031
|
[83] |
Woloshin S, Patel N, Kesselheim A S. False negative tests for SARS-CoV-2 infection—challenges and implications. The New England Journal of Medicine, 2020, 383 (6): e38. doi: 10.1056/NEJMp2015897
|
[84] |
Hartley G E, Edwards E S J, Aui P M, et al. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Science Immunology, 2020, 5 (54): eabf8891. doi: 10.1126/sciimmunol.abf8891
|
[85] |
Li J, Lillehoj P B. Microfluidic magneto immunosensor for rapid, high sensitivity measurements of SARS-CoV-2 Nucleocapsid protein in serum. ACS Sensors, 2021, 6 (3): 1270–1278. doi: 10.1021/acssensors.0c02561
|
[86] |
Amrun S N, Lee C Y, Lee B, et al. Linear B-cell epitopes in the spike and nucleocapsid proteins as markers of SARS-CoV-2 exposure and disease severity. EBioMedicine, 2020, 58: 102911. doi: 10.1016/j.ebiom.2020.102911
|
[87] |
Hachim A, Kavian N, Cohen C A, et al. Beyond the Spike: identification of viral targets of the antibody response to SARS-CoV-2 in COVID-19 patients. medRxiv, 2020. https://doi.org/10.1101/2020.04.30.20085670.
|
[88] |
Zhang W, Du R H, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes & Infections, 2020, 9 (1): 386–389. doi: 10.1080/22221751.2020.1729071
|
[89] |
Guo L, Ren L L, Yang S Y, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinical Infectious Diseases, 2020, 71 (15): 778–785. doi: 10.1093/cid/ciaa310
|
[90] |
Tomaras G D, Haynes B F. HIV-1-specific antibody responses during acute and chronic HIV-1 infection. Current Opinion in HIV and AIDS, 2009, 4 (5): 373–379. doi: 10.1097/COH.0b013e32832f00c0
|
[91] |
Li T, Wang L, Wang H H, et al. Serum SARS-COV-2 nucleocapsid protein: A sensitivity and specificity early diagnostic marker for SARS-COV-2 infection. Frontiers in Cellular and Infection Microbiology, 2020, 10: 470. doi: 10.3389/fcimb.2020.00470
|
[92] |
Lyu A H, Jin T C, Wang S S, et al. Automatic label-free immunoassay with high sensitivity for rapid detection of SARS-CoV-2 nucleocapsid protein based on chemiluminescent magnetic beads. Sensors and Actuators B:Chemical, 2021, 349: 130739. doi: 10.1016/j.snb.2021.130739
|
[93] |
Wang S S, Shu J N, Lyu A H, et al. Label-free immunoassay for sensitive and rapid detection of the SARS-CoV-2 antigen based on functionalized magnetic nanobeads with chemiluminescence and immunoactivity. Analytical Chemistry, 2021, 93 (42): 14238–14246. doi: 10.1021/acs.analchem.1c03208
|
[94] |
Wang Y T, Long X Y, Ding X, et al. Novel nucleocapsid protein-targeting phenanthridine inhibitors of SARS-CoV-2. European Journal of Medicinal Chemistry, 2022, 227: 113966. doi: 10.1016/j.ejmech.2021.113966
|
[95] |
Lin S M, Lin S C, Hsu J N, et al. Structure-based stabilization of non-native protein–protein interactions of coronavirus nucleocapsid proteins in antiviral drug design. Journal of Medicinal Chemistry, 2020, 63 (6): 3131–3141. doi: 10.1021/acs.jmedchem.9b01913
|
[96] |
Zhao M, Yu Y, Sun L M, et al. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature Communications, 2021, 12 (1): 2114. doi: 10.1038/s41467-021-22297-8
|
[97] |
Chen R E, Zhang X, Case J B, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27 (4): 717–726. doi: 10.1038/s41591-021-01294-w
|
[98] |
McBride R, van Zyl M, Fielding B C. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6 (8): 2991–3018. doi: 10.3390/v6082991
|
[99] |
Sun B Q, Feng Y, Mo X N, et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerging Microbes & Infections, 2020, 9 (1): 940–948. doi: 10.1080/22221751.2020.1762515
|
[100] |
Qu J X, Wu C, Li X Y, et al. Profile of immunoglobulin G and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 2020, 71 (16): 2255–2258. doi: 10.1093/cid/ciaa489
|
Figure 1. Structural model of SARS-CoV-2 N protein. Major structural domains of N protein with their sequence of amino acids in protein chain have been represented by different colors in the figure. The N-NTD and N-CTD are represented in green and purple, respectively. While IDR, LKR, and C terminal IDR are represented in brown, black, and blue, respectively.
