[1] |
Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Science, 2006, 311 (5760): 484–489. doi: 10.1126/science.1114736
|
[2] |
Takagaki A, Nishimura S, Ebitani K. Catalytic transformations of biomass-derived materials into value-added chemicals. Catalysis Surveys from Asia, 2012, 16 (3): 164–182. doi: 10.1007/s10563-012-9142-3
|
[3] |
Alonso D M, Hakim S H, Zhou S, et al. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 2017, 3 (5): e1603301. doi: 10.1126/sciadv.1603301
|
[4] |
Climent M J, Corma A, Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 2014, 16 (2): 516–547. doi: 10.1039/C3GC41492B
|
[5] |
Isikgor F H, Becer C R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 2015, 6 (25): 4497–4559. doi: 10.1039/c5py00263j
|
[6] |
Pileidis F D, Titirici M M. Levulinic acid biorefineries: New challenges for efficient utilization of biomass. ChemSusChem, 2016, 9 (6): 562–582. doi: 10.1002/cssc.201501405
|
[7] |
Yan K, Jarvis C, Gu J, et al. Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renewable and Sustainable Energy Reviews, 2015, 51: 986–997. doi: 10.1016/j.rser.2015.07.021
|
[8] |
Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106 (9): 4044–4098. doi: 10.1021/cr068360d
|
[9] |
Van Buijtenen J, Lange J P, Alonso L E, et al. Furfural production by ‘acidic steam stripping’ of lignocellulose. ChemSusChem, 2013, 6 (11): 2132–2136. doi: 10.1002/cssc.201300234
|
[10] |
Shinde S D, Meng X, Kumar R, et al. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20 (10): 2192–2205. doi: 10.1039/C8GC00353J
|
[11] |
Ruiz H A, Conrad M, Sun S N, et al. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 2020, 299: 122685. doi: 10.1016/j.biortech.2019.122685
|
[12] |
Li Y, Zhao C, Chen L, et al. Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility. Applied Energy, 2018, 227: 128–136. doi: 10.1016/j.apenergy.2017.07.133
|
[13] |
Camacho F, González-Tello P, Jurado E, et al. Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. Journal of Chemical Technology & Biotechnology, 1996, 67 (4): 350–356. doi: 10.1002/(SICI)1097-4660(199612)67:4<350::AID-JCTB564>3.0.CO;2-9
|
[14] |
Kim J S, Lee Y Y, Torget R W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. Applied Biochemistry and Biotechnology, 2001, 91 (1): 331–340. doi: 10.1385/ABAB:91-93:1-9:331
|
[15] |
Mosier N S, Sarikaya A, Ladisch C M, et al. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnology Progress, 2001, 17 (3): 474–480. doi: 10.1021/bp010028u
|
[16] |
Girisuta B, Janssen L P B M, Heeres H J. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial & Engineering Chemistry Research, 2007, 46 (6): 1696–1708. doi: 10.1021/ie061186z
|
[17] |
Patil S K R, Heltzel J, Lund C R F. Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuels, 2012, 26 (8): 5281–5293. doi: 10.1021/ef3007454
|
[18] |
Jing Q, Lü X. Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water. Chinese Journal of Chemical Engineering, 2008, 16 (6): 890–894. doi: 10.1016/S1004-9541(09)60012-4
|
[19] |
Li Q, Luo K H, Kang Q J, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 2016, 52: 62–105. doi: 10.1016/j.pecs.2015.10.001
|
[20] |
Van den Akker H E A. Lattice Boltzmann simulations for multi-scale chemical engineering. Current Opinion in Chemical Engineering, 2018, 21: 67–75. doi: 10.1016/j.coche.2018.03.003
|
[21] |
Zhu J, Ma J. An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media. Advances in Water Resources, 2013, 56: 61–76. doi: 10.1016/j.advwatres.2013.03.001
|
[22] |
Xu A, Shi L, Xi H D. Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number. International Journal of Heat and Mass Transfer, 2019, 140: 359–370. doi: 10.1016/j.ijheatmasstransfer.2019.06.002
|
[23] |
Li D, Ren Q, Tong Z X, et al. Lattice Boltzmann models for axisymmetric solid–liquid phase change. International Journal of Heat and Mass Transfer, 2017, 112: 795–804. doi: 10.1016/j.ijheatmasstransfer.2017.03.127