Figure 2. Structural features and representation of SARS-CoV-2 N protein. (a) Structure of SARS-CoV-2 N protein[42]. The N-NTD and N-CTD are represented in green and purple, respectively. The other structural domain, including N-tail, NTD-CTD linker, and C-tail, are presented by brown, black, and blue, respectively. (b) Schematic representation of N-NTD of SARS-CoV-2 based on the SARS-CoV-2 N protein structure presented in (a). (c) Schematic representation of N-CTD of SARS-CoV-2 based on the SARS-CoV-2 N protein structure presented in (a). (b) and (c) are colored as in (a).
[1] |
Bai Z H, Cao Y, Liu W G, et al. The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation. Viruses, 2021, 13 (6): 1115. doi: 10.3390/v13061115
|
[2] |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579 (7798): 265–269. doi: 10.1038/s41586-020-2008-3
|
[3] |
Zhu N, Zhang D Y, Wang W L, et al. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 2020, 382 (8): 727–733. doi: 10.1056/NEJMoa2001017
|
[4] |
Huang C L, Wang Y M, Li X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet, 2020, 395 (10223): 497–506. doi: 10.1016/S0140-6736(20)30183-5
|
[5] |
Ritchie H, Mathieu E, Rodés-Guirao L, et al. Coronavirus pandemic (COVID-19). https://ourworldindata.org/coronavirus.
|
[6] |
Lurie N, Saville M, Hatchett R, et al. Developing COVID-19 vaccines at pandemic speed. The New England Journal of Medicine, 2020, 382 (21): 1969–1973. doi: 10.1056/NEJMp2005630
|
[7] |
Cui J, Li F, Shi Z L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 2019, 17 (3): 181–192. doi: 10.1038/s41579-018-0118-9
|
[8] |
Zhu G L, Zhu C M, Zhu Y, et al. Minireview of progress in the structural study of SARS-CoV-2 proteins. Current Research in Microbial Sciences, 2020, 1: 53–61. doi: 10.1016/j.crmicr.2020.06.003
|
[9] |
Sola I, Almazán F, Zúñiga S, et al. Continuous and discontinuous RNA synthesis in coronaviruses. Annual Review of Virology, 2015, 2 (1): 265–288. doi: 10.1146/annurev-virology-100114-055218
|
[10] |
Zheng Z Q, Wang S Y, Xu Z S, et al. SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication. Cell Discovery, 2021, 7 (1): 38. doi: 10.1038/s41421-021-00275-0
|
[11] |
Lu R J, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet, 2020, 395 (10224): 565–574. doi: 10.1016/S0140-6736(20)30251-8
|
[12] |
Hassan S S, Choudhury P P, Roy B. SARS-CoV2 envelope protein: non-synonymous mutations and its consequences. Genomics, 2020, 112 (6): 3890–3892. doi: 10.1016/j.ygeno.2020.07.001
|
[13] |
Snijder E J, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Advances in Virus Research, 2016, 96: 59–126. doi: 10.1016/bs.aivir.2016.08.008
|
[14] |
Pasternak A O, Spaan W J M, Snijder E J. Nidovirus transcription: how to make sense…? Journal of General Virology, 2006, 87: 1403–1421. doi: 10.1099/vir.0.81611-0
|
[15] |
Sawicki S G, Sawicki D L, Siddell S G. A contemporary view of coronavirus transcription. Journal of Virology, 2007, 81 (1): 20–29. doi: 10.1128/JVI.01358-06
|
[16] |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579 (7798): 265–269. doi: 10.1038/s41586-020-2008-3
|
[17] |
Ghosh S, Dellibovi-Ragheb T A, Kerviel A, et al. β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell, 2020, 183 (6): 1520–1535.e14. doi: 10.1016/j.cell.2020.10.039
|
[18] |
Shang B, Wang X Y, Yuan J W, et al. Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus. Biochemical and Biophysical Research Communications, 2005, 336 (1): 110–117. doi: 10.1016/j.bbrc.2005.08.032
|
[19] |
Liu S J, Leng C H, Lien S P, et al. Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates. Vaccine, 2006, 24 (16): 3100–3108. doi: 10.1016/j.vaccine.2006.01.058
|
[20] |
Atyeo C, Fischinger S, Zohar T, et al. Distinct early serological signatures track with SARS-CoV-2 survival. Immunity, 2020, 53 (3): 524–532.e4. doi: 10.1016/j.immuni.2020.07.020
|
[21] |
Syed A M, Taha T Y, Tabata T, et al. Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles. Science, 2021, 374 (6575): 1626–1632. doi: 10.1126/science.abl6184
|
[22] |
Khan A, Khan M T, Saleem S, et al. Structural Insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein. Computational and Structural Biotechnology Journal, 2020, 18: 2174–2184. doi: 10.1016/j.csbj.2020.08.006
|
[23] |
Chen Y, Liu Q Y, Guo D Y. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology, 2020, 92 (4): 418–423. doi: 10.1002/jmv.25681
|
[24] |
Bar-On Y M, Flamholz A, Phillips R, et al. Science Forum: SARS-CoV-2 (COVID-19) by the numbers. eLife, 2020, 9: e57309. doi: 10.7554/eLife.57309
|
[25] |
Narayanan K, Chen C J, Maeda J, et al. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. Journal of Virology, 2003, 77 (5): 2922–2927. doi: 10.1128/JVI.77.5.2922-2927.2003
|
[26] |
Ahmed S F, Quadeer A A, McKay M R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 2020, 12 (3): 254. doi: 10.3390/v12030254
|
[27] |
Zhao H, Wu D, Nguyen A, et al. Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. iScience, 2021, 24 (6): 102523. doi: 10.1016/j.isci.2021.102523
|
[28] |
Tilocca B, Soggiu A, Sanguinetti M, et al. Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses. Microbes and Infection, 2020, 22: 188–194. doi: 10.1016/j.micinf.2020.04.002
|
[29] |
Cubuk J, Alston J J, Incicco J J, et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nature Communications, 2021, 12 (1): 1936. doi: 10.1038/s41467-021-21953-3
|
[30] |
Hurst K R, Koetzner C A, Masters P S. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. Journal of Virology, 2009, 83 (14): 7221–7234. doi: 10.1128/JVI.00440-09
|
[31] |
Fang H J, Chen Y Z, Li M S, et al. Thermostability of the N-terminal RNA-binding domain of the SARS-CoV nucleocapsid protein: Experiments and numerical simulations. Biophysical Journal, 2009, 96 (5): 1892–1901. doi: 10.1016/j.bpj.2008.10.045
|
[32] |
Yang M, He S H, Chen X X, et al. Structural insight into the SARS-CoV-2 nucleocapsid protein C-terminal domain reveals a novel recognition mechanism for viral transcriptional regulatory sequences. Frontiers in Chemistry, 2021, 8: 624765. doi: 10.3389/fchem.2020.624765
|
[33] |
Saikatendu K S, Joseph J S, Subramanian V, et al. Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. Journal of Virology, 2007, 81 (8): 3913–3921. doi: 10.1128/JVI.02236-06
|
[34] |
Chen C Y, Chang C K, Chang Y W, et al. Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. Journal of Molecular Biology, 2007, 368 (4): 1075–1086. doi: 10.1016/j.jmb.2007.02.069
|
[35] |
Chang C K, Chen C M, Chiang M H, et al. Transient oligomerization of the SARS-CoV N protein–implication for virus ribonucleoprotein packaging. PloS One, 2013, 8 (5): e65045. doi: 10.1371/journal.pone.0065045
|
[36] |
Jia Z H, Liu C, Chen Y W, et al. Crystal structures of the SARS-CoV-2 nucleocapsid protein C-terminal domain and development of nucleocapsid-targeting nanobodies. The FEBS Journal, 2021. https://doi.org/10.1111/febs.16239.