|
[24] |
Nemati M, Shateri Najaf Abady A R, Toghraie D, et al. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows. Physica A: Statistical Mechanics and its Applications, 2018, 489: 65–77. doi: 10.1016/j.physa.2017.07.013
|
[25] |
Liu H, Kang Q, Leonardi C R, et al. Multiphase lattice Boltzmann simulations for porous media applications. Computational Geosciences, 2016, 20 (4): 777–805. doi: 10.1007/s10596-015-9542-3
|
[26] |
Liu M, Mostaghimi P. High-resolution pore-scale simulation of dissolution in porous media. Chemical Engineering Science, 2017, 161: 360–369. doi: 10.1016/j.ces.2016.12.064
|
[27] |
Falcucci G, Amati G, Krastev V K, et al. Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. Chemical Engineering Science, 2017, 166: 274–282. doi: 10.1016/j.ces.2017.03.037
|
[28] |
Liu S, Wei X, Sun W, et al. Coking prediction in catalytic glucose conversion to levulinic acid using improved lattice Boltzmann model. Industrial & Engineering Chemistry Research, 2020, 59 (39): 17462–17475. doi: 10.1021/acs.iecr.0c03635
|
[29] |
Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47 (3): 1815–1819. doi: 10.1103/PhysRevE.47.1815
|
[30] |
Pan C, Hilpert M, Miller C T. Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resources Research, 2004, 40 (1): W01501. doi: 10.1029/2003WR002120
|
[31] |
Mei Q, Wei X, Sun W, et al. Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method. RSC Advances, 2019, 9 (23): 12846–12853. doi: 10.1039/C9RA02090J
|
[32] |
Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18 (4): 042101. doi: 10.1063/1.2187070
|
[33] |
Wei X, Li W, Liu Q, et al. Pore-scale investigation on multiphase reactive transport for the conversion of levulinic acid to γ-valerolactone with Ru/C catalyst. Chemical Engineering Journal, 2022, 427: 130917. doi: 10.1016/j.cej.2021.130917
|
[34] |
Yu Z, Fan L S. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Physical Review E, 2010, 82 (4): 046708. doi: 10.1103/PhysRevE.82.046708
|
[35] |
Wang M, Wang J, Pan N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Physical Review E, 2007, 75 (3): 036702. doi: 10.1103/PhysRevE.75.036702
|
[36] |
Lopes E S, Rivera E C, de Jesus Gariboti J C, et al. Kinetic insights into the lignocellulosic biomass-based levulinic acid production by a mechanistic model. Cellulose, 2020, 27 (10): 5641–5663. doi: 10.1007/s10570-020-03183-w
|
[37] |
Petridis L, Smith J C. Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nature Reviews Chemistry, 2018, 2 (11): 382–389. doi: 10.1038/s41570-018-0050-6
|
[38] |
Shen X, Sun R. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydrate Polymers, 2021, 261: 117884. doi: 10.1016/j.carbpol.2021.117884
|
[39] |
Chen L, Kang Q, Robinson B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems. Physical Review E, 2013, 87 (4): 043306. doi: 10.1103/PhysRevE.87.043306
|
[40] |
Chen L, Kang Q, Tang Q, et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. International Journal of Heat and Mass Transfer, 2015, 85: 935–949. doi: 10.1016/j.ijheatmasstransfer.2015.02.035
|
[41] |
Chen L, Wang M, Kang Q, et al. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping. Advances in Water Resources, 2018, 116: 208–218. doi: 10.1016/j.advwatres.2018.02.018
|
[42] |
Ma C, Cai B, Zhang L, et al. Acid-catalyzed conversion of cellulose into levulinic acid with biphasic solvent system. Frontiers in Plant Science, 2021, 12: 630807. doi: 10.3389/fpls.2021.630807
|
[43] |
Weingarten R, Conner W C, Huber G W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy & Environmental Science, 2012, 5 (6): 7559–7574. doi: 10.1039/C2EE21593D
|
[1] |
Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials. Science, 2006, 311 (5760): 484–489. doi: 10.1126/science.1114736