|
[37] |
de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 2016, 14 (8): 523–534. doi: 10.1038/nrmicro.2016.81
|
[38] |
Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579 (7798): 270–273. doi: 10.1038/s41586-020-2012-7
|
[39] |
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 2014, 42 (W1): W320–W324. doi: 10.1093/nar/gku316
|
[40] |
Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 2011, 7 (1): 539. doi: 10.1038/msb.2011.75
|
[41] |
Gao T Y, Gao Y D, Liu X X, et al. Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiology, 2021, 21 (1): 58. doi: 10.1186/s12866-021-02107-3
|
[42] |
Zeng W H, Liu G F, Ma H, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochemical and Biophysical Research Communications, 2020, 527 (3): 618–623. doi: 10.1016/j.bbrc.2020.04.136
|
[43] |
Hiscox J A, Wurm T, Wilson L, et al. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. Journal of Virology, 2001, 75 (1): 506–512. doi: 10.1128/JVI.75.1.506-512.2001
|
[44] |
Peng Y, Du N, Lei Y Q, et al. Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. The EMBO Journal, 2020, 39 (20): e105938. doi: 10.15252/embj.2020105938
|
[45] |
Prasad K, Ahamad S, Kanipakam H, et al. Simultaneous inhibition of SARS-CoV-2 entry pathways by cyclosporine. ACS Chemical Neuroscience, 2021, 12 (5): 930–944. doi: 10.1021/acschemneuro.1c00019
|
[46] |
Caruso Í P, Sanches K, Da Poian A T, et al. Dynamics of the N-terminal domain of SARS-CoV-2 nucleocapsid protein drives dsRNA melting in a counterintuitive tweezer-like mechanism. BioRxiv, 2020. https://doi.org/10.1101/2020.08.24.264465.
|
[47] |
Kang S S, Yang M, Hong Z S, et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica B, 2020, 10 (7): 1228–1238. doi: 10.1016/j.apsb.2020.04.009
|
[48] |
Fehr A R, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology (Clifton, N. J. ), 2015, 1282: 1–23. doi: 10.1007/978-1-4939-2438-7_1
|
[49] |
Cui L, Wang H Y, Ji Y X, et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. Journal of Virology, 2015, 89 (17): 9029–9043. doi: 10.1128/JVI.01331-15
|
[50] |
Chang C K, Hsu Y L, Chang Y H, et al. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: Implications for ribonucleocapsid protein packaging. Journal of Virology, 2009, 83 (5): 2255–2264. doi: 10.1128/JVI.02001-08
|
[51] |
de Haan C A, Rottier P J. Molecular interactions in the assembly of coronaviruses. Advances in Virus Research, 2005, 64: 165–230. doi: 10.1016/S0065-3527(05)64006-7
|
[52] |
Robbins S G, Frana M F, McGowan J J, et al. RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology, 1986, 150 (2): 402–410. doi: 10.1016/0042-6822(86)90305-3
|
[53] |
Baric R S, Nelson G W, Fleming J O, et al. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. Journal of Virology, 1988, 62 (11): 4280–4287. doi: 10.1128/jvi.62.11.4280-4287.1988
|
[54] |
Cong Y, Ulasli M, Schepers H, et al. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. Journal of Virology, 2020, 94 (4): e01925–19. doi: 10.1128/JVI.01925-19
|
[55] |
Fan H, Ooi A, Tan Y W, et al. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure, 2005, 13 (12): 1859–1868. doi: 10.1016/j.str.2005.08.021
|
[56] |
Surjit M, Liu B, Kumar P, et al. The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochemical and Biophysical Research Communications, 2004, 317 (4): 1030–1036. doi: 10.1016/j.bbrc.2004.03.154
|
[57] |
Risco C, Antón I M, Enjuanes L, et al. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. Journal of Virology, 1996, 70 (7): 4773–4777. doi: 10.1128/jvi.70.7.4773-4777.1996
|
[58] |
Kuo L, Masters P S. Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. Journal of Virology, 2002, 76 (10): 4987–4999. doi: 10.1128/JVI.76.10.4987-4999.2002
|
[59] |
Malone B, Urakova N, Snijder E J, et al. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nature Reviews Molecular Cell Biology, 2022, 23 (1): 21–39. doi: 10.1038/s41580-021-00432-z
|
[60] |
Lo Y S, Lin S Y, Wang S M, et al. Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Letters, 2013, 587 (2): 120–127. doi: 10.1016/j.febslet.2012.11.016
|
[61] |
Grossoehme N E, Li L, Keane S C, et al. Coronavirus N protein N-terminal domain (NTD) specifically binds the transcriptional regulatory sequence (TRS) and melts TRS-cTRS RNA duplexes. Journal of Molecular Biology, 2009, 394 (3): 544–557. doi: 10.1016/j.jmb.2009.09.040
|
[62] |
Gui M, Liu X, Guo D Y, et al. Electron microscopy studies of the coronavirus ribonucleoprotein complex. Protein & Cell, 2017, 8 (3): 219–224. doi: 10.1007/s13238-016-0352-8