|
[2] |
Takagaki A, Nishimura S, Ebitani K. Catalytic transformations of biomass-derived materials into value-added chemicals. Catalysis Surveys from Asia, 2012, 16 (3): 164–182. doi: 10.1007/s10563-012-9142-3
|
[3] |
Alonso D M, Hakim S H, Zhou S, et al. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Science Advances, 2017, 3 (5): e1603301. doi: 10.1126/sciadv.1603301
|
[4] |
Climent M J, Corma A, Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 2014, 16 (2): 516–547. doi: 10.1039/C3GC41492B
|
[5] |
Isikgor F H, Becer C R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 2015, 6 (25): 4497–4559. doi: 10.1039/c5py00263j
|
[6] |
Pileidis F D, Titirici M M. Levulinic acid biorefineries: New challenges for efficient utilization of biomass. ChemSusChem, 2016, 9 (6): 562–582. doi: 10.1002/cssc.201501405
|
[7] |
Yan K, Jarvis C, Gu J, et al. Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renewable and Sustainable Energy Reviews, 2015, 51: 986–997. doi: 10.1016/j.rser.2015.07.021
|
[8] |
Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106 (9): 4044–4098. doi: 10.1021/cr068360d
|
[9] |
Van Buijtenen J, Lange J P, Alonso L E, et al. Furfural production by ‘acidic steam stripping’ of lignocellulose. ChemSusChem, 2013, 6 (11): 2132–2136. doi: 10.1002/cssc.201300234
|
[10] |
Shinde S D, Meng X, Kumar R, et al. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 2018, 20 (10): 2192–2205. doi: 10.1039/C8GC00353J
|
[11] |
Ruiz H A, Conrad M, Sun S N, et al. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 2020, 299: 122685. doi: 10.1016/j.biortech.2019.122685
|
[12] |
Li Y, Zhao C, Chen L, et al. Production of bio-jet fuel from corncob by hydrothermal decomposition and catalytic hydrogenation: Lab analysis of process and techno-economics of a pilot-scale facility. Applied Energy, 2018, 227: 128–136. doi: 10.1016/j.apenergy.2017.07.133
|
[13] |
Camacho F, González-Tello P, Jurado E, et al. Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. Journal of Chemical Technology & Biotechnology, 1996, 67 (4): 350–356. doi: 10.1002/(SICI)1097-4660(199612)67:4<350::AID-JCTB564>3.0.CO;2-9
|
[14] |
Kim J S, Lee Y Y, Torget R W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. Applied Biochemistry and Biotechnology, 2001, 91 (1): 331–340. doi: 10.1385/ABAB:91-93:1-9:331
|
[15] |
Mosier N S, Sarikaya A, Ladisch C M, et al. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnology Progress, 2001, 17 (3): 474–480. doi: 10.1021/bp010028u
|
[16] |
Girisuta B, Janssen L P B M, Heeres H J. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid. Industrial & Engineering Chemistry Research, 2007, 46 (6): 1696–1708. doi: 10.1021/ie061186z
|
[17] |
Patil S K R, Heltzel J, Lund C R F. Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy Fuels, 2012, 26 (8): 5281–5293. doi: 10.1021/ef3007454
|
[18] |
Jing Q, Lü X. Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water. Chinese Journal of Chemical Engineering, 2008, 16 (6): 890–894. doi: 10.1016/S1004-9541(09)60012-4
|
[19] |
Li Q, Luo K H, Kang Q J, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 2016, 52: 62–105. doi: 10.1016/j.pecs.2015.10.001
|
[20] |
Van den Akker H E A. Lattice Boltzmann simulations for multi-scale chemical engineering. Current Opinion in Chemical Engineering, 2018, 21: 67–75. doi: 10.1016/j.coche.2018.03.003
|
[21] |
Zhu J, Ma J. An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media. Advances in Water Resources, 2013, 56: 61–76. doi: 10.1016/j.advwatres.2013.03.001
|
[22] |
Xu A, Shi L, Xi H D. Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number. International Journal of Heat and Mass Transfer, 2019, 140: 359–370. doi: 10.1016/j.ijheatmasstransfer.2019.06.002
|
[23] |