|
[63] |
Cong Y, Kriegenburg F, de Haan C A M, et al. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers. Scientific Reports, 2017, 7 (1): 5740. doi: 10.1038/s41598-017-06062-w
|
[64] |
Ma Y L, Tong X H, Xu X L, et al. Structures of the N- and C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus. Protein & Cell, 2010, 1 (7): 688–697. doi: 10.1007/s13238-010-0079-x
|
[65] |
Kuo L, Hurst-Hess K R, Koetzner C A, et al. Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. Journal of Virology, 2016, 90 (9): 4357–4368. doi: 10.1128/JVI.03212-15
|
[66] |
Shibabaw T, Molla M D, Teferi B, et al. Role of IFN and complements system: Innate immunity in SARS-CoV-2. Journal of Inflammation Research, 2020, 13: 507–518. doi: 10.2147/JIR.S267280
|
[67] |
Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clinical & Experimental Immunology, 2020, 202 (2): 193–209. doi: 10.1111/cei.13523
|
[68] |
Ding S W, Han Q, Wang J, et al. Antiviral RNA interference in mammals. Current Opinion in Immunology, 2018, 54: 109–114. doi: 10.1016/j.coi.2018.06.010
|
[69] |
Mu J, Xu J, Zhang L, et al. SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Science China Life Sciences, 2020, 63 (9): 1413–1416. doi: 10.1007/s11427-020-1692-1
|
[70] |
Catanzaro M, Fagiani F, Racchi M, et al. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5 (1): 84. doi: 10.1038/s41392-020-0191-1
|
[71] |
Li J Y, Liao C H, Wang Q, et al. The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Research, 2020, 286: 198074. doi: 10.1016/j.virusres.2020.198074
|
[72] |
Zheng Y, Zhuang M W, Han L L, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduction and Targeted Therapy, 2020, 5 (1): 299. doi: 10.1038/s41392-020-00438-7
|
[73] |
Chen K L, Xiao F, Hu D W, et al. SARS-CoV-2 nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-β production. Viruses, 2020, 13 (1): 47. doi: 10.3390/v13010047
|
[74] |
Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 2020, 369 (6504): 718–724. doi: 10.1126/science.abc6027
|
[75] |
Tian W M, Zhang N, Jin R H, et al. Immune suppression in the early stage of COVID-19 disease. Nature Communications, 2020, 11 (1): 5859. doi: 10.1038/s41467-020-19706-9
|
[76] |
Zhao Y H, Sui L Y, Wu P, et al. A dual-role of SARS-CoV-2 nucleocapsid protein in regulating innate immune response. Signal Transduction and Targeted Therapy, 2021, 6 (1): 331. doi: 10.1038/s41392-021-00742-w
|
[77] |
Novoa R R, Calderita G, Arranz R, et al. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biology of the Cell, 2005, 97 (2): 147–172. doi: 10.1042/BC20040058
|
[78] |
Savastano A, Ibáñez de Opakua A, Rankovic M, et al. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nature Communications, 2020, 11 (1): 6041. doi: 10.1038/s41467-020-19843-1
|
[79] |
Iserman C, Roden C A, Boerneke M A, et al. Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Molecular Cell, 2020, 80 (6): 1078–1091.e6. doi: 10.1016/j.molcel.2020.11.041
|
[80] |
Carlson C R, Asfaha J B, Ghent C M, et al. Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Molecular Cell, 2020, 80 (6): 1092–1103.e4. doi: 10.1016/j.molcel.2020.11.025
|
[81] |
Chen H, Cui Y, Han X L, et al. Liquid–liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. Cell Research, 2020, 30 (12): 1143–1145. doi: 10.1038/s41422-020-00408-2
|
[82] |
Asselah T, Durantel D, Pasmant E, et al. COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 74 (1): 168–184. doi: 10.1016/j.jhep.2020.09.031
|
[83] |
Woloshin S, Patel N, Kesselheim A S. False negative tests for SARS-CoV-2 infection—challenges and implications. The New England Journal of Medicine, 2020, 383 (6): e38. doi: 10.1056/NEJMp2015897
|
[84] |
Hartley G E, Edwards E S J, Aui P M, et al. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Science Immunology, 2020, 5 (54): eabf8891. doi: 10.1126/sciimmunol.abf8891
|
[85] |
Li J, Lillehoj P B. Microfluidic magneto immunosensor for rapid, high sensitivity measurements of SARS-CoV-2 Nucleocapsid protein in serum. ACS Sensors, 2021, 6 (3): 1270–1278. doi: 10.1021/acssensors.0c02561
|
[86] |
Amrun S N, Lee C Y, Lee B, et al. Linear B-cell epitopes in the spike and nucleocapsid proteins as markers of SARS-CoV-2 exposure and disease severity. EBioMedicine, 2020, 58: 102911. doi: 10.1016/j.ebiom.2020.102911
|
[87] |
Hachim A, Kavian N, Cohen C A, et al. Beyond the Spike: identification of viral targets of the antibody response to SARS-CoV-2 in COVID-19 patients. medRxiv, 2020. https://doi.org/10.1101/2020.04.30.20085670.