Li D, Ren Q, Tong Z X, et al. Lattice Boltzmann models for axisymmetric solid–liquid phase change. International Journal of Heat and Mass Transfer, 2017, 112: 795–804. doi: 10.1016/j.ijheatmasstransfer.2017.03.127
|
[24] |
Nemati M, Shateri Najaf Abady A R, Toghraie D, et al. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows. Physica A: Statistical Mechanics and its Applications, 2018, 489: 65–77. doi: 10.1016/j.physa.2017.07.013
|
[25] |
Liu H, Kang Q, Leonardi C R, et al. Multiphase lattice Boltzmann simulations for porous media applications. Computational Geosciences, 2016, 20 (4): 777–805. doi: 10.1007/s10596-015-9542-3
|
[26] |
Liu M, Mostaghimi P. High-resolution pore-scale simulation of dissolution in porous media. Chemical Engineering Science, 2017, 161: 360–369. doi: 10.1016/j.ces.2016.12.064
|
[27] |
Falcucci G, Amati G, Krastev V K, et al. Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. Chemical Engineering Science, 2017, 166: 274–282. doi: 10.1016/j.ces.2017.03.037
|
[28] |
Liu S, Wei X, Sun W, et al. Coking prediction in catalytic glucose conversion to levulinic acid using improved lattice Boltzmann model. Industrial & Engineering Chemistry Research, 2020, 59 (39): 17462–17475. doi: 10.1021/acs.iecr.0c03635
|
[29] |
Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47 (3): 1815–1819. doi: 10.1103/PhysRevE.47.1815
|
[30] |
Pan C, Hilpert M, Miller C T. Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resources Research, 2004, 40 (1): W01501. doi: 10.1029/2003WR002120
|
[31] |
Mei Q, Wei X, Sun W, et al. Liquid membrane catalytic model of hydrolyzing cellulose into 5-hydroxymethylfurfural based on the lattice Boltzmann method. RSC Advances, 2019, 9 (23): 12846–12853. doi: 10.1039/C9RA02090J
|
[32] |
Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18 (4): 042101. doi: 10.1063/1.2187070
|
[33] |
Wei X, Li W, Liu Q, et al. Pore-scale investigation on multiphase reactive transport for the conversion of levulinic acid to γ-valerolactone with Ru/C catalyst. Chemical Engineering Journal, 2022, 427: 130917. doi: 10.1016/j.cej.2021.130917
|
[34] |
Yu Z, Fan L S. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Physical Review E, 2010, 82 (4): 046708. doi: 10.1103/PhysRevE.82.046708
|
[35] |
Wang M, Wang J, Pan N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Physical Review E, 2007, 75 (3): 036702. doi: 10.1103/PhysRevE.75.036702
|
[36] |
Lopes E S, Rivera E C, de Jesus Gariboti J C, et al. Kinetic insights into the lignocellulosic biomass-based levulinic acid production by a mechanistic model. Cellulose, 2020, 27 (10): 5641–5663. doi: 10.1007/s10570-020-03183-w
|
[37] |
Petridis L, Smith J C. Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nature Reviews Chemistry, 2018, 2 (11): 382–389. doi: 10.1038/s41570-018-0050-6
|
[38] |
Shen X, Sun R. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydrate Polymers, 2021, 261: 117884. doi: 10.1016/j.carbpol.2021.117884
|
[39] |
Chen L, Kang Q, Robinson B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems. Physical Review E, 2013, 87 (4): 043306. doi: 10.1103/PhysRevE.87.043306
|
[40] |
Chen L, Kang Q, Tang Q, et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. International Journal of Heat and Mass Transfer, 2015, 85: 935–949. doi: 10.1016/j.ijheatmasstransfer.2015.02.035
|
[41] |
Chen L, Wang M, Kang Q, et al. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping. Advances in Water Resources, 2018, 116: 208–218. doi: 10.1016/j.advwatres.2018.02.018
|
[42] |
Ma C, Cai B, Zhang L, et al. Acid-catalyzed conversion of cellulose into levulinic acid with biphasic solvent system. Frontiers in Plant Science, 2021, 12: 630807. doi: 10.3389/fpls.2021.630807
|
[43] |
Weingarten R, Conner W C, Huber G W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy & Environmental Science, 2012, 5 (6): 7559–7574. doi: 10.1039/C2EE21593D
|