|
[88] |
Zhang W, Du R H, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes & Infections, 2020, 9 (1): 386–389. doi: 10.1080/22221751.2020.1729071
|
[89] |
Guo L, Ren L L, Yang S Y, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinical Infectious Diseases, 2020, 71 (15): 778–785. doi: 10.1093/cid/ciaa310
|
[90] |
Tomaras G D, Haynes B F. HIV-1-specific antibody responses during acute and chronic HIV-1 infection. Current Opinion in HIV and AIDS, 2009, 4 (5): 373–379. doi: 10.1097/COH.0b013e32832f00c0
|
[91] |
Li T, Wang L, Wang H H, et al. Serum SARS-COV-2 nucleocapsid protein: A sensitivity and specificity early diagnostic marker for SARS-COV-2 infection. Frontiers in Cellular and Infection Microbiology, 2020, 10: 470. doi: 10.3389/fcimb.2020.00470
|
[92] |
Lyu A H, Jin T C, Wang S S, et al. Automatic label-free immunoassay with high sensitivity for rapid detection of SARS-CoV-2 nucleocapsid protein based on chemiluminescent magnetic beads. Sensors and Actuators B:Chemical, 2021, 349: 130739. doi: 10.1016/j.snb.2021.130739
|
[93] |
Wang S S, Shu J N, Lyu A H, et al. Label-free immunoassay for sensitive and rapid detection of the SARS-CoV-2 antigen based on functionalized magnetic nanobeads with chemiluminescence and immunoactivity. Analytical Chemistry, 2021, 93 (42): 14238–14246. doi: 10.1021/acs.analchem.1c03208
|
[94] |
Wang Y T, Long X Y, Ding X, et al. Novel nucleocapsid protein-targeting phenanthridine inhibitors of SARS-CoV-2. European Journal of Medicinal Chemistry, 2022, 227: 113966. doi: 10.1016/j.ejmech.2021.113966
|
[95] |
Lin S M, Lin S C, Hsu J N, et al. Structure-based stabilization of non-native protein–protein interactions of coronavirus nucleocapsid proteins in antiviral drug design. Journal of Medicinal Chemistry, 2020, 63 (6): 3131–3141. doi: 10.1021/acs.jmedchem.9b01913
|
[96] |
Zhao M, Yu Y, Sun L M, et al. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature Communications, 2021, 12 (1): 2114. doi: 10.1038/s41467-021-22297-8
|
[97] |
Chen R E, Zhang X, Case J B, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27 (4): 717–726. doi: 10.1038/s41591-021-01294-w
|
[98] |
McBride R, van Zyl M, Fielding B C. The coronavirus nucleocapsid is a multifunctional protein. Viruses, 2014, 6 (8): 2991–3018. doi: 10.3390/v6082991
|
[99] |
Sun B Q, Feng Y, Mo X N, et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerging Microbes & Infections, 2020, 9 (1): 940–948. doi: 10.1080/22221751.2020.1762515
|
[100] |
Qu J X, Wu C, Li X Y, et al. Profile of immunoglobulin G and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical Infectious Diseases, 2020, 71 (16): 2255–2258. doi: 10.1093/cid/ciaa489
